

Основные процессы и аппараты химической технологии

пособие по проектированию

ИЗДАНИЕ 2-Е, ПЕРЕРАБОТАННОЕ И ДОПОЛНЕННОЕ

Под ред. засл. деятеля науки и техн., докт техн. наук, проф. Ю. И. ДЫТНЕРСКОГО

Допущено Государственным комитетом по народному образованию в качестве учебного пособия для студентов химико-технологических специальностей высиих учебных заведений

МОСКВА «ХИМИЯ» 1991 Авторы: Г. С. Борисов, В. П. Брыков, Ю. И. Дытнерский, <u>С. З. Каган</u>, Ю: Н. Ковалев, Р. Г. Кочаров, Н. В. Кочергин, <u>С. И. Мартюшин</u>, В. А. Набатов, А. М. Трушин, М. А. Шерышев

О 075 Основные процессы и аппараты химической технологии: Пособие по проектированию/Г. С. Борисов, В. П. Брыков, Ю. И. Дытнерский и др. Под ред. Ю. И. Дытнерского, 2-е изд., перераб. и дополн. М.: Химия, 1991.— 496 с.
 ISBN 5—7245—0133—3

Изложены основы проектирования установок для проведения типовых процессов химической технологии. Рассмотрены цели и задачи курсового проекта, содержащие объем, порядок оформления пояснительной записки и графической части проекта. Даны принципы выбора и расчета аппаратов, вспомогательного оборудования, трубопроводов и арматуры. Приведены примеры расчета аппаратов и установок. В приложениях даны необходимые справочные сведения, общие виды и узлы типовой аппаратуры. Во втором издании (1-е изд.— 1983 г.) переработаны и дополнены практически все главы и введена новая глава по кристаллизации.

Для студентов химико-технологических вузов. Может быть полезна студентам других специальностей, а также инженерно-техническим работникам химической и смежных отраслей.

 $0 \frac{2801010000-79}{050(01)-91} 79-91$

ISBN 5-7245-0133-3

С Г С. Борисов, В. П. Брыков, Ю. И. Дытнерский, С. З. Каган, Ю. Н. Ковалев, Р. Г Кочаров, Н. В. Кочергин, С. И. Мартюшин, В. А. Набатов, А. М. Трушин, М. А. Шерышев, 1991

ББҚ 35.11

ОГЛАВЛЕНИЕ

Предисловие	9
Введение. Содержание и объем курсового проекта	10
Глава 1. Гидравлические расчеты	13
Основные условные обозначения	13
 Расчет гидравлического сопротивления трубопроводов Расчет оптимального диаметра трубопроводов Расчет гидлавлического сопротивления апдаратов с дористыми и зернистыми слоями 	13 16
и насадками 1.4. Расчет насосов и вентиляторов	17 19
1.5. Расчет отстойников	24
1.6. Расчет фильтров для суспензий	26
1.7. Расчет аппаратов мокрои очистки газов от пылей 1.8. Расчет гидродинамических параметров двухфазных потоков	30 33
Приложения	38
Приложение 1.1. Основные технические характеристики насосов и вентиляторов, используемых в химической промышленности	38
Приложение 1.2. Основные параметры фильтров непрерывного действия	43
Библиографический список	44
Глава 2. Расчет теплообменных аппаратов	
Основные условные обозначения	44
2.1. Общая схема технологического расчета теплообменных аппаратов	45
2.2. Уравнения для расчета коэффициентов теплоотдачи	49
2.3. Основные конструкции и параметры нормализованных теплообменных аппаратов	54
2.3.1. Кожухотрубчатые теплообменные аппараты	04 60
2.3.2. Генловоменники гипа «труба в Грубе»	61
	64
2.3.5. Блочные графитовые теплообменники	64
2.4. Расчет теплообменных аппаратов	66
2.4.1. Расчет кожухотрубчатого теплообменника	66
2.4.2. Расчет пластинчатого теплообменника	70
2.4.3. Расчет пластинчатого подогревателя (конденсатора)	73
2.4.4. Расчет кожухотрубчатого конденсатора	74
z.4.3. Расчет кожухопруочатого испарителя 25 Выбор одтумального испарителя тредосбиенного адпарата	70
2.6. Поверочный расчет теплообменных аппаратов	83
Библиографический список	8 6
Глава 3. Расчет массообменных процессов	8 6
Основные условные обозначения	8 6
3.1. Абсорбция, жидкостная экстракция, десорбция	87
3.1.1. Материальный баланс	88
3.1.2. Расчет числа теоретических ступеней	91
3.1.3. Расход абсорбента, экстрагента, десорбирующего газа	96
3.1.4. Выоор диаметра противоточных колони 2.1.5. Працот вызования адваратов с изнали и изначитах фор	9/
ольо, насчет высоты анцаратов с вепрерывным контактом фаз 3.1.6. Расцет цисла ступеней в апларатах со ступечнатым контактом фаз	103
3.2. Непрерывная ректификация бинарных систем	109

 3.2.1 Матернальный и тепловой балансы 3.2.2. Расчет числа теоретических ступеней 3.2.3. Ректификация при постоянстве мольных расходов фаз 3.2.4. Определение основных размеров ректификационных колонн 3.2.5. Выбор флегмового числа 3.3. Многокомпонентная ректификация 3.3.1. Приближенные методы расчета многокомпонентной ректификации 3.3.2. Точный расчет многокомпонентной ректификации 3.3.3. Расчет коэффициентов активности 3.3.4. Определение размеров ректификационных колонн при многокомпонентном питании 3.4. Адсорбция в аппаратах с неподвижным слоем твердой фазы 3.4.1. Материальный баланс 3.4.2. Массопередача с участием пористой твердой фазы 3.4.4. Расчет профилей концентраций и выходных кривых 	110 115 117 123 125 132 135 142 144 144 144 145 147 149
Библиографический список	164
Глава 4. Расчет выпарной установки	164
Основные условные обозначения	164
Введение	165
 4.1. Определение поверхности теплопередачи выпарных аппаратов 4.1.1. Концентрации упариваемого раствора 4.1.2. Температуры кипения растворов 4.1.3. Полезная разность температур 4.1.4. Определение тепловых нагрузок 4.1.5. Выбор конструкционного материала 4.1.6. Расчет коэффициентов теплопередачи 4.1.7 Распределение полезной разности температур 4.1.8. Уточненный расчет поверхности теплопередачи 4.2. Определение толщины тепловой изоляции 4.3. Расчет барометрического конденсатора 4.3.1. Расход охлаждающей воды 4.3.2. Диаметр конденсатора 4.3.3. Высота барометрической трубы 4.4. Расчет производительности вакуум-насоса 4.5. Расчет оптимального числа корпусов многокорпусной установки 	166 167 170 170 171 175 176 177 178 178 178 178 178 178 178
Приложения	
Приложение 4.1. Типы трубчатых выпарных аппаратов Приложение 4.2. Основные размеры выпарных аппаратов Приложение 4.3. Поверхностное натяжение и плотность некоторых водных растворов Приложение 4.4. Вязкость некоторых водных растворов Приложение 4.5. Температурные депрессии водных растворов при атмосферном давлении Приложение 4.6. Основные размеры барометрических конденсаторов Приложение 4.7 Техническая характеристика вакуум-насосов типа ВВН	182 182 186 186 187 187 188
Приложение 4.8. Характеристики осевых циркуляционных насосов для выпарных аппаратов с принудительной циркуляцией раствора Приложение 4.9. Цена единицы массы выпарных аппаратов	189 189
Библиографический список	189
Глава 5. Расчет абсорбционной установки	19 0
Основные условные обозначения	190
Введение	191
5.1. Расчет насадочного абсорбера 5.1.1. Масса поглощаемого вещества и расход поглотителя 5.1.2. Движущая сила массопередачи 5.1.3. Коэффициент массопередачи	192 192 193 194

 5.1.4. Скорость газа и диаметр абсорбера 5.1.5. Плотность орошения и актнвная иоверхность насадки 5.1.6. Коэффициенты массоотдачи 5.1.7. Поверхность массопередачи и высота абсорбера 5.1.8. Гндравлическое сопротивление абсорберов 5.2. Расчет тарельчатого абсорбера 5.2.1. Скорость газа и диаметра абсорбера 5.2.2. Коэффициент массопередачи 5.2.3. Высота светлого слоя жидкости 5.2.4. Коэффициенты массоотдачи 5.2.5. Число тарелок абсорбера 5.2.6. Выбор расстояния между тарелками и определение высоты абсорбера 5.2.7. Гидравлическое сопротивление тарелок абсорбера 5.3. Сравнение данных расчета насадочного и тарельчатого абсорберов 	196 198 199 200 201 203 204 205 207 208 208 208 208 209 210
Приложения	
приложение 5.1. Конструкции колонных аппаратов	211
Приложение 5.2. Тарелки колонных аппаратов	225
Библиографический список	225
	005
Глава 6. Расчет ректификационной установки	225
Основные условные обозначения	225
Введение	226
6.1. Расчет насадочной ректификационной колонны непрерывного действия 6.1.1. Материальный баланс колонны и рабочее флегмовое число 6.1.2. Скорость пара и диаметр колонны 6.1.3. Высота насадки	227 228 230 232
 6.1.4. Гидравлическое сопротивление насадки 6.2. Расчет тарельчатой ректификационной колонны непрерывного действия 6.2.1. Скорость пара и диаметр колонны 6.2.2. Высота колонны 6.2.3. Высота светлого слоя жидкости на тарелке и паросодержание барботажного слоя 	236 237 237 238 239
 b.2.4. Коэффициенты массопередачи и высота колонны 6.2.5. Гидравлическое сопротивление тарелок колонны 6.3. Выбор оптимального варианта ректификационной установки 6.4. Расчет ректификационной установки нериодического действия 6.4.1. Флегмовое число 6.4.2. Материальный баланс колонны 	240 244 245 248 248 249 251
Библиографический список	252
Глава 7. Расчет экстракционной установки	253
	050
Основные условные осозначения Васдонно	200
	200
 7.1. Расчет экстракционных аппаратов 7.1.1. Скорость осаждения капель 7.1.2. Скорости захлебывания в противоточных экстракционных колоннах 7.1.3. Удерживающая способность 7.1.4. Размер капель 7.1.5. Массопередача в экстракционных аппаратах 7.1.6. Размер отстойных зон 7.2. Пример расчета распылительной колонны 	255 255 257 258 258 258 260 261 261
$F_{\mu\nu}$ пример расчета роторно-дискового экстрактора	208
<i>σμοπμοεραφανεικάα επαευ</i> κ	212
Глава 8. Расчет адсорбционной и ионообменной установок	273
Основные условные обозначения	27 3

Введение	273
 8.1. Расчет рекуперационной адсорбционной установки с неподвижным слоем адсорбента 8.1.1. Изотерма адсорбции паров метанола на активном угле 8.1.2. Диаметр и высота адсорбера 8.1.3. Коэффициент массопередачи 8.1.4. Продолжительность адсорбции. Выходная кривая. Профиль концентрации в слом адсорбента. 8.1.5. Материальный баланс 8.1.6. Вспомогательные стадии цикла 8.2. Расчет ионообменной установки 8.2.1. Расчет односекционной катионообменной колонны 8.2.2. Расчет многосекционной катионообменной колонны 	a 274 275 276 277 277 277 278 279 280 280 280 281 285
Приложение 8.1. Конструкции и области применения аппаратов для адсорбции и ионного обмена	287
Приложение 8.2. Характеристики промышленных сорбентов	289
Библиографический список	291
Глава 9. Расчет сушильной установки	292
Основные условные обозначения	292
Введение	292
 9.1. Расчет барабанной сушилки 9.1.1. Параметры топочных газов, подаваемых в сушилку 9.1.2. Параметры отработанных газов. Расход сушильного агента 9.1.3. Определение основных размеров сушильного барабана 9.2. Расчет сушилки с псевдоожиженным слоем 9.2.1. Расход воздуха, скорость газов, диаметр сушилки 9.2.2. Высота псевдоожиженного слоя 9.2.3. Гидравлическое сопротивление сушилки 	293 294 296 297 303 304 306 310
Библиографический список	310
Глава 10. Расчет кристаллизационной установки	311
Основные условные обозначения	311
Введение	311
 10.1. Расчет кристаллизационного аппарата с псевдоожиженным слоем кристаллов 10.1.1. Материальный и тепловой балансы кристаллизации 10.1.2. Определение высоты псевдоожиженного слоя 10.2. Расчет вакуум-кристаллизатора 10.2.1. Концентрация раствора на выходе из кристаллизатора 10.2.2. Определение рабочей высоты кристаллорастителя 10.2.3. Давление в испарителе, производительность установки по кристаллической фазе, расход испаряемой воды 10.2.4. Диаметр кристаллорастворителя 10.2.5. Основные параметры испарителя 	313 313 313 314 315 315 315 316 317 318
Библиографический список	318
Глава 11. Расчет установок мембранного разделения	319
Основные условные обозначения	319
Введение	319
 11.1. Установка обратного осмоса 11.1.1. Степень концентрирования на стуиени обратного осмоса 11.1.2. Выбор рабочей температуры и перепада давления через мембрану 11.3. Выбор мембраны 11.1.4. Приближенный расчет рабочей поверхности мембран 	320 320 321 321 323

 11.1.5. Выбор аппарата и определение его основных характеристик 11.1.6. Секционнрование аппаратов в установке 11.1.7 Расчет наблюдаемой селективности мембран 11.1.8. Уточненный расчет поверхности мембран 11.1.9. Расчет гидравлического сопротивления 11.2. Установка ультрафильтрации 11.2.1. Выбор рабочей температуры и перепада давления через мембрану 11.2.2. Выбор аппарата и определение его основных характеристик 11.2.3. Приближенный расчет рабочей поверхности мембран 11.2.4. Выбор аппарата и определение его основных характеристик 11.2.5. Расчет наблюдаемой селективности мембран 11.2.6. Уточненный расчет поверхности мембран 11.2.7. Расчет гидравлического сопротивления 11.3.1. Выбор рабочик селективности мембран 11.3.2. Выбор мембраны 11.3.3. Выбор рабочик давления и температуры 11.3.3. Выбор рабочак давления и температуры 11.3.3. Выбор типа аппарата. Расчет расхода потоков, их концентраций и рабочей поверхности мембран 	324 326 328 329 330 332 333 334 335 337 340 341 343 343 343 344 344
Приложения	346
Приложение 11.1. Некоторые физико-химические свойства водных растворов электролитов при 25 °C Приложение 11.2. Химическая теплота гидратации ионов при бесконечном разбавлении	346
	340
Биолиографический список	350
Глава 12. Расчет холодильных установок	350
Основные условные обозначения	350
Введение	351
 12.1. Компрессионная паровая холодильная установка 12.1.1. Определение холодильной мощности и температурного режима установки 12.1.2. Расчет холодильного цикла 12.1.3. Подбор холодильного оборудования 12.1.4. Расчет контура хладоносителя 12.1.5. Расчет системы оборотного водоохлаждения 12.1.6. Расчет тепловой изоляции 12.1.7. Определение параметров рабочего режима холодильной установки 12.1.8. Энергетическая эффективность установки 12.2. Абсорбционная холодильная установка 2.2.1. Расчет цикла абсорбционной холодильной машины 12.2.3. Энергетическая эффективность установки 12.3. Сравнительный технико-экономический анализ компрессионной и абсорбционной холодильных машин 	352 353 356 358 363 365 368 368 371 377 378 382 383 386
Приложения	
Приложение 12.1. Диаграмма <i>i—х</i> для водоаммиачного раствора	389
приложение 12.2. Диаграмма Г—Ig Р для аммиака	390
Биолиографическии список	392
Глава 13. Механические расчеты основных узлов и деталей химических аппаратов	392
Основные условные обозначения	392
Введение	3 9 2
13.1. Общие сведения 13.2. Расчет толщины обечаек 13.3. Расчет толщины дннща 13.4. Штуцера и фланцы	393 395 3 9 8 399

 13.5. Опоры аппаратов 13.6. Вертикальные валы перемешивающих устройств 13.7. Основные элементы кожухотрубчатых аппаратов 13.8. Расчет барабанов 	402 405 406 409
Библиографический список	411
Глава 14. Графическое оформление курсового проекта	412
14.1. Общие требования 14.2. Технологические схемы 14.3. Основные требования к чертежам общего вида	412 415 424

442

ПРИЛОЖЕНИЯ

Приложение 1. Установка вышарная трехкорпусная	445
Приложение 2. Установка абсорбционная	447
Приложение 3. Установка ректификационная	449
Приложение 4. Установка экстракционная	451
Приложение 5. Установка адсорбционная	453
Приложение 6. Установка сушильная	455
Приложение 7. Установка холодильная аммиачная	457
Приложение 8. Установка обратного осмоса с доупариванием концентрата	459
Приложенне 9. Теплообменник «труба в трубе»	461
Приложение 10. Конденсатор	463
Приложение 11. Кипятильник	464
Приложение 12. Аппарат выпарной с естественной циркуляцией и вынесенной греющей камерой	467
Приложение 13. Аппарат выпарной с естественной циркуляцией, вынесенной греющей камерой и зоной кипения	468
Приложение 14. Аппарат выпарной с принудительной циркуляцией, соосной греющей камерой и вынесенной зоной кипения	470
Приложение 15. Апиарат выпарной с естественной циркуляцией, соосной греющей камерой и солеотделением	472
Приложение 16. Колонна абсорбционная диаметром 1000 мм	474
Приложение 17 Колонна ректификационная диаметром 800 мм с колпачковымн тарелками	476
Приложение 18. Колонна ректификационная диаметром 1000 мм с клапанными тарелками	478
Приложение 19. Колонна ректификационная диаметром 2000 мм с клапанно-ситчатыми тарелками	480
Приложение 20. Колонна ректификационная диаметром 2600 мм с ситчатыми тарелками многопоточная	482
Приложение 21. Экстрактор роторно-дисковый диаметром 1500 мм	484
Приложение 22. Адсорбер. Чертеж общего вида	487
Приложение 23. Корпус барабанной сушилки	489
Приложение 24. Аппарат обратного осмоса с рулонными элементамн	491
Приложение 25. Аппарат ультрафильтрации плоскорамного типа	493

ПРЕДИСЛОВИЕ

Определяющая роль курса «Осповные процессы и аплараты химической технологии» в подготовке химико-технологов общеизвестна. Этот курс базируется на фундаментальных законах естественных наук и составляет теоретическую основу химической технологии.

Курсовой проект по процессам и аппаратам химической технологии является по существу первой большой самостоятельной инженерной работой студентов в вузе. Он включает расчет типовой установки (выпарной, абсорбционной, ректификационной и др.) и ее графическое оформление. Работая над проектом, студент изучает действующие ГОСТы, ОСТы, нормали, справочную литературу, приобретает навыки выбора аппаратуры и составления технико-экономических обоснований, оформления технической документации. Объем и содержание курсового проекта по процессам и аппаратам в разных вузах зависят от программы курса и времени, отводимого на его выполнение.

Настоящее пособие состоит из трех частей. Первая часть посвящена общим принципам расчета гидравлических, тепловых и массообменных процессов, а также механическим расчетам анпаратов. Здесь приведены уравнения, справочные данные и рекомендации, пользуясь которыми, студенты могут рассчитать гидравлическое сопротивление системы, подобрать для них соответствующие насосы, вентиляторы, газодувки; рассчитать теплообменные аппараты и выбрать оптимальный вариант теплообменника, определить основные параметры, необходимые для расчета массообменных аппаратов; рассчитать аппараты на прочность.

Во второй части даны примеры расчета типовых установок (выпарных, абсорбционных, ректификационных и др.), рекомендации по их расчету. Рассмотрены вспомогательные аппараты и оборудование, которые следует рассчитать или подобрать для обеспечения работы данной установки. Приведены справочные данные об устройстве типовых аппаратов. В третьей части изложены принципы графического оформления курсового проекта с учетом правил ЕСКД, приведены примеры выполнения технологических схем установок и чертежей типовых аппаратов и узлов.

В пособии приведены схемы расчетов основных аппаратов с использованием вычислительной техники. Вместе с тем определенную и довольно значительную часть расчетов студент должен выполнять вручную.

В пособии приведены примеры использования вычислительной техники для экономических расчетов некоторых аппаратов и установок.

Следует отметить, что первым изданием книги (1983 г.) пользовались не только студенты и преподаватели, но и специалисты разных отраслей народного хозяйства при расчетах и проектировании химико-технологических процессов.

С учетом этого при подготовке второго издания книги были существенно переработаны все главы, многие из них дополнены новыми разделами, написана глава по расчету кристаллизационной установки (глава 10).

Книга представляет собой коллективный труд преподавателей кафедры «Процессы и аппараты химической технологии» МХТИ им. Д. И. Менделеева: введение написано Ю. И. Дытнерским, глава 1 — Р Г Кочаровым, глава 2 — С. И. Мартюшиным, главы 3 и 7 — Ю. Н. Ковалевым, главы 4, 5, 6 и 9 — Г С. Борисовым и Н. В. Кочергиным, главы 8 и 10 — А. М. Трушиным, глава 11 — Ю. И. Дытнерским и Р. Г Кочаровым, глава 12 — В. П. Брыковым, глава 13 — М. А. Шерышевым; часть третья — В. А. Набатовым и Г. З. Каганом].

Авторы будут признательны за замечания и советы, направленные на улучшение содержания данной книги.

введение

СОДЕРЖАНИЕ И ОБЪЕМ КУРСОВОГО ПРОЕКТА

Курсовой проект по процессам и аппаратам химической технологии состонт из пояснительной записки и графической части. Ниже приведены содержание и объем курсового проекта, порядок оформления технической документации, требования при защите.

Содержание пояснительной записки. Пояснительная записка к курсовому проекту, содержашая все исходные, расчетные и графические (вспомогательные) материалы, должна быть оформлена в определенной последовательности.

- 1. Титульный лист.
- 2. Бланк задания на проектирование.
- 3. Оглавление (содержание).
- 4. Введение.
- 5. Технологическая схема установки и ее описание.
- 6. Выбор конструкционного материала аппаратов.
- 7 Обоснование выбора основного и вспомогательного оборудования.
- 8. Технологический расчет аппаратов.
- 9. Расчет аппаратов на прочность.
- 10. Расчет или подбор вспомогательного оборудования.
- Выбор точек контроля.
- 12. Заключение (выводы и предложения).
- 13. Список использованной литературы.

Титульный лист. Пример выполнения титульного листа приведен на стр. 11.

В названии проекта должна быть указана производительность установки. Например: «Ректификационная установка непрерывного действия для разделения 5000 кг/ч смеси бензол — толуол».

Введение. В этом разделе необходимо кратко описать сущность и назначение данного процесса, сравнительную характеристику аппаратов для его осуществления. Необходимо также указать роль и место в народном хозяйстве отрасли — потребителя продукта, получение которого обусловлено заданием на проектирование.

Технологическая схема установки. Должны быть приведены принципиальная схема установки и ее описание с указанием позиций (номеров аппаратов). На схеме проставляют стрелки, указывающие направление всех потоков, значения их расходов, температур и других параметров. (Примеры графического выполнения технологических схем даны в третьей части пособия.)

Выбор конструкционного материала аппаратов. В этом разделе необходимо привести данные по обоснованию выбора материала, из которого будет изготовлена аппаратура, входящая в технологическую схему установки (с учетом скорости коррозни материала в данной среде, его механических и теплофизических свойств).

Обоснование выбора основного и вспомогательного оборудования. Как правило, в задании на проектирование указываются вид основного процесса, система, производительность, начальные и конечные концентрации (илн температуры). Например: Рассчитать и спроектировать ректификационную установку для разделения смеси бензол — толуол производительностью 3000 кг/ч. Начальная концентрация легколетучего 60 % (масс.), его концентрация в дистиляте 99 % (масс.), в кубовом остатке — 1 % (масс.). Выбор типа основного аппарата (в нашем случае — ректификационной колонны), типа контактного устройства (например, конструкции контактной тарелки и т. п.), теплообменников и других аппаратов, выбор режпмов и условий их работы студент должен выполнять са м ос т о я т е л ь н о.

Технологический расчет аппаратов. Задачей этого раздела проекта является расчет основных размеров аппаратов (диаметра, высоты, поверхности теплопередачи и т. д.) Для проведения технологического расчета необходимо предварительно найти по справочникам физико-химические свойства перерабатываемых веществ (плотность, вязкость и т. п.), составить материальные и тепловые балансы. Затем на основе анализа литературных данных и рекомендаций данного пособия выбирается методика расчета размеров аппаратов. При этом особое внимание следует уделять гидродинамическому режиму работы того или иного аппарата, выбор которого должен быть обоснован с учетом технико-экономических показателей его работы. В этот же раздел входит гидравлический расчет аппаратов, целью которого является определение гидравлического сопротнвления. В этом же разделе рассчитывается толщина тепловой изоляции аппаратов.

Расчет аппаратов на прочность. В задачу этого раздела входит определение осповных размеров аппарата, обеспечивающих его прочность, толщины стенок, крышек, дниш, люков; расчет опор, лазов, толщины трубных решеток теплообменников и фланцев и т. д. При этом необходимо учитывать условия эксплуатации данного аппарата (давление, температуру и т. п.). В случае необходимости следует провести расчет на устойчивость аппарата с учетом ветровой нагрузки.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО НАРОДНОМУ ОБРАЗОВАНИЮ

МОСКОВСКИЙ ОРДЕНА ЛЕНИНА И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ ИМ. Д. И. МЕНДЕЛЕЕВА

КАФЕДРА ПРОЦЕССОВ И АППАРАТОВ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту по процессам и аппаратам на тему:

	(название курсового проекта, система, производительность установки)
ТРОЕКТИРО	ОВАЛ СТУДЕНТ (номер группы)
	(подпись, ф. н. о.)
	руководитель проекта
»	(подлись, ф. и. о.)
ТРОЕКТ ЗАІ (ОМИССИЯ	ЩИЩЕН С ОЦЕНКОЙ
	(подпись, ф. н. о.)
	(подпись, ф. и. о.)

__» ____ (дата, год)

Расчет или подбор вспомогательного оборудования. Кроме основных аппаратов в установку входят различные виды вспомогательного оборудования: насосы, вентиляторы, газодувки, компрессоры, вакуум-насосы, конденсатоотводчики, емкости для хранения сырья и продукции и т. п. Все это оборудование должно быть рассчитано или подобрано по нормалям, каталогам или ГОСТам с учетом конкретных условий их работы.

Выбор точек контроля. В этом разделе проекта необходимо указать, а затем нанести на технологическую схему все точки контроля работы установки (измерение расхода жидкости или газа, давления, температуры, концентрации, уровня жидкости и т. д.). На технологической схеме на некоторых узлах (аппаратах) указать принцип регулирования заданного режима их работы. Например, конечную температуру нагреваемой в теплообменнике жидкости можно регулировать путем изменения давления подаваемого в этот теплообменник греющего пара и т. п.

Заключение (выводы и предложения). Заканчивая расчетную часть проекта, студент должен дать анализ полученных результатов, их соответствия заданию на проект, высказать соображения о возможных путях совершенствования данного процесса и его аппаратурного оформления.

Список использованной литературы. Литературные источники, которые использовались при составлении пояснительной записки, располагаются в порядке упоминания их в тексте или по алфавиту (по фамилии первого автора работы). Сведения о книгах должны включать: фамилию и инициалы автора, название книги, место издания, издательство, год издания, число страниц. Например: Касаткин А. Г. Основные процессы и аппараты химической технологии. М.: Химия, 1973, 752 с.

Сведения о статьях должны включать: фамилию и инициалы автора, название статьи, наименование журнала, серию, год выпуска, том, номер журнала, страницы. Например: Шумяцкий Ю. И. Адсорбционный процесс как единое целое//ЖХП. 1988. № 8. С. 490-–493.

Оформление пояснительной записки. Пояснительная записка оформляется на стандартных листах бумаги (формат II). Текстовые материалы выполняются, как правило, рукописным способом, причем в целях экономии бумаги можно использовать обе стороны листа. Расстояние от края листа до границы текста должно быть: слева — 30 мм, справа — 10 мм, сверху и снизу — не менее 20 мм. Страницы записки нумеруются, а в оглавлении указываются номера страниц, соответствующие каждому разделу записки. Заголовки разделов должны быть краткими и соответствовать содержанию. Переносы слов в заголовках не допускаются, точку в конце заголовка не ставят. Расстояние между заголовком и последующим текстом должно быть равно 10 мм, расстояние между последней строкой текста и последующим заголовком — 15 мм.

Терминология и определения в записке должны быть едиными и соответствовать установленным стандартам, а при их отсутствии — общепринятым в научно-технической литературе. Сокращения слов в тексте и подписях, как правило, не допускаются, за исключением сокращений, установленных ГОСТ 7.12—77.

Все расчетные формулы в пояснительной записке приводятся сначала в общем виде, нумеруются, дается объяснение обозначений и размерностей всех входящих в формулу величин. Затем в формулу подставляют численные значения величин и записывают результат расчета. Все расчеты должны быть выполнены в международной системе единиц СИ. Если из справочников и других источников значения величин взяты в какой-либо другой системе единиц, перед подстановкой их в уравнения необходимо сделать пересчет в систему единиц СИ. В тексте указываются ссылки на источник основных расчетных формул, физических констант и других справочных данных. Ссылки на литературные источники указывают в квадратных скобках. Например: «...для определения коэффициента массоотдачи в газовой фазе используем формулу [7, с. 110]».

Все иллюстрации (графики, схемы, чертежи, фотографии) именуются рисунками. Рисунки должны быть простыми и наглядными, давать только общее представление об устройстве аппарата или узла, а не служить чертежом для изготовления. Все рисунки должны быть однотипными, т. е. выполнены либо карандашом, либо тушью, либо чернилами на листах записки или на миллиметровой бумаге. Рисунок нумеруют и располагают после ссылки на него. Все подписи, загромождающие рисунок, следует переносить в текстовую часть. Кривые или другие элементы на рисунках обозначают цифрами. Подписи под рисунками должны быть краткими, необходимые объяснения целесообразно приводить в тексте.

Все таблицы, как и рисунки, нумеруют. Заголовок таблицы помещают под словом «Таблица». Все слова в заголовках и надписях таблицы пишут полностью, без сокращений. Если повторяющийся в графе текст состоит из одного слова, его допускается заменять кавычками. Если повторяющийся текст состоит из трех или более слов, то при первом повторении его заменяют словами «То же», а при следующем — кавычками. Ставить кавычки вместо повторяющихся цифр, марок, знаков, математических и химических символов не допускается.

Распечатки с ЭВМ должны соответствовать формату А4 (должны быть разрезаны). Распечатки включают в общую нумерацию страниц записки и помещают после заключения.

Объем пояснительной записки зависит от ряда факторов: времени, отводимого на его выполнение, глубины проработки и т. п. Например, в МХТИ им. Д. И. Менделеева при затрате на самостоятельную работу над проектом 80—90 ч объем пояснительных записок составляет обычно 60—80 страниц рукописного текста.

Графическая часть курсового проекта. Обычно она состоит на технологической схемы установки (один лист) и чертежа основного аппарата с узлами (один или два листа).

Объем и содержание графической части курсового проекта, а также ее оформление подробно рассмотрены в третьей части данного пособия.

Защита курсового проекта. К защите допускается студент, выполнивший задание на проектирование в установленном объеме и оформивший его в соответствии с требованиями данного пособия. У допушенного к защите студента должны быть подписаны руководителем пояснительная записка и все чертежи. Курсовой проект принимается комиссией в составе не менее двух человек с обязательным участием преподавателя, консультировавшего студента во время проектирования. Студент делает доклад продолжительностью 5—7 минут, в котором освещает основные вопросы выбора, расчета и конструирования аппаратуры. По окончании доклада члены комиссии задают студенту вопросы по теме курсового проекта. Оценка курсового проекта должна включать в себя оценку качества расчета и оформления записки, качества выполнения графической части проекта, уровня доклада и ответа на поставленные вопросы. После защиты члены комиссии ставят на титульном листе пояснительной записки оценку, дату защиты и подпись. На защите могут присутствовать все желающие студенты.

ГИДРАВЛИЧЕСКИЕ РАСЧЕТЫ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

```
d, — эквивалентный диаметр;
```

- е относительная шероховатость трубопровода;
- g ускорение свободного падения;
- ha потери напора;
- n частота вращення;
- N мощность;
- *p* давление;
- Δp перепад давления;
- Q объемный расход;
- ш скорость;
- η коэффициент полезного действия:
- λ коэффициент трения;
- и динамическая вязкость;
- ξ коэффициент местного сопротивления;
- ρ плотность;
- σ поверхностное натяжение.

Индексы:

г — газ; ж — жидкость; т — твердое тело.

1.1. РАСЧЕТ ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ ТРУБОПРОВОДОВ

Расчет гидравлического сопротивления [1, 2] необходим для определения затрат энергип на перемещение жидкостей и газов и подбора машин, используемых для перемещения, насосов, вентиляторов и т. п.

Гидравлическое сопротивление обусловлено сопротивлением трения н местными сопротивлениями, возникающими при изменениях скорости потока по величине или направлению.

Потери давления (Δp_n) или напора (h_n) на преодоление сопротивления трения и местных сопротивлений в трубопроводах определяют по формулам:

$$\Delta p_{0} = (\lambda l/d_{s} + \sum \xi) \rho w^{2}/2; \qquad (1.1)$$

$$h_{\rm n} = (\lambda l/d_{\rm s} + \Sigma \xi) \, \omega^2 / 2g, \tag{1.2}$$

где λ — коэффициент трения; l и d_s — соответственно длина и эквивалентный диаметр трубопровода; $\sum \xi$ — сумма коэффициентов местных сопротивлений; ρ — илотность жид-кости или газа.

Эквивалентный диаметр определяют по формуле

$$d_s = 4S/\Pi, \tag{1.3}$$

где S — площадь поперечного сечения потока; П — смоченный периметр.

Формулы для расчета коэффициента трения λ зависят от режима движения и шероховатости трубопровода.

При ламинарном режиме

$$\lambda = A/\text{Re},\tag{1.4}$$

где Re = wd_{30}/μ — число Рейнольдса; A — коэффициент, зависящий от формы сечения трубопровода. Ниже приведены значения коэффициента A и эквивалентного диаметра d_3 для некоторых сечений:

Круг диаметром <i>d</i>	64	đ
Квадрат стороной а	57	а
Кольцо шириной а	96	2a
Прямоугольник высотой а, шириной b:		
b≫a	96	2a
b/a = 10	85	1,81a
b/a = 4	73	1,6 <i>a</i>
b/a=2	62	1,3a

В турбулентном потоке различают три зоны, для которых коэффициент λ рассчитывают по разным формулам:

для зоны гладкого трения (2320 < Re < 10/e)

$$\lambda = 0.316 / \sqrt{\text{Re}}; \tag{1.5}$$

для зоны смешанного трения (10/e < Re < 560/e)

$$\lambda = 0, 11 \left(e + 68 / \text{Re} \right)^{0.25}; \tag{1.6}$$

для зоны, автомодельной по отношению к Re (Re> 560/e)

$$\lambda = 0, 11e^{0.25} \tag{1.7}$$

В формулах (1.5) — (1.7) $e = \Delta/d_3$ — относительная шероховатость трубы; Δ — абсолютная шероховатость трубы (средняя высота выступов на поверхности трубы).

Ориентировочные значения абсолютной шероховатости труб Δ приведены ниже:

А, ММ
0,06-0,1
0, 1-0, 2
0,5-2
0,35—1
1,4
0,0150,06
0,0015-0,01
0,2
0,5
1,0
0,8

Значения коэффициентов местных сопротивлений ξ в общем случае зависят от вида местного сопротивления и режима движения жидкости. Ниже приведены наиболее распространенные типы местных сопротивлений и соответствующие значения коэффициентов §.

иентов ξ . 1. *Вход в трубу*: с острыми краями — $\xi = 0,5$,)с закругленными краями — $\xi = 0,2$.

2. Выход из трубы: ' $\xi = 1$)

3. Плавный отвод круглого сечения: $\xi = A \cdot B$.

Коэффициент А зависит от угла φ , на который изменяется направление потока в отводе:

A = 0.31 0.43 0.60 0.78 (1.0 1.13 1.20 1.26 1.40)	Угол ф, град.	20	30	45	60	(1.0)	110	130	150	180
	А	0,31	0,45	0,60	0.78	90	1,13	1,20	1, 28	1,40

Коэффициент В зависит от отношения радиуса поворота трубы R_0 к внутреннему диаметру трубы d:

R_0/d	1,0	2,0	4,0	6,0	15	30	50
B	0,21	0,15	0,11	0,09	0,06	0,04	0,03
4. Колено с угло	м 90° (1	[гольник]):				
d трубы, мм	12,5	25	37	50	> 50		
Ę	2,2	2	1,6	1,1	1,1		

5. Вентиль нормальный при полном открытии:

<i>d</i> трубы, мм ξ	13 10,8	20 8,0	40 4,9	80 4,0	100 4,1	150 4,4	200 4,7	250 5,1	350 (5,5)
6. Вентиль і	прямоточн	ый при	полном	открыт	гии. Пр	и Re>	3·10 ⁵ :		-
<i>d</i> трубы, мм ξ	25 1,04	38 0,85	50 0,79	65 0,65	76 0,60	100 0,50	150 0,42	200 0,36	250 (^{0,3})
При Re<3·1 щий от Re:	0 ⁵ указанн	юе знач	ение ξ	следует	умнож	ить на	коэффиц	иент <i>k</i> ,	завися-
Re	5000	10 00	00	20 000	50 (000	100 000	200 00	0

Re	5000	10 000	20 000	50 000	100 000	200 000
k	1,40	1,07	0,94	0, 88	0,91	0,93

7. Внезапное расширение. Значения ξ зависят от соотношения площадей меньшего и большего сечений F_1/F_2 и от числа Re (рассчитываемого через скорость и эквивалентный диаметр для меньшего сечения):

D-		·	ξ при <i>F</i> ι/	F2, равном		
KC	0,1	0,2	0,3	0,4	0,5	0,6
10 100 1000 3000 ≥ 3500	3,10 1,70 2,00 1,00 0,81	3,10 1,40 1,60 0,70 0,64	3,10 1,20 1,30 0,60 0,50	3,10 1,10 1,05 0,40 0,36	3,10 0,90 0,90 0,30 0,25	3,10 0,80 0,60 0,20 0,16

8. Внезапное сужение. Значения ξ определяют так же, как при внезапном расширении:

Re			ξ при <i>F</i> 1//	F2, равном		
	0,1	0,2	0,3	0,4	0,5	0,6
10	5.0	5,0	5,0	5,0	5,0	5,0
100	1,30	1,20	1,10	1,00	0,90	0,80
1000	0,64	0,50	0,44	0,35	0,30	0,24
10000	0,50	0,40	0,35	0,30	0,25	0,20
> 10000	0,45	0,40	0,35	0,30	0,25	0,20

9. Тройники. Коэффициенты 5 определяют в зависимости от отношения расхода жидкости в ответвлении Q_{отв} к общему расходу Q_N в основном трубопроводе (магистрали). При определении потерь напора с использованием приведенных ниже коэффициентов следует исходить из скорости жидкости в магистрали. Коэффициенты местных сопротивлений, относящиеся к магистрали (5_M) и к ответвляющемуся трубопроводу (5_{отв}), в ряде случаев могут иметь отрицательные значения, так как при слиянии или разделении потоков возможно всасывание жидкости и увеличение напора:

		Qors/Qu							
	0,0	0,2	0,4	0,6	0,8	1,0			
		Поток вхо	дит в магистр	аль					
Šorb	-1,2	-0,4	0,08	0,47	0,72	0,91			
ξM	0,04	0,17	0,30	0,41	0,51	0,60			
		Поток выхо	дит из магист	рали					
Sora	0,95	0,88	0,89	0,95	1,10	1,28			
5*	0,04	-0,08	0,05	0,07	0,21	0,35			

d трубы, мм	15-100	175 - 200	300 и выше
ξ	0,5	0,25	0,15

1.2. РАСЧЕТ ОПТИМАЛЬНОГО ДИАМЕТРА ТРУБОПРОВОДОВ

Внутренний диаметр трубопровода круглого сечения рассчитывают [1] по формуле

$$d = \sqrt{4Q/(\pi\omega)}.$$
 (1.8)

Обычно расход перекачиваемой среды известен и, следовательно, для расчета диаметра трубопровода требуется определить единственный параметр — w. Чем больше скорость, тем меньше требуемый диаметр трубопровода, т. е. меньше стоимость трубопровода, его монтажа и ремонта. Однако с увеличением скорости растут потери напора в трубопроводе, что приводит к увеличению перепада давления, необходимого для перемещения среды, и, следовательно, к росту затрат энергии на ее перемещение.

Оптимальный диаметр трубопровода, при котором суммарные затраты на перемещение жидкости или газа минимальны, следует находить путем технико-экономических расчетов. На практике можно исходить из следующих значений скоростей, обеспечивающих близкий к оптимальному диаметр трубопровода:

Перекачиваемая среда	₩, м/с
Жидкости	
При движении самотеком:	
вязкие	0,1-0,5
маловязкие	0,5-1,0
При перекачивании насосами:	
во всасывающих трубопроводах	0,8-2,0
в нагнетательных трубопроводах	1,5—3,0
Газы	
При естественной тяге	2—4
При небольшом давлении (от вентиляторов)	4
При большом давлении (от компрессоров)	15-25
Пары	
Перегретые	3050
Насыщенные при давлении, Па:	
больше 10 ⁵	15 - 25
$(1-0.5)10^{5}$	20-40
$(5-2)10^{4}$	40-60
$(2-0,5)10^4$	6075

Ниже представлены некоторые характеристики стальных труб, применяемых в промышленности (символ «У» относится к углеродистой стали, «Н» — к нержавеющей):

Наружный диаметр, мм	Толщина стенки, мм	Материал	Наружный диаметр, мм	Толщина стенки, мм	Материал
14	2	У. Н	90	4	У. Н
14	2,5	H	90	5	У, H
14	3	У	89	4	У
16	2	У		4,5	н
18	2	У, Н	89	6	У
18	3	У, Н	95	4	У, Н
20	2	Ĥ	95	5	У
20	2,5	У	108	4	У
22	2	У, Н	108	5	У
22	3	у	108	6	н
25	2	У, Н	133	4	У
25	3	У	133	6	н

Наружный диаметр, мм	Іаружный Толщина диаметр, стенки, Материал мм мм		Наружный диаметр, мм	Толяцина стенки, мм	Материал
32	3	н	133	7	
32	35	ÿ	159	4.5	ÿ
38	2	УŬН	159	5	ÿ
38	3	Н	159	6	Ĥ
38	4	У	159	7	ÿ
45	3.5	Ĥ	194	6	У
45	4	У	194	10	У
48	3	н	219	6	У
48	4	У	219	8	У
56	3,5	Н	245	7	У
57	2,5	У	245	10	У
57	3,5	У	273	10	У
57	4	У	325	10	У
70	3	Н	325	12	У
70	3,5	У	377	10	У
76	4	У	426	11	У

1.3. РАСЧЕТ ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ АППАРАТОВ С ПОРИСТЫМИ И ЗЕРНИСТЫМИ СЛОЯМИ И НАСАДКАМИ

Во многих аппаратах для тепловых и массообменных процессов каналы, по которым проходит жидкость или газ, имеют полое сечение (круглое или прямоугольное) Гидравлическое сопротивление таких аппаратов рассчитывают по тем же формулам, что и сопротивление трубопроводов. Осадки на фильтрах, гранулы катализаторов и сорбентов, насадки в абсорбционных и ректификационных колоннах и т п. образуют в аппаратах пористые или зернистые слои [1—3]. При расчете гидравлического сопротивления таких слоев можно использовать зависимость, по внешнему виду аналогичную уравнению для определения потери давления на трение в трубопроводах:

$$\Delta p_{\rm c} = \lambda \frac{l}{d_{\star}} \frac{\rho \omega^2}{2}, \qquad (1.9)$$

где λ — общий коэффициент сопротивления, отражающий влияние сопротивления трения и местных сопротивлений, возникающих при двпжении жидкости по каналам слоя и обтекании отдельных элементов слоя; *l* — средняя длина каналов слоя; ρ — плотпость жидкости или газа; *w* — средняя истинная скорость среды в каналах слоя.

Рассматривая движение жидкости или газа через слой на основе внутренней задачи гидродинамики (движение внутри каналов, образуемых пустотами и порами между элементами слоя), можно преобразовать выражение (1.9) к удобному для расчетов виду:

$$\Delta p_{\rm c} = \lambda Ha_{\rm P} w_0^2 (8\epsilon^3), \qquad (1.10)$$

где H — высота слоя; a — удельная поверхность, представляющая собой поверхность частиц материала, находящихся в единице объема, занятого слоем; ϵ — порозность, или доля свободного объема (отношение объема свободного пространства между частицами к объему, занятому слоем); ω_0 — фиктивная скорость жидкости или газа, рассчитываемая как отношение объемного расхода движущейся среды ко всей площади поперечного сечения слоя.

Значение λ находят по уравнению

$$\lambda = 133/\text{Re} + 2.34. \tag{1.11}$$

Критерий Рейнольдса в данном случае определяют по формуле

$$\operatorname{Re} = 4\omega_0 \rho / (a\mu). \tag{1.12}$$

17

Если неизвестно значение *a*, иногда бывает удобнее использовать выражение, полученное исходя из внешней задачи гидродинамики (обтекание отдельных элементов слоя):

$$\Delta \rho_{\rm c} = 3\lambda H \left(1 - \epsilon\right) \rho \, \omega_0^2 / \left(4\epsilon^3 d_{\rm y} \Phi\right), \tag{1.13}$$

где d_{u} — диаметр частиц правильной шаровой формы; для частиц неправильной формы d_{u} — диаметр эквивалентного шара, т. е. шара, имеющего такой же объем, как и частица; Φ — фактор формы частицы, определяемый соотношением $\Phi = F_{uu}/F_{u}$ (F_{u} — поверхность шара, имеющего тот же объем, что и данная частица с поверхностью F_{u}).

Величину λ определяют по соотношению (1.11). Критерий Рейнольдса в этом случае рассчитывают по формуле

$$\operatorname{Re} = \frac{2}{3} \frac{\Phi}{(1-\varepsilon)} \operatorname{Re}_{0}, \qquad (1.14)$$

где

$$\operatorname{Re}_{0} = w_{0} d_{u} \rho / \mu. \tag{1.15}$$

Переход от выражения (1.10) к (1.13) или обратный можно осуществить с помощью соотношения

$$a = 6(1 - \varepsilon) / (\Phi d_{y}). \tag{1.16}$$

По уравнению (1.11) рассчитывают λ для зернистых слоев с относительно равномерным распределением пустот (слоев гранул, зерен, шарообразных частиц). При движении газов или паров через слои колец Рашига внутренние полости колец нарушают равномерность распределения пустот. В этом случае для расчета λ используют следующие соотношения:

для колец, загруженных внавал

при
$$\text{Re} < 40$$
 $\lambda = 140/\text{Re},$ (1.17)

іри
$$Re > 40$$
 $\lambda = 16/Re^{0.2};$ (1.18)

для правильно уложенных колец

1

$$\lambda = A/Re^{0.375}$$
, (1.19)

$$A = 3,12 + 17 (d_{3}/H) (d_{h}/d_{H})^{1.37}$$
(1.20)

где d_в и d_и — соответственно внутренний и наружный диаметр кольца; d_э — эквивалентный диаметр, определяемый по формуле

$$d_{s} = 4\varepsilon/a. \tag{1.21}$$

Это выражение характеризует эквивалентный диаметр для любых пористых и зернистых слоев.

Определив λ по одной из формул — (1.17), (1.18) или (1.19), можно рассчитать гидравлическое сопротивление сухой насадки по соотношению (1.10).

При свободной засыпке шарообразных частиц доля свободного объема составляет в среднем $\varepsilon = 0,4$. Фактор формы для округлых частиц заключен в пределах между $\Phi = 1$ (для правильных шаров) и $\Phi = 0,806$ (для правильных кубов). Для цилиндрических частиц фактор формы меняется в зависимости от отношения высоты цилиндра h_{μ} к его диаметру d_{μ} . Так, $\Phi = 0,69$ при $h_{\mu}/d_{\mu} = 5$; $\Phi = 0,32$ при $h_{\mu}/d_{\mu} = 0,05$.

Формулы (1.10) и (1.13) применимы для движения потока через неподвижные слои. Для псевдоожиженных слоев гидравлическое сопротивление определяют по формуле

$$\Delta p_{\rm nc} = H \left(1 - \varepsilon \right) \left(\rho_{\rm T} - \rho \right) g, \tag{1.22}$$

где ρ_{τ} – плотность твердых частиц, образующих слой; ρ – плотность среды.

В формулу (1.22) можно подставлять значения H и ε для неподвижного слоя, поскольку произведение $H(1-\varepsilon)$. представляющее собой объем твердых частиц, приходящийся на единицу поперечного сечения аппарата, не меняется при переходе от неподвижного слоя к псевдоожиженному:

$$H(1-\varepsilon) = H_{\rm uc}(1-\varepsilon_{\rm nc}), \qquad (1.23)$$

где *H*_{ис} и є_{ис} — соответственно высота и порозность псевдоожиженного слоя.

Скорость w_{nc} , при которой неподвижный зернистый слой переходит в псевдоожиженное состояние (скорость начала псевдоожижения), можно определить следующим образом. Критерий Reunc, соответствующий скорости начала псевдоожижения, находят путем решения квадратного уравнения

$$1.75 \operatorname{Re}_{0\,\mathrm{nc}}^{2} / (\varepsilon^{3} \Phi) + 150(1 - \varepsilon) \operatorname{Re}_{0\,\mathrm{nc}} / (\varepsilon^{3} \Phi^{2}) - \operatorname{Ar} = 0.$$
(1.24)

Критерий Архимеда рассчитывают по уравнению

$$\operatorname{Ar} = d_{\pi}^{3} \rho g \left(\rho_{\pi} - \rho \right) / \mu^{2}$$
(1.25)

Для частиц, близких к сферическим, для нахождения Reone можно использовать приближенное решение уравнения (1.24):

$$Re_{0nc} = Ar/(1400 + 5.22\sqrt{Ar}).$$
(1.26)

На основе соотношения (1.15) находят w_{nc} :

$$w_{uc} = \operatorname{Re}_{0uc}\mu/\left(d_{u}\rho\right). \tag{1.27}$$

Скорость свободного витания *w*_{св}, при которой происходит разрушение псевдоожиженного слоя и массовый унос частиц, определяют следующим образом.

Рассчитывают критерий Reace, соответствующий скорости свободного витания частиц:

$$Re_{0\,cs} = Ar/(18 + 0.575\sqrt{Ar})$$
(1.28)

Используя (1.15), определяют ω_{св}:

$$\omega_{cs} = \operatorname{Re}_{0\,cs}\mu/(d_{u}\rho). \tag{1.29}$$

Таким образом, псевдоожиженный слой существует в диапазоне скоростей $\omega_{\rm nc} < < w_0 < w_{\rm cs}$.

Порозность псевдоожиженного слоя определяют по формуле:

$$\epsilon_{\rm nc} = \left[\left(18 {\rm Re}_0 + 0.36 {\rm Re}_0^2 \right) / {\rm Ar} \right]^{0.21} \tag{1.30}$$

Рассчитав ε_{nc} , можно с помощью соотношения (1.23) определить высоту псевдоожиженного слоя.

В химической, нефтеперерабатывающей и других отраслях промышленности распространены барботажные (тарельчатые) колонны. При расчетах гидравлического сопротивления барботажных аппаратов обычно требуется определить гидравлическое сопротивление «сухих» (неорошаемых) тарелок Δp_c , через которые проходит газ или пар. Значение Δp_c рассчитывают по формуле

$$\Delta p_{\rm c} = \xi \rho \, \omega^2 / 2, \tag{1.31}$$

где 5 — коэффициент сопротивления сухой тарелки; w — скорость газа или пара в отверстиях (щелях, прорезях колпачков) тарелки.

1.4. РАСЧЕТ НАСОСОВ И ВЕНТИЛЯТОРОВ

Насосы. Основными типами насосов, применяемых в химической технологии, являются центробежные, поршневые и осевые насосы. При проектировании обычно возникает задача определения необходимого напора и мощности при заданной подаче (расходе) жидкости, перемещаемой насосом. Далее по этим характеристикам выбирают насос конкретной марки [1, 2, 4, 5]

Полезную мощность, затрачиваемую на перекачивание жидкости, определяют по формуле

$$N_{n} = \rho g Q H, \qquad (1.32)$$

где Q — подача (расход); H — напор насоса (в м столба перекачиваемой жидкости). Напор рассчитывают по формуле

$$H = (p_2 - p_1) / (\rho g) + H_t + h_n, \tag{1.33}$$

где p_1 — давление в аппарате, из которого перекачивается жидкость; p_2 — давление в аппарате, в который подается жидкость; H_r — геометрическая высота подъема жидкости; $h_{\rm II}$ — суммарные потери напора во всасывающей и нагнетательной линиях.

Мощность, которую должен развивать электродвигатель насоса на выходном валу при установившемся режиме работы, находят по формуле

$$N = N_{\rm n}/(\eta_{\rm u}\eta_{\rm nep}), \qquad (1.34)$$

где η_н и η_{пер} — коэффициенты полезного действия соответственно насоса и передачи от электродвигателя к насосу.

Если к. п. д. насоса неизвестен, можно руководствоваться следующими примерными значениями его:

Hacoc	Центробежный	Осевой	Поршневой
К. п. д.	0,4—0,7 (малая и средняя подача)	0,7—0,9	0,65—0,85
	0,7—0,9 (большая подача)		

К. п. д. передачи зависит от способа передачи усилия. В центробежных и осевых насосах вал электродвигателя обычно непосредственно соединяется с валом насоса; в этих случаях η_{пер} ≈ 1. В поршневых насосах чаще всего используют зубчатую передачу; при этом η_{пер} = 0,93-0,98.

Зная *N*, по каталогу выбирают электродвигатель к насосу; он должен иметь номинальную мощность *N*_n, равную *N*. Если в каталоге нет электродвигателя с такой мощностью, следует выбрать двигатель с ближайшей большей мощностью.

При расчете затрат энергии на перекачивание необходимо учитывать, что мощность N_{дн}, потребляемая двигателем от сети, больше номинальной вследствие потерь энергии в самом двигателе:

$$N_{\rm ab} = N_{\rm H} / \eta_{\rm Ab}, \tag{1.35}$$

где $\eta_{дв}$ — коэффйциент полезного действия двигателя.

Если к. п. д. двигателя неизвестен, его можно выбирать в зависимости от номинальной мощности:

Устанавливая насос в технологической схеме, следует учитывать, что высота всасывания *Н*_{вс} не должна превышать значения, вычисленного по формуле

$$H_{\rm BC} \leq p_{\rm I}/\rho g - (p_{\rm I}/\rho g + \omega_{\rm BC}^2/2g + h_{\rm n,BC} + h_{\rm 3}), \qquad (1.36)$$

где p_t — давление насыщенного пара перекачиваемой жидкости при рабочей температуре; $w_{\rm BC}$ — скорость жидкости во всасывающем патрубке насоса; $h_{\rm n \ BC}$ — потеря напора во всасывающей линии; h_3 — запас напора, необходимый для исключения кавитации (в центробежных насосах) или предотвращения отрыва поршня от жидкости вследствие сил инерции (в поршневых насосах).

Для центробежных насосов

$$h_3 = 0.3 (Qn^2)^{2/3}, \tag{1.37}$$

где *n* — частота вращения вала, с⁻¹

Для поршневых насосов при наличии воздушного колпака на всасывающей линии

$$h_1 = 1, 2(l/g) (f_1/f_2) (u^2/r),$$
 (1.38)

	0	20	30	40	50	60	70			
0.834	7.0	6.5	6.0	5.5	4.0	2.5	0			
1,00	6,5	6,0	5,5	5,0	3,5	2,0	0			
1,50	5,5	5,0	4,5	4,0	2,5	1,0	0			
2,00	4,5	4,0	3,5	3,0	1,5	0,5	0			
3,00	2,5	2,0	1,5	1,0	0	0	0			

Таблица І.І. Допустимая высота всасывания для поршневых насосов

где *l* — высота столба жидкости во всасывающем трубопроводе, отсчитываемая от свободной поверхности жидкости в колпаке; *f*₁ и *f*₂ — площади сечения соответственно поршня и трубопровода; *u* — окружная скорость вращения; *r* — радиус кривошила.

Для определения допустимой высоты всасывания при перекачивании воды поршневыми насосами можно использовать данные табл. 1.1.

Вентиляторы. Вентиляторами называют машины, перемещающие газовые среды при степени повышения давления до 1,15. В промышленности наиболее распространены центробежные и осевые вентиляторы. В зависимости от давления, создаваемого вентиляторами, их подразделяют на три группы: низкого давления — до 981 Па, среднего — от 981 до 2943, высокого — от 2943 до 11 772 Па. Центробежные вентиляторы охватывают все три группы, осевые вентиляторы — преимущественио низкого давления, в очень редких случаях — среднего.

Поскольку повышение давления в вентиляторах невелико, измечением термодинамического состояния газа в них можно пренебречь, и к ним применима теория машин для несжимаемой среды.

Мощность, потребляемую вентиляторами, рассчитывают по формулам (1.32), (1.34) и (1.35). Требуемый напор вентилятора (в м столба газа) определяют по формуле

$$H = (\rho_2 - \rho_1) / (\rho g) + h_0, \tag{1.39}$$

где p_1 — давление в аппарате, из которого засасывается газ; p_2 — давление в аппарате, в который подается газ; h_n — суммарные потери напора во всасывающей и нагнетательной линиях.

К. п. д. центробежных вентиляторов обычно составляет $\eta_{\mu} = 0,6-0,9$, осевых $\eta_{\mu} = 0,7-0,9$. При непосредственном соединении валов вентиляторов и двигателя $\eta_{\mu\nu\rho} = 1$, при клиноременной передаче $\eta_{\mu\nu\rho} = 0,98$.

В Приложении 1.1 даны основные технические характеристики насосов и вентиляторов, используемых в химической промышленности.

Пример расчета насоса. Подобрать насос для перекачивания воды при температуре 20 °С из открытой емкости в аппарат, работающий под избыточным давлением 0,1 МПа. Расход воды 1,2·10⁻² м³/с. Геометрическая высота подъема воды 15 м. Длина трубопровода на линии всасывания 10 м, на линии нагнетания 40 м. На линии нагнетания имеются два отвода под углом 120°, десять отводов под углом 90° с радиусом поворота, равным 6 диаметрам трубы, и два пормальных вентиля. На всасывающем участке трубопровода установлено два прямоточных вентиля, имеется четыре отвода под углом 90° с радиусом поворота, равным шести диаметрам трубы.

Проверить возможность установки насоса на высоте 4 м над уровнем воды в емкости.

Выбор трубопровода.

Для всасывающего и нагнетательного трубопровода примем одинаковую скорость течения воды, равную 2 м/с. Тогда диаметр по формуле (1.8) равен

$$d = \sqrt{4 \cdot 1.2 \cdot 10^{-2} / (3.14 \cdot 2)} = 0.088$$
 м.

Выбираем стальную трубу наружным диаметром 95 м, толщиной стенки 4 мм. Внутренний диаметр трубы d = 0.087 м. Фактическая скорость воды в трубе

$$w = 4Q/(\pi d^2) = 4 \cdot 1.2 \cdot 10^{-2}/(3.14 \cdot 0.087^2) = 2.02 \text{ m/c}.$$

Примем, что коррозия трубопровода незначительна. Определение потерь на трение и местные сопротивления

 $\operatorname{Re} = \omega d\rho / \mu = 2.02 \cdot 0.087 \cdot 998 / (1.005 \cdot 10^{-3}) = 174\ 500,$

Далее получим:

$$1/e = 435$$
; $560/e = 244\ 000$; $10/e = 4350$; $4350 < \text{Re} < 244\ 000$.

Таким образом, в трубопроводе имеет место смешанное трение, и расчет λ следует проводить по формуле (1.6):

$$\lambda = 0.11(0.0023 + 68/174500)^{0.25} = 0.025.$$

Определим сумму коэффициентов местных сопротивлений.

Для всасывающей линии:

вход в трубу (принимаем с острыми краями): ξ₁ = 0,5;

2) прямоточные вентили: для d = 0,076 м $\xi = 0,6;$ для d = 0,10 м $\xi = 0,5;$ интерполяцией находим, что для d = 0,087 $\xi = 0,56;$ умножая на поправочный коэффициент k = 0,925, получим $\xi_2 = 0,52;$

3) отводы: коэффициент A = 1, коэффициент B = 0.09; $\xi_3 = 0.09$.

Сумма коэффициентов местных сопротивлений во всасывающей линии:

$$\Sigma \xi = \xi_1 + 2\xi_2 + 4\xi_3 = 0.5 + 1.04 + 0.36 = 1.9.$$

Потерянный напор во всасывающей линии находим по формуле (1.2):

$$h_{\text{n.BC}} = \left(0,025 \frac{10}{0,087} + 1.9\right) \frac{2,02^2}{2 \cdot 9.81} = 0.99 \text{ M}.$$

Для нагнетательной линии:

1) отводы под углом 120°: A = 1,17; B = 0,09; ξ_1 = 0,105;

2) отводы под углом 90°: $\xi_2 = 0,09$ (см. выше);

3) нормальные вентили: для d = 0,08 м $\xi = 4,0$; для d = 0,1 м $\xi = 4,1$; для d = 0,087 $\xi_3 = 4,04$; 4) выход из трубы: $\xi_4 = 1$.

Сумма коэффициентов местных сопротивлений в нагнетательной линии:

$$\sum \xi = 2\xi_1 + 10\xi_2 + 2\xi_3 + \xi_4 = 2 \cdot 0,105 + 10 \cdot 0,09 + 2 \cdot 4,04 + 1 = 10,2.$$

Потерянный напор в нагнетательной линии по формуле (1.2):

$$h_{\rm n, trar} = \left(0,025 \frac{40}{0,087} + 10,2\right) \frac{2,02^2}{(2\cdot9,81)} = 4,51$$
 M.

Общие потери напора:

$$h_{\rm H} = h_{\rm H, BC} + h_{\rm H, Har} = 0.99 + 4.51 = 5.5$$
 M.

Выбор насоса.

Находим потребный напор насоса по формуле (1.33):

$$H = 0.1 \cdot 10^6 / (998 \cdot 9.81) + 15 + 5.5 = 30.7$$
 м вод. ст.

Такой напор при заданной производительности обеспечивается одноступенчатыми центробежными насосами (см. Приложение 1.1, табл. 1) Учитывая широкое распространение этих насосов в промышленности ввиду достаточно высокого к. п. д., компактности и удобства комбинирования с электродвигателями, выбираем для последующего рассмотрения именно эти насосы.

Полезную мощность насоса определим по формуле (1.32):

$$N_{\rm e} = 998 \cdot 9.81 \cdot 0.012 \cdot 30.7 = 3606 \text{ BT} = 3.61 \text{ kBT}$$

Принимая η_{nep}=1 и η_н=0,6 (для центробежного насоса средней производительности), найдем по формуле (1.34) мощность на валу двигателя:

$$N = 3,61/0,6 \cdot 1 = 6,02 \text{ KBT}$$

По табл. 1 Приложения 1.1 устанавливаем, что заданным подаче и напору более всего соответствует центробежный насос марки X45/31, для которого при оптимальных условиях работы $Q = 1,25 \cdot 10^{-2} \text{ м}^3/\text{с}, H = 31 \text{ м}, \eta_{\text{H}} = 0,6$. Насос обеспечен электродвигателем AO2·52·2 номинальной мощностью $N_{\text{H}} = 13 \text{ кВт}, \eta_{\text{AB}} = 0,89$. Частота вращения вала $n = 48,3 \text{ c}^{-1}$

Определение предельной высоты всасывания

По формуле (1.37) рассчитаем запас напора на кавитацию:

$$h_3 = 0,3 (0,012 \cdot 48,3^2)^{2/3} = 2,77$$
 м.

По таблицам давлений насыщенного водяного пара [2] найдем, что при 20 °С $p_t = 2,35 \cdot 10^3$ Па. Примем, что атмосферное давление равно $p_1 = 10^5$ Па, а диаметр всасывающего патрубка равен диаметру трубопровода. Тогда по формуле (1.36) найдем:

$$H_{\text{sc}} \leqslant \frac{10^5}{998 \cdot 9.81} - \left(\frac{2.35 \cdot 10^3}{998 \cdot 9.81} + \frac{2.02^2}{2 \cdot 9.81} + 0.99 + 2.77\right) = 6.0.$$

Таким образом, расположение насоса на высоте 4 м над уровнем воды в емкости вполне возможно.

Пример расчета вентилятора. Подобрать вентилятор для перекачивания воздуха через адсорбер. Расход воздуха 0,4 м³/с, температура 20 °С. Воздух вводится в нижнюю часть адсорбера. Давление исходного воздуха и над слоем адсорбента атмосферное. Сорбент представляет собой частицы, плотность которых $\rho_{\rm T}$ = 800 кг/м³, средний размер $d_{\rm H}$ = 0,00205 м, фактор формы Φ = 0,8. Высота неподвижного слоя сорбента 0,65 м, порозность ε = 0,4 м³/м³. Внутренний диаметр адсорбера D = 1,34 м. Длина трубопровода от точки забора воздуха до адсорбера составляет 20 м. На трубопроводе имеются четыре колена под углом 90° и одна задвижка.

Определяем состояние (неподвижное или псевдоожиженное) слоя.

Фиктивная скорость воздуха в аппарате

$$w_0 = 4Q/(\pi D^2) = 4.0.4/(3.14.1.34^2) = 0.284 \text{ m/c}.$$

Рассчитаем критерий Архимеда по формуле (1.25):

$$Ar = (0,00205)^{3}1,206 \cdot 9,81(800 - 1,206)/(1,85 \cdot 10^{-5})^{2} = 2,38 \cdot 10^{5}$$

Определим Reone по приближенной формуле (1.26):

$$\operatorname{Re}_{0.0c} = 2,38 \cdot 10^5 / (1400 + 5,22 \times 2,38 \cdot 10^5) = 60,3.$$

Скорость начала псевдоожижения найдем по формуле (1.27):

$$\omega_{\rm nc} = 60.3 \cdot 1.85 \cdot 10^{-5} / (0.00205 \cdot 1.206) = 0.451 \, {\rm m/c}.$$

Таким образом, $w_0 < w_{nc}$; слой находится в неподвижном состоянии. Определим критерий Рейнольдса в слое по формуле (1.14):

эпределим критерии геннольдей в слос по формуле (1.1

$$\operatorname{Re} = \frac{2 \cdot 0.8}{3 (1 - 0.4)} \cdot \frac{0.284 \cdot 0.00205 \cdot 1.206}{1.85 \cdot 10^{-5}} = 33.7.$$

Рассчитаем λ по формуле (1.11):

$$\lambda = 133/33,7 + 2,34 = 6,29.$$

Найдем гидравлическое сопротивление слоя по формуле (1.13):

 $\Delta p_{\rm s} = 3 \cdot 6,29 \cdot 0,65 (1-0,4) 1,206 \cdot 0,284^2 / (4 \cdot 0,8 \cdot 0,4^3 \cdot 0,00205) = 1705 \ \Pi a.$

Примем, что гидравлическое сопротивление газораспределительной решетки и других вспомогательных устройств в адсорбере составляет 10 % от сопротивления слоя. Тогда гидравлическое сопротивление аппарата

$$\Delta p_{a} = 1705 \cdot 1, 1 = 1876 \ \Pi a$$

Примем скорость воздуха в трубопроводе w = 10 м/с. Тогда диаметр трубопровода по формуле (1.8) равен

$$d = \sqrt{4 \cdot 0.4/(3.14 \cdot 10)} = 0.226$$
 м.

Выбираем стальной трубопровод наружным диаметром 245 мм и толщиной стенки 7 мм. Тогда внутренний диаметр d = 0,231 м. Фактическая скорость в трубе

$$\omega = 0.4 \cdot 4 / (3.14 \cdot 0.231)^2 = 9.55 \text{ m/c}.$$

Критерий Рейнольдса для потока в трубопроводе:

$$Re = 9,55 \cdot 0,231 \cdot 1,206/(1,85 \cdot 10^{-5}) = 143\,800.$$

Примем, что трубы были в эксплуатации, имеют незначительную коррозию. Тогда $\Delta = 0,15$ мм. Получим:

 $e = 1,5 \cdot 10^{-4}/0.231 = 6,49 \cdot 10^{-4}$; 1/e = 1541; $10 \cdot 1/e = 15410$; $560 \cdot 1/e = 862900$; 15410 < Re = 143800 < 862900.

Таким образом, расчет λ следует проводить для зоны смешанного трения по формуле (1.6): $\lambda = 0.11 (6.49 \cdot 10^{-4} + 68/143\ 800)^{0.25} = 0.020.$ Определим коэффициенты местных сопротивлений:

- 1) вход в трубу (принимаем с острыми краями): $\xi_1 = 0.5$;
- 2) задвижка: для d = 0.231 м $\xi_2 = 0.22$;
- 3) колено: ξ₃ = 1.1;
- выход из трубы: ξ₄=1.

Сумма коэффициентов местных сопротивлений:

 $\Sigma \xi = 0.5 + 0.22 + 4 \cdot 1.1 + 1 = 6.12.$

Гидравлическое сопротивление трубопровода по формуле (1.1):

$$\Delta \rho_{\rm n} = (0.020 \cdot 20/0.231 + 6.12) 1.206 \cdot 9.55^2/2 = 432 \ \Pi a$$

Избыточное давление, которое должен обеспечить вентилятор для преодоления гидравлического сопротивления анпарата и трубопровода, равно:

$$\Delta p = \Delta p_{a} + \Delta p_{a} = 1876 + 432 = 2308 \ \Pi a.$$

Таким образом, необходим вентилятор среднего давления. Полезную мощность его находим по формуле (1.32):

$$N_{\rm p} = \rho g Q H = Q \Delta \rho = 0.4 \cdot 2308 = 923 \text{ Br} = 0.923 \text{ kBr}.$$

Принимая $\eta_{nep} = 1$ и $\eta_n = 0.6$, по формуле (1.34) найдем:

$$V = 0,923/0,6 = 1,54 \text{ KBT}.$$

По табл. 9 и 10 Приложения 1.1 паходим, что полученным данным лучше всего удовлетворяет вентплятор Ц1-1450.

1.5. РАСЧЕТ ОТСТОЙНИКОВ

Отстаивание применяют в промышленности для сгущения суспензий или классификации по фракциям частиц твердой фазы суспензии. Конструктивно сгустители и классификаторы выполняют аналогично, однако при расчете сгустителей основываются на скорости осаждения самых мелких частиц суспензий, а при расчете классификаторов — на скорости осаждения тех частиц, которые должны быть преимущественно отделены на данной стадии.

В промышленности широко применяют отстойники непрерывного действия с гребковой мешалкой (рис. 1.1). Их основные размеры приведены ниже:

Диаметр, м	1,8	3,6	6,0	9,0	12,0	15,0	18,0	24,0	30,0
Высота, м	1,8	1,8	3,0	3,6	3,5	3,6	3,2	3,6	3,6
Поверхность, м ²	2,54	10,2	28,2	63.9	113	176.6	254	452	706,5

При расчете отстойников основной расчетной величиной является поверхность осаждения F (M^2), которую находят по формуле

$$F = K_{0} \frac{G_{cu}}{\rho_{0,ch} \omega_{c\tau}} \left(\frac{x_{0c} - x_{cu}}{x_{0c} - x_{0,ch}} \right), \qquad (1.40)$$

где K_3 — коэффициент запаса поверхности, учитывающий неравномерность распределения исходной суспензии по всей площади осаждения, вихреобразование и другие факторы, проявляющиеся в производственных условиях (обычно $K_3 = 1,3-1,35$); G_{cm} —

Рис. 1.1. Отстойник для суспензий:

/ цилиндрический корпус; 2 — динще; 3 — гребковая мешалка, 4 — кольцевой желоб для сбора осветленной жидкости массовый расход исходной суспензии, кг/с; ρ_{ecs} — плотность осветленной жидкости, кг/м³; w_{ct} — скорость осаждения частиц суспензии, м/с; x_{cm} , x_{oc} и x_{ocs} - содержание твердых частиц соответственно в исходпой смеси, осадке и осветленной жидкости, масс. доли.

Скорость осаждения частиц суспензии (скорость стесненного осаждения) можно рассчитать по формулам (в м/с):

при
$$\varepsilon > 0,7$$
 $\omega_{ct} = \omega_{oc} \varepsilon^2 10^{-1.82(1-\varepsilon)};$ (1.41)

при
$$\epsilon \leq 0,7$$
 $\omega_{cr} = \omega_{oc} \cdot 0,123\epsilon^3/(1-\epsilon),$ (1.42)

где w_{oc} — скорость свободного осаждения частиц; є — объемная доля жидкости в суспензии. Величину є находят по соотношению

$$\varepsilon = 1 - x_{\rm em} \rho_{\rm em} / \rho_{\rm T}, \tag{1.43}$$

где ρ_{см} и ρ_τ — плотность соответственно суспензии и твердых частиц, кг/м³ Плотность суспензии можно определить по формуле

 $\rho_{\rm cw} = 1 / [x_{\rm cw} / \rho_{\rm T} + (1 - x_{\rm cw}) / \rho_{\rm w}], \qquad (1.44)$

где р_ж — плотность чистой жидкости.

Скорость свободного осаждения шарообразных частиц (в м/с) рассчитывают по формуле

$$w_{\rm oc} = \mu_{\rm *} \operatorname{Re}/(d_{\tau} \rho_{\rm *}), \qquad (1.45)$$

где µ_ж — вязкость жидкости, Па·с; d_т — диаметр частицы, м; Re — число Рейнольдса при осаждении частицы.

Если частицы имеют нешарообразную форму, то в формулу (1.45) в качестве d_{τ} следует подставить диаметр эквивалентного шара; кроме того, величину ω_{oc} следует умножить на поправочный коэффициент φ , называемый коэффициентом формы. Его значения определяют опытным путем. В частности, для округлых частиц $\varphi \approx 0.77$, угловатых — 0,66, продолговатых — 0,58, пластинчатых — 0,43.

Значение Re рассчитывают по формулам, зависящим от режима осаждения, что определяется с помощью критерия Архимеда:

$$Ar = d_{\tau}^{3} \rho_{*} g \left(\rho_{\tau} - \rho_{*} \right) / \mu_{*}^{2}$$
(1.46)

при Ar>
$$83\,000$$
 Re = 1.74 \sqrt{Ar} . (1.49)

Пример расчета отстойника. Рассчитать отстойник для сгущения водной суспензии по следующим данным: расход суспензии $G_{\rm es} = 9600$ кг/ч, содержание твердых частиц в суспензии $x_{\rm es} = 0,1$, в осадке $x_{\rm oc} = 0,5$ и в осветленной жидкости $x_{\rm ocu} = 0,0001$ кг/кг. Частицы суспензии имеют шарообразную форму. Минимальный размер удаляемых частиц $d_{\tau} = 25$ мкм. Плотность частиц $\rho_{\tau} = 2600$ кг/м³. Осаждение происходит при температуре 5 °С.

Определим значение критерия Аг по формуле (1.46):

$$Ar = (25 \cdot 10^{-6})^3 \cdot 1000 \cdot 9.81 (2600 - 1000) / (1.519 \cdot 10^{-3})^2 = 0.106.$$

Поскольку Аг < 36, рассчитаем Re по формуле (1.47):

$$Re = 0,106/18 = 0,00589$$
.

Скорость свободного осаждения в соответствии с выражением (1.45) составит:

$$w_{\rm oc} = 0.00589 \cdot 1.519 \cdot 10^{-3} / (25 \cdot 10^{-6} \cdot 1000) = 3.58 \cdot 10^{-4} \, {\rm m/c}.$$

Найдем плотность суспензии по формуле (1.44):

$$\rho_{\rm CM} = 1/(0, 1/2600 + 0, 9/1000) = 1066 \text{ Kr/m}^3$$

По формуле (1.43) определим значение є:

 $\varepsilon = 1 - 0, 1 \cdot 1066 / 2600 = 0,959.$

Поскольку є> 0,7, для расчета скорости стесненного осаждения применяем формулу (1.41):

$$w_{ct} = 3.58 \cdot 10^{-4} \cdot 0.959^2 \cdot 10^{-1.82(1-0.959)} = 2.77 \cdot 10^{-4} \text{ m/c}.$$

По формуле (1.40) находим поверхность осаждения, принимая $K_3 = 1,3$ и считая, что плотность осветленной жидкости равна плотности чистой воды:

$$F = 1.3 \frac{9600}{3600 \cdot 1000 \cdot 2.77 \cdot 10^{-4}} \frac{(0.5 - 0.1)}{0.5 - 0.0001} = 10.0 \text{ m}^2.$$

По приведенным данным выбираем отстойник диаметром 3,6 м, высотой 1,8 м, имеющий поверхность 10,2 м².

1.6. РАСЧЕТ ФИЛЬТРОВ ДЛЯ СУСПЕНЗИЙ

Среди фильтров непрерывного действия известны вакуум-фильтры барабанные, дисковые, ленточные и ряд других. Основные характеристики типовых фильтров представлены в Приложении 1.2 (по данным [6]).

В химической технологии наиболее широко используют барабанные вакуум-фильтры с наружной фильтрующей поверхностью, характеризующиеся высокой скоростью фильтрования, пригодностью для обработки разнообразных суспензий, простотой обслуживания.

Основными задачами при проектировании являются расчет требуемой поверхности фильтрования, подбор по каталогам стандартного фильтра и определение числа фильтров, обеспечивающих заданную производительность.

Расчет проводят в два этапа. На первом определяют ориентировочно общую поверхность фильтрования, на основании которой выбирают число фильтров и их типоразмер. На втором этапе уточняют производнтельность выбранного фильтра и число фильтров [6].

Схема барабанного вакуум-фильтра представлена на рис. 1.2. Фильтр имеет вращающийся цилиндрический перфорированный барабан 1, покрытый металлической сеткой 2 и фильтровальной тканью 3. Часть поверхности барабана (30—40 %) погружена в суспензию, находящуюся в корыте 6. С помощью радиальных перегородок барабан разделен на ряд изолнрованных друг от друга ячеек (камер) 9. Ячейки с помощью труб 10, составляющих основу вращающейся части распределительной головки 11, соединяются с различными полостями неподвижной части распределительной головки 12, к которым подведены источники вакуума и сжатого воздуха. При вращении барабана каждая ячейка последовательно проходит несколько зон (1-IV) на рис. 1.2).

Зона I — зона фильтрования и подсушки осадка, где ячейки соединяются с линией вакуума. Благодаря возникающему перепаду давления (с наружной стороны барабана давление атмосферное) фильтрат проходит через фильтровальную ткань 3, сетку 2 и перфорацию барабана I внутрь ячейки и по трубе 10 выводится из аппарата. На наружной поверхности фильтровальной ткани формируется осадок 4. При выходе ячеек из суспензии осадок частично подсушивается.

Зона II — зона промывки осадка и его сушки, где ячейки также соединены с линией вакуума. С помощью устройства 8 подается промывная жидкость, которая проходит через осадок и по трубам 10 выводится из аппарата. На участке этой зоны, где промывная жидкость не поступает, осадок высушивается.

Зона III — зона съема осадка; здесь ячейки соединены с линией сжатого воздуха для разрыхлепия осадка, что облегчает его удаление. Затем с помощью ножа 5 осадок отделяется от поверхности ткани.

Зона *IV* — зона регенерации фильтровальной перегородки, которая продувается сжатым воздухом и освобождается от оставлянихся на ней твердых частиц.

После этого весь цикл операций повторяется. Таким образом, на каждом участке поверхности фильтра все опсрации происходят последовательно одна за лругой. Но

Рис. 1.2. Схема барабанного вакуум-фильтра с наружной фильтрующей поверхностью: 1 — вращающийся металлический перфорированный барабан; 2 — волнистая проволочпая сетка; 3 фильтровальная ткань; 4 — осадок; 5 — нож для съема осадка; 6 — корыто для суспензии; 7 качающаяся мешалка; 8 — устройство для подвода промывной жидкости; 9 — ячейки барабана; 10 — трубы; 11, 12 — вращающаяся и неподвижная части распределительной головки

участки работают независимо, поэтому в целом все операции происходят одновременно, и процесс протекает непрерывно.

В корыте 6 для суспензии происходит осаждение твердых частиц под действием силы тяжести, причем в направлении, противоположном движению фильтрата. В связи с этим возникает необходимость перемешивания суспензии, для чего используют мешалку 7

Следует отметить, что ячейки при вращении барабана проходят так называемые «мертвые» зоны, в которых они оказываются отсоединенными от источников как вакуума, так н сжатого газа. Распределение зон по поверхности для стандартных фильтров общего назначения приведено в Приложении 1.2, табл. 1.

Исходными данными для расчета фильтра являются требуемая производительность по фильтрату, перепад давления при фильтровании и промывке, массовая концентрация твердой фазы в исходной суспензии. Кроме того, из экспериментов должны быть определены константы фильтрования: удельное сопротивление осадка и сопротивление фильтровальной перегородки; влажность отфильтрованного осадка; удельный расход промывной жидкости (т. е. расход, необходимый для промывки 1 кг осадка); минимальная продолжительность окончательной сушки осадка; оптимальная высота слоя осадка (как правило, она составляет 7—15 мм). Указанные эксперименты могут быть проведены на лабораторной ячейке.

Перед расчетом на основании стандартной разбивки поверхности фильтра на технологические зоны (см. Приложение 1.2, табл. 1), задаются значениями углов сектора предварительной сушки осадка, зон съема осадка, регенерации фильтровальной перегородки, мертвых зон.

Ориентировочная частота вращения барабана, обеспечивающая образование осадка заданной толщины, его промывку и сушку, может быть определена по уравнению

$$n = \frac{360 - (\varphi_{c1} + \varphi_0 + \varphi_p + \sum_{i=1}^{4} \varphi_{w_i})}{360 (\tau_{\phi} + \tau_{np} + \tau_{c2})}, \qquad (1.50)$$

где τ_{ϕ} , τ_{np} и τ_{c2} — продолжительность соответственно фильтрования, промывки и сушки осадка после промывки.

Продолжительность фильтрования рассчитывают по уравнению (1.51), получаемому путем решения дифференциального уравнения фильтрования для случая постоянного перепада давления на фильтре:

$$\tau_{\phi} = \frac{\mu x_{\rm w} r_{\rm p}}{2\Delta p} \frac{h_{\rm oc}^2}{x_0^2} + \frac{\mu R_{\phi,\rm n}}{\Delta p} \frac{h_{\rm oc}}{x_0} \,. \tag{1.51}$$

где µ вязкость фильтрата; x_{B} — масса твердой фазы, отлагающейся при прохождении единицы объема фильтрата, кг/м³; r_{B} — массовое удельное сопротивление осадка, м/кг; $R_{\phi,n}$ — сопротивление фильтровальной перегородки, м⁻¹; Δp — перепад давления на фильтре; h_{oc} — высота слоя осадка на фильтре; x_0 — отношение объема осадка на фильтре к объему полученного фильтрата. (Обычно при экспериментальном определении констант фильтрования получают величину r_0 — удельное объемное сопротивление осадка, м⁻² В этих случаях иерейти к величине r_{B} можно на основе соотношения: $x_0 r_0 = x_0 r_{\text{B}}$)

Необходимые для выполнения расчетов величины x₀ и x_в определяют следующим образом:

$$x_{u} = \frac{x_{cM} \rho_{w}}{\rho_{oc} \left[1 - (w_{oc} + x_{cM})\right]};$$
(1.52)

$$x_{p} = \frac{x_{cM} \rho_{w} (1 - \omega_{oc})}{1 - (\omega_{oc} + x_{cM})}, \qquad (1.53)$$

где x_{см} — концентрация твердой фазы в суспензии, масс. доли; ω_{ос} — влажность осадка после фильтрования, масс. доли; ρ_ж — плотность жидкой фазы; ρ_{ос} — плотность влажного осадка, определяемая по выражению

$$\rho_{\rm oc} = \rho_{\rm T} \rho_{\star} / \left[\rho_{\star} + (\rho_{\rm T} - \rho_{\star}) w_{\rm oc} \right], \tag{1.54}$$

где ρ_{τ} — плотность твердой фазы.

Продолжительность промывки осадка рассчитывают по уравнению, получаемому решением дифференциального уравнения фильтрования для случая постоянных разности давлений и скорости фильтрования:

$$\tau_{np} = k \frac{\upsilon_{np. *} \rho_{oc} r_{B} x_{b} \mu_{np} h_{oc}}{\Delta \rho_{np} x_{0}} \left(h_{oc} + x_{0} \frac{R_{\phi. n}}{r_{B} x_{B}} \right), \qquad (1.55)$$

где $v_{np \ m}$ и μ_{np} — удельный расход и вязкость промывной жидкости; Δp_{np} — перепад давления на фильтре при промывке осадка; k — коэффициент запаса, учитывающий необходимость увеличения поверхности сектора промывки по сравнению с теоретическим значением (k = 1.05 - 1.2).

Продолжительность сушки осадка после промывки задают на основании экспериментальных данных.

Продолжительность полного цикла работы фильтра представляет собой величину, обратную частоте вращения барабана:

$$\tau_{\rm u} = 1/n. \tag{1.56}$$

Требуемую общую поверхность фильтрования находят по выражению

$$F_{\rm o6} = V_{\rm o6} \, \tau_{\rm u} / \left(v_{\rm (b)y, a} \, K_{\rm u} \right), \tag{1.57}$$

где V_{ub} — заданная производительность по фильтрату, м³/с; K_n — поправочный коэффициент, учитывающий иеобходимость увеличения поверхности из-за увеличения сопротивления фильтровальной перегородки при многократном ее использовании ($K_n = 0.8$); v_{drya} — удельный объем фильтрата, т. е. объем, получаемый с 1 м² фильтровальной перегородки за время фильтрования, определяемый как

$$v_{\phi,yy} = h_{oc} / x_0. \tag{1.58}$$

По найденному значению $F_{\rm o6}$ из каталога выбирают типоразмер фильтра и определяют требуемое число их.

Затем проверяют пригодность выбранного фильтра. Для этого устанавливают соответствие рассчитанной частоты вращения барабана диапазону частот, указанному в каталоге, и сравнивают рассчитанный и стандартный углы сектора фильтрования. Если частота выходит за рамки указанного диапазона или рассчитанный угол фильтрования больше стандартного, следует повторно выполнить расчеты, задавшись другой высотой слоя осадка.

Затем проводят уточненный расчет фильтра. По каталогу принимают данные распределения технологических зон. Частоту вращения барабана принимают наименьшей из рассчитанных по следующим зависимостям:

$$n_1 = \varphi_{\phi} / (360 \tau_{\phi});$$
 (1.59)

$$n_2 = (q_{np} + q_{c2}) / [360(\tau_{np} + \tau_{c2})]$$
(1.60)

Пример расчета барабанного вакуум-фильтра. Рассчитать требуемую поверхность барабанного вакуум-фильтра с наружной фильтрующей поверхностью на производительность по фильтрату 6 м³/ч (0,00167 м³/с) Подобрать стандартный фильтр и определить необходимое число фильтров.

Исходные данные для расчета: перепад давления при фильтровании и промывке $\Delta p = 6.8 \cdot 10^4$ Па; температура фильтрования 20 °C; высота слоя осадка на фильтре $h_{oc} = 10$ мм; влажность осадка $\omega_{oc} = 61$ % (масс.); удельное массовое сопротивление осадка $r_{\rm B} = 7.86 \cdot 10^{10}$ м/кг; сопротивление фильтровальной перегородки $R_{\phi \rm m} = 4.1 \times \times 10^9$ м⁻¹; плотность твердой фазы $\rho_{\tau} = 1740$ кг/м³; жидкая фаза суспензии и промывная жидкость — вода; массовая концентрация твердой фазы в суспензии $x_{\rm cM} = 14$ % (масс.); удельный расход воды при промывке (которая проводится при температуре 53 °C) $v_{\rm np} = 1 \cdot 10^{-3}$ м³/кг; продолжительность окончательной сушки осадка $\tau_{\rm c2}$ не менее 20 с.

По справочным данным определяем недостающие для расчета физико-химические величины: вязкость воды при 20 °С $\mu = 1,005 \cdot 10^{-3}$ Па·с, при 53 °С $\mu_{np} = 0,53 \cdot 10^{-3}$ Па·с; плотность воды принимаем $\rho_{\rm w} = 1000$ кг/м³

Рассчитаем вспомогательные величины. По формуле (1.54)

$$\rho_{\text{oc}} = \frac{1740 \cdot 1000}{1000 + (1740 - 1000) \ 0.61} = 1200 \ \text{kg/m}^2$$

По формуле (1.52)

$$x_0 = \frac{0,14 \cdot 1000}{1200 \left[1 - (0,61 + 0,14)\right]} = 0,467$$

По формуле (1.53)

$$x_{\rm B} = \frac{0.14 \cdot 1000 \ (1 - 0.61)}{1 - (0.61 + 0.14)} = 218 \ {\rm kr/m^3}.$$

Продолжительность фильтрования находим по формуле (1.51):

$$\tau_{\Phi} = \frac{1,005 \cdot 10^{-3} \cdot 218 \cdot 7,86 \cdot 10^{10}}{2 \cdot 6,8 \cdot 10^4} \cdot \frac{0.01^2}{0.467^2} + \frac{1,005 \cdot 10^{-3} \cdot 4,1 \cdot 10^9}{6,8 \cdot 10^4} \cdot \frac{0.01}{0.467} = 59,4 \text{ c.}$$

Продолжительность промывки находим по формуле (1.55), принимая k=1,1:

$$\tau_{np} = 1, 1 \frac{1 \cdot 10^{-3} \cdot 1200 \cdot 7,86 \cdot 10^{10} \cdot 218 \cdot 0,53 \cdot 10^{-3} \cdot 0,01}{6,8 \cdot 10^{4} \cdot 0,467} \left(0,01 + 0,467 \frac{4,1 \cdot 10^{9}}{7,86 \cdot 10^{10} \cdot 218}\right) = 38,2 \text{ c}.$$

Для определения частоты вращения барабана по уравнению (1.50) предварительно зададимся с помощью табл. 1, Приложения 1.2 значениями углов, ориентируясь на наиболее типичные значения:

$$\psi_{c1} = 59,5^{\circ}; \quad \psi_{o} = 20^{\circ}; \quad \psi_{p} = 20^{\circ}; \quad \psi_{w1} = 2^{\circ}; \quad \psi_{w2} = 5^{\circ}; \quad \psi_{w3} = 13,5^{\circ}; \quad \psi_{w4} = 5^{\circ}$$

Тогда

 $n = 360 - (59.5 + 20 + 20 + 2 + 5 + 13.5 + 5) / [360 (59.4 + 38.2 + 20)] = 0.00555 \text{ c}^{-1}$

Полученная частота укладывается в диапазон значений, приведенных в табл. I Приложения 1.2.

Продолжительность полного цикла работы фильтра по формуле (1.56): $\tau_u = 1/0,00555 = 180$ с.

Удельный объем фильтрата по формуле (1.58): $v_{cp ya} = 0.01/0.467 = 0.0214 \text{ м}^3/\text{M}^2$. Общая поверхность фильтрования по формуле (1.57): $F_{od} = 0.00167 \cdot 180/(0.0214 \cdot 0.8) = 17.5 \text{ м}^2$

Эту поверхность может обеспечить один фильтр Б020-2,6У, имеющий $F_{\Phi} = 20 \text{ м}^2$

Проверим пригодность выбранного фильтра. Он имеет следующие значения углов: $\phi_{\phi} = -132^\circ$; ($\phi_{\pi\rho} + \phi_{c2}$) = 103°

Рассчитаем n_1 и n_2 по формулам (1.59) и (1.60): $n_1 = 132/(360 \cdot 59.4) = 0.00617$ с⁻¹; $n_2 = 103/[360(38.2+20)] = 0.00492$ с⁻¹

Так как $n_2 < n_1$, окончательно принимаем частоту вращения барабана: $n = n_2 = 0,00492$ с⁻¹. Эта частота соответствует допустимому диапазону частот (0,00217—0,0333 с⁻¹), указанному в табл. 1 Придожения 1.2.

Угол, необходимый для фильтрования, можно определить, зная продолжительность фильтрования и частоту:

$$\varphi'_{\Phi} = 360 \tau_{\Phi} n = 360 \cdot 59, 4 \cdot 0,00492 = 105, 2^{\circ}$$

Фактически угол сектора фильтрования в стандартном фильтре составляет $\phi_{\phi} = 132^{\circ}$ Таким образом, часть поверхности зоны фильтрования оказывается избыточной, поэтому при заказе фильтра целесообразно уменьшить угол фильтрования в распределительной головке на величнну

$$\Delta \varphi_{\Phi} = \varphi_{\Phi} - \varphi'_{\Phi} = 135 - 105, 2 = 26, 8.$$

Этого можно добиться, например, увеличив на то же значение угол ϕ_{w4} .

Продолжительность полного цикла по (1.56)

$$r_u = 1/n = 1/0,00492 = 203$$
 c.

Производительность фильтра найдем из формулы (1.57):

$$V_{\psi} = v_{\psi,\chi_a} F_{\psi} K_n / \tau_u = 0.0214 \cdot 20 \cdot 0.8 / 203 = 0.0214 \cdot 20 \cdot 0.8 / 203 = 0.00169 \text{ m}^3/\text{c},$$

что соответствует заданной производительности (0,00167 м³/с).

1.7. РАСЧЕТ АППАРАТОВ МОКРОЙ ОЧИСТКИ ГАЗОВ ОТ ПЫЛЕЙ

Удаление пыли в аппаратах мокрой очистки происходит благодаря смачиванию частичек пыли жидкостью. Процесс протекает тем эффективнее, чем больше поверхность контакта фаз между газом и жидкостью, что достигается, например, диспергированием жидкости на капли или газа на множество пузырей, формирующих пену.

Среди аппаратов мокрой очистки газов широкое распространение получили пенные газоочистители ЛТИ [7]. Они бывают однополочные и двухполочные, с отводом воды через сливное устройство над решеткой и с полным протеканием воды через отверстия решетки (провальные). Аппараты со сливными устройствами позволяют работать при больших колебаниях нагрузки по газу и жидкости. Выбор числа полок зависит главным образом от степени запыленности газа. При содержании пыли в газе не более 0,02 кг/м³ следует применять однополочные аппараты.

На рис. 1.3 показана схема, а в табл. 1.2 приведены основные размеры однополочных аппаратов для очистки газов с отводом воды через сливное устройство. При их расчете определяют площадь поперечного сечения аппарата; расход воды, который требуется для очистки газа; высоты слоя пены и сливного порога, обеспечивающие нормальную работу аппарата.

Расчеты рекомендуется проводить в следующем порядке.

Выбор расчетной скорости газа. Скорость газа в аппарате — один из важнейших факторов, определяющих эффективность работы аппарата. Допустимый диапазон фиктивных скоростей составляет 0,5—3,5 м/с. Однако при скоростях выше 2 м/с начинается сильный брызгоунос и требуется установка специальных брызгоуловителей. При ско-

Обозначение аппарата	Размеры аппарата			Обозначение	Размеры анпарата		
	длина решетки, м	ширнна решетки, м	высота ап- парата, м	аппарата	длина решетки, м	ширина рсшетки, м	высота ап- парата, м
3	0,55	0,77	2,195	23	1,41	2,38	4,490
5,5	0,74	1,04	2,640	30	1,62	2,72	4,950
10	1,00	1,40	2,920	40	1,87	3,12	5,750
16	1,26	1,76	3,420	50	2,10	3,48	6,030

Таблица 1.2. Однополочные пенные газоочистители ЛТИ-ПГС (с отводом воды через сливное устройство)

ростях меньше 1 м/с возможно сильное протекание жидкости через отверстия решетки, вследствие чего высота слоя пены снижается, а жидкость может не полностью покрывать поверхность решетки. Для обычных условий рекомендуемая скорость $\omega = 2$ м/с.

Определение площади и формы сечения аппарата. Площадь сечения S (м²) равна:

$$S = Q_{\rm u}/\omega, \tag{1.61}$$

где Q_н — расход газа, поступающего в аппарат при рабочих условиях, м³/с.

Газоочиститель может быть круглого или прямоугольного сечения. В первом случае обеспечивается более равномерное распределение газа, во втором — жидкости. При выборе аппарата прямоугольного сечения длину и ширину решетки находят с помощью данных табл. 1.2.

Определение расхода поступающей воды. Для холодных и сильно запыленных газов расход определяется из материального баланса пылеулавливания, для горячих газов — из теплового баланса [7] В сомнительных случаях выполняют оба расчета и выбирают наибольшие из полученных значений расхода. Обычно газ можно рассматривать как холодный, если его температура ниже 100 °C.

Расход поступающей воды L (в кг/с) рассчитывают, исходя из материального баланса пылеулавливания:

$$L = L_y + L_{en}, \tag{1.62}$$

где L_y — расход воды, стекающей через отверстия в решетке (утечка), кг/с; $L_{c,r}$ — расход воды, стекающей через сливной порог, кг/с.

Величина L_y определяется массовым расходом уловленной пыли G_n (кг/с); концентрацией пыли в утечке x_y (кг пыли/кг воды); коэффициентом распределения пыли между утечкой и сливной водой K_p, выражен-

ным отношением расхода пыли, попадающей в утечку, к общему расходу уловленной пыли:

$$L_{\rm y} = G_{\rm n} K_{\rm p} / x_{\rm y}. \tag{1.63}$$

Расход уловленной пыли (в кг/с) может быть определен по соотношению

$$G_{\mathfrak{n}} = Q_{\mathfrak{n}} c_{\mathfrak{n}} \eta, \qquad (1.64)$$

где *с*_н — начальная концентрация пыли в газе, кг/м³; η — заданная степень пылеулавливания, доли единицы.

Коэффициент распределения $K_{\rm p}$ находится в диапазоне 0,6—0,8; в расчетах обычно принимают $K_{\rm p}$ =0,7

Рис. 1.3. Пенный газоочиститель:

I — корпус; 2 — перфорированная полка (решетка); 3 — сливной порог; 4 — слой пены

Концентрация пыли в утечке изменяется от $x_x = 0,2$ (для не склонных к слипанию минеральных пылей) до $x_y = 0,05$ (для цементирующихся пылей).

Поскольку в утечку попадает больше пыли, чем в воду, стекающую через сливной порог, то для уменьшения общего расхода воды целесообразно уменьшать величину $L_{c.r.}$. Однако слишком сильная утечка создает неравномерность высоты слоя воды на решетке. Поэтому в расчетах рекомендуется принимать $L_{c.r.} = L_y$. Исходя из этого, выражение (1.62) приводится к виду:

$$L = 2G_{\rm n}K_{\rm p}/x_{\rm y}.$$
 (1.65)

Определение типа решетки. В задачу этого этапа расчета входит выбор типа перфорации (круглые отверстия или щели), диаметра отверстия d_0 или ширины щели $b_{\rm st}$ и шага между ними *t*. Форму отверстий выбирают из конструктивных соображений, а их размер — исходя из вероятности забивки пылью. Обычно принимают $b_{\rm st} = 2-4$ мм, $d_0 = 2-6$ мм. Затем выбирают такую скорость газа в отверстиях w_0 , которая обеспечит необходимую величину утечки. При диаметрах отверстий $d_0 = 2-3$ мм скорость газа должпа составлять 6-8 м/с, а при $d_0 = 4-6$ мм $w_0 = 10-13$ м/с.

Далее рассчитывают долю свободного сечения решетки S₀, отвечающую выбранной скорости:

$$S_0 = w/(w_0 q), \qquad (1.66)$$

где φ — отношение перфорированиой площади решетки к площади сечения аппарата (q = 0.9 - 0.95).

Исходя из величины S₀ определяют шаг ((в м) между отверстиями в зависимости от способа разбивки отверстий на решетке. При разбивке по равностороннему треугольнику

$$t = d_0 \sqrt{0.91} / \overline{S_0}. \tag{1.67}$$

Толщину решетки δ выбирают по конструктивным соображениям. Минимальному гидравлическому сопротивлению отвечает $\delta = 5$ мм.

Определение высоты слоя пены и сливного порога. Высоту порога на сливе с решетки устанавливают исходя из создания слоя пены такой высоты, которая обеспечила бы необходимую степень очистки газа.

Первопачально определяют коэффициент скорости пылеулавливания K_n (в м/с):

$$K_{\rm u} = 2\eta w / (2 - \eta),$$
 (1.68)

где п - заданная степень очистки газа от пыли.

Связь между *K*_n и высотой слоя пены *H* (в м) при улавливании водой гидрофильной пыли выражается следующим эмпирическим уравнением:

$$H = K_n - 1,95\omega + 0,09, \tag{1.69}$$

где величины K_n н w имеют размерность м/с. Далее определяют высоту исходного слоя воды на решетке h₀ (в м):

$$h_0 = 1,43 \, H^{1.67} \, w^{-0.83}. \tag{1.70}$$

Высоту порога h_n (в м) рассчитывают по эмпирической формуле

$$h_n = 2.5h_0 - 0.0176\sqrt[3]{l^2}, \tag{1.71}$$

где *i* — интенсивность потока на сливе с решетки [в кг/(м·с)], определяемая как

$$i = L_{\rm co}/b_{\rm c}, \tag{1.72}$$

где b_c — ширина сливного отверстия. При прямоугольном сечении аппарата b_c равна ширине решетки.

Пример расчета пенного аппарата. Рассчитать пенный аппарат для очистки 48 000 м³/ч газа от гидрофильной, не склонной к слипанию, пыли. Температура газа 60 °C. Запыленность газа на входе в аппарат с_и =0,008 кг/м³, требуемая степень очистки п =0,99. Очистка производится водой.

Выбираем газоочиститель системы ЛТИ и принимаем рабочую скорость газа (на все сечение аппарата) $\omega = 2$ м/с.

Рассчитываем по (1.61) площадь сечения аппарата:

$$S = 48\ 000/(3600 \cdot 2) = 6.67\ \text{m}^2$$
.

По табл. 1.2 выбираем аппарат ЛТИ-ПГС-50, имеющий решетку длиной 2,1 м, шириной 3,48 м. Сечение аппарата

$$S = 2, 1 \cdot 3, 48 = 7, 3 \text{ m}^2$$

Фактическая скорость газа:

 $\omega = 48\ 000/(3600 \cdot 7.3) = 1.82$ M/c.

Определяем по формуле (1.64) расход уловленной пыли:

 $G_0 = 48\ 000 \cdot 0.008 \cdot 0.99/3600 = 0.106\ \kappa r/c.$

Принимаем коэффициент распределения $K_p = 0.7$ и концентрацию пыли в утечке $x_y = 0.15$ кг пыли/кг воды.

Тогда расход поступающей воды по формуле (1.65) составит:

 $L = 2 \cdot 0.106 \cdot 0.7 / 0.15 = 0.989 \text{ kg/c}.$

Выберем решетку с круглыми отверстиями диаметром $d_0 = 4$ мм. Тогда скорость газа в отверстиях должна быть равна $\omega_0 = 10$ м/с. По выражению (1.66) доля свободного сечения решетки S_0 при q = 0.95 равна:

$$S_0 = 1.82/(10.0.95) = 0.192$$

Если принять, что отверстия располагаются по равностороннему треугольнику, то шаг между отверстиями в соответствии с (1.67) составит:

$$t = 0.004 \sqrt{0.91} / 0.192 = 0.0087 \text{ M}.$$

Толщину решетки примем равной δ = 5 мм. Определим по уравнению (1.68) коэффициент скорости пылеулавливания:

 $K_n = 2 \cdot 0.99 \cdot 1.82 / (2 - 0.99) = 3.57 \text{ M/c}.$

Тогда высота слоя пены на решетке в соответствии с (1.69) равна: $H = 3,57 - 1,95 \cdot 1,82 + 0,09 = 0,11$ м.

Высота исходного слоя воды на решетке по формуле (1.70):

 $h_0 = 1.43 \cdot 0.11^{1.67} \cdot 1.82^{-0.83} = 0.0218$ м.

Интенсивность потока на сливе с решетки найдем по соотношению (1.72) с учетом того, что ширина сливного отверстия равна ширине решетки, а $L_{cn} = L/2$:

 $i = 0.989/(2 \cdot 3.48) = 0.142 \text{ kr}/(\text{m} \cdot \text{c}).$

Высота сливного порога по (1.71) будет равна $h_{\rm H} = 2.5 \cdot 0.0218 - 0.0176 \sqrt[3]{0.142^2} = 0.05$ м.

1.8. РАСЧЕТ ГИДРОДИНАМИЧЕСКИХ ПАРАМЕТРОВ ДВУХФАЗНЫХ ПОТОКОВ

Во многих процессах химической технологии — абсорбции, ректификации, экстракции и т. д. происходит движение двухфазных потоков, в которых одна из фаз является дисперсной, а другая — сплошной. Дисперсная фаза может быть распределена в сплошной в виде частиц, капель, пузырей, струй или пленок.

В двухфазных потоках первого рода сплошной фазой является газ или жидкость, а дисперсной — твердые частицы, которые практически не меняют своей формы и массы при движении. Некоторые гидродинамические параметры двухфазных потоков первого рода рассмотрены в разд. 1.3.

В потоках второго рода газ или жидкость образуют и сплошную, и дисперсную фазы. При движении в сплошной фазе частицы дисперсной фазы могут менять форму и массу, например из-за дробления или слияния пузырей и капель. Математическое описание таких процессов чрезвычайно сложно, и инженерные расчеты обычно основываются на экспериментальных данных.

Рассмотрение многообразных эмпирических зависимостей, связанных с гидравлическими расчетами двухфазных потоков, выходит за рамки настоящего пособия. Поэтому ниже даны лишь общие представления с примерами расчета по основным формулам и приведены ссылки на литературу.

Барботаж. В случае свободного барботажа, когда газ движется через жидкость в виде отдельных свободно всплывающих пузырей, диаметр пузыря находят по формуле

$$d_{\rm n} = \sqrt[3]{6d_{\rm o}\sigma/[g(\rho_{\rm m}-\rho_{\rm r})]}, \qquad (1.73)$$

где d_o — диаметр отверстия, в котором образуется пузырь; σ — поверхностное натяжение.

Число пузырьков, образующихся в отверстии за единицу времени, находят по соотношению:

$$n = 6Q/(\pi d_{\pi}^3)$$
, (1.74)

где Q — объемный расход газа.

При цепном барботаже [8] диаметр пузырька рассчитывают по следующим формулам:

для ламинарного движения

$$d_{\rm n} = \sqrt{108\mu_*Q/[\pi g(\rho_* - \rho_{\rm r})]}; \qquad (1.75)$$

для турбулентного движения

$$d_{\rm n} = \sqrt[5]{72\rho_{\rm m}Q^2/\pi^2 g \left(\rho_{\rm m} - \rho_{\rm r}\right)}$$
(1.76)

Число Рейнольдса, разграничивающее ламинарное и турбулентное движение пузырей в жидкости, Re_{п кр}=9. Число Рейнольдса определяется выражением

 $\operatorname{Re}_{n} = w_{n}d_{n}\rho_{*}/\mu_{*},$

где w_п — скорость подъема пузырей, которую рассчитывают по следующим формулам: для ламинарного режима:

$$\omega_{\rm n} = d_{\rm n}^2 \left(\rho_{\rm m} - \rho_{\rm r} \right) g / (18 \mu_{\rm m}) \tag{1.77}$$

для турбулентного режима

$$w_{\rm n} = 0.7 \sqrt{d_{\rm n} \left(\rho_{\rm m} - \rho_{\rm r}\right) g/\rho_{\rm m}} \tag{1.78}$$

Критическое значение расхода газа, при котором свободный барботаж сменяется цепным, находят по формулам:

при ламинарном движении

$$Q_{\kappa\rho} = \sqrt[3]{0.03\sigma^4 d_0^4 / [\mu_{\kappa}^3 (\rho_{\kappa} - \rho_{r})g]}; \qquad (1.79)$$

при турбулентном движении

$$Q_{\kappa p} = \frac{6}{\sqrt{20\sigma^5 d_0^5} / \left[\rho_*^3 \left(\rho_* - \rho_r\right)^2 g^2\right]}$$
(1.80)

Общие потери давления при барботаже Δp_6 складываются из следующих величии:

$$\Delta p_0 = \Delta p_0 + \Delta p_{ct} + \Delta p_n, \tag{1.81}$$

где $\Delta p_0 = 4\sigma/d_0$ — давление, необходимое для преодоления сил поверхностного натяжения; $\Delta p_{c\tau} = h\rho_*g$ — статическое давление столба жидкости высотой h в аппарате; Δp_{π} — потери давления на преодоление сопротивлений в отверстии, которые могут быть рассчитаны по методике, рассмотренной в разд. 1.1.

Межфазная поверхность при барботаже представляет собой суммарную поверхность всех пузырьков на высоте жидкостного столба и определяется следующими соотношениями:

для свободного барботажа

$$F = 6Qh/(\omega_n d_n); \qquad (1.82)$$

для цепного барботажа

$$F = \pi d_{\pi} h. \tag{1.83}$$

Приведенные выше формулы применимы для пузырьков диаметром не более 1 мм. Крупные пузыри при подъеме деформируются, приобретая эллипсоидальную форму (при $d_n = 1 - 5$ мм) и полусферическую (при $d_n > 5$ мм), причем движение пузырей становится спиральным [9]. Закономерности, установленные для пузырей, выходящих из одного отверстия, справедливы и при массовом барботаже, если скорости газового потока невелики (0,1—0,3 м/с на свободное сечение аппарата). При бо́льших скоростях пузыри сливаются в сплошную струю, которая разрушается на некотором расстоянии от отверстия с образованием пены. Размеры пузырей в пене различны. Для их характеристики используют средний поверхностно-объемный диаметр $d_{cp} = 6\varepsilon/a$ (где ε газосодержание пены, а — удельная поверхность)

Гидродинамические основы работы аппаратов в пенном режиме рассмотрены в монографиях [3, 7, 10] Примеры расчета гидравлического сопротивления, рабочих скоростей и других гидродинамических параметров для барботажных аппаратов даны в гл. 5 и 6.

Пример. Определить поверхность контакта фаз при выходе пузырей из одиночного отверстия по следующим данным: диаметр отверстия $d_0 = 2 \cdot 10^{-5}$ м; высота столба жидкости в аппарате h = 0.5 м; расход газа $Q = 3 \cdot 10^{-6}$ м³/с; плотность газа $\rho_r = 1.2$ кг/м³; плотность жидкости $\rho_m = 1000$ кг/м³; вязкость жидкости $\mu_m = 1 \cdot 10^{-3}$ Па·с; поверхностное натяжение $\sigma = 0.07$ Н/м. Определим вид барботажа, используя формулы (1.79) и (1.80):

$$Q_{\kappa p} = \sqrt[3]{0.03} (0.07)^4 (2 \cdot 10^{-5})^4 / [(1 \cdot 10^{-3})^3 \cdot (1000 - 1.2)^9.81] = 2.27 \cdot 10^{-7} \text{ m}^3/\text{c};$$

$$Q_{\kappa p} = \sqrt[6]{20} (0.07)^5 (2 \cdot 10^{-5})^5 / [1000^3 (1000 - 1.2)^2 9.81^2] = 3.21 \cdot 10^{-8} \text{ m}^3/\text{c}.$$

Заданный расход газа меньше каждого из критических значений, поэтому в аппарате имеет место свободный барботаж.

Определим диаметр пузыря по формуле (1.73)

$$d_n = \sqrt[3]{6 \cdot 2 \cdot 10^{-5} \cdot 0.07 / [9.81 (1000 - 1.2)]} = 9.27 \cdot 10^{-4} \text{ m}$$

Найдем скорость подъема пузырей (предполагая, что пузыри всплывают турбулентно) по формуле (1.78):

$$w_n = 0.7 \sqrt{9.27 \cdot 10^{-4} (1000 - 1.2) 9.81/1000} = 6.67 \cdot 10^{-2} \text{ m/c}.$$

Рассчитаем критерий Ren:

$$Re_n = 6.67 \cdot 10^{-2} \cdot 9.27 \cdot 10^{-4} \cdot 1000/10^{-3} = 61.8.$$

Таким образом, пузыри всплывают турбулентно (Re_n > Re_{n.кр}), и формула (1.78) выбрана правильно.

Найдем поверхность контакта фаз по формуле (1.82):

 $F = 6.3 \cdot 10^{-8} / (6.67 \cdot 10^{-2} \cdot 9.27 \cdot 10^{-4}) = 1.45 \cdot 10^{-3} \text{ m}^2$

Пленочное течение жидкостей. При стекании пленки жидкости под действием силы тяжести по вертикальной поверхности наблюдается три основных режима движения [3]: ламинарное течение с гладкой поверхностью (Rena < 30), ламинарное течение с волнистой поверхностью (Re_{вл} = 30 – 1600), турбулентное течение (Re_{вл} > 1600). Критерий Рейнольдса для пленки жидкости определяется формулой Rena = 4Г/и» (где Г — линейная массовая плотность орошения, представляющая собой массовый расход жидкости через единицу длины периметра смоченной поверхности).

При ламинарном течении средняя скорость стекающей пленки ω_{пл} и ее толщина δ_{пл} определяется следующими уравнениями:

$$\omega_{n,n} = \sqrt[3]{\Gamma^2 g / (3\mu_* \rho_*)}; \qquad (1.84)$$

$$\delta_{n,n} = \sqrt[3]{3\Gamma\mu_{*}/(\rho_{*}^2g)}.$$
 (1.85)

Если поверхность не вертикальна, а наклонена к горизонту под углом α, то в расчетных уравнениях вместо g следует использовать произведение gsin α.

При турбулентном течении пленки для расчета ω_{пл} и δ_{пл} можно использовать эмпирические уравнения [1]

$$w_{na} = 2.3 \ (g/\rho_{\star})^{1/3} \ (\Gamma^{7/15}/\mu_{\star}^{2/15}); \tag{1.86}$$

$$\delta_{nn} = 0.433 \mu_{\pi}^{2/15} \Gamma^{8/15} / (g^{1/3} \rho_{\pi}^{2/3}). \tag{1.87}$$

Для упрощения расчетных зависимостей вместо фактической толщины пленки часто используют приведенную толщину δ_{пр}:

$$\delta_{np} = \left[\mu_{*}^{2} / \left(\rho_{*}^{2} g\right)\right]^{1/3}]. \tag{1.88}$$

В эмпирических уравнениях (1.86) — (1.88) вязкость выражается в мH·с/м². Уравнения (1.84) — (1.87) применимы в случае, когда рядом с пленкой движется газ, а скорость газа сравнительно невысока (до 3 м/с). При более высоких скоростях в случае противотока газ тормозит стекание пленки, что приводит к увеличению ее толщины и уменьшению скорости течения. При прямотоке скорость течения пленки увеличивается, а толщина уменьшается [3]

Скорость газового потока, при которой наступает захлебышание противоточных аппаратов $w_{r,3}$, может быть найдена с помощью уравнения

$$\lg\left(\frac{w_{r,3}^2}{gd_{3KB}}\frac{\rho_r}{\rho_m}\mu_m^{0,16}\right) = b - 1.75\left(\frac{L}{G}\right)^{1/4}\left(\frac{\rho_r}{\rho_m}\right)^{1/6}$$
(1.89)

где $d_{3\kappa B}$ — эквивалентный диаметр канала, по которому движется газ; L и G — массовые расходы соответственно жидкости и газа; b — коэффициент для листовой насадки, равный нулю; для трубок с орошаемыми стенками b может быть определен по выражению

$$b = 0.47 + 1.51 | g(d_{3xs}/0.025).$$
(1.90)

Гидравлическое сопротивление при движении газа в аппаратах с текущей пленкой жидкости определяют по уравнению

$$\Delta \rho = \xi \left(l/d_{\text{SKB}} \right) \left(\rho_r w_{0,r}^2 / 2 \right), \tag{1.91}$$

где $w_{0,r}$ — скорость газа относительно жидкости; $w_{0,r} = w_r \pm w_{n,r}$ (знаки плюс и минус относятся соответственно к противотоку и прямотоку).

Коэффициент сопротивления ξ рассчитывают по эмпирическим уравнениям [3]. Для противотока:

при
$$\operatorname{Re}_{o,r} < \operatorname{Re}_{o,r} = 86/\operatorname{Re}_{o,r};$$
 (1.92)

при
$$\operatorname{Re}_{0.r} > \operatorname{Re}_{0.r \times p}$$
 $\xi = [0,11+0.9(w_{nn}\mu_{*}/\sigma)^{2/3}]/\operatorname{Re}_{0.r}^{0.16}$. (1.93)

Критерий Reor рассчитывают по формуле

$$\operatorname{Re}_{o.r} = w_{o.r} d_{\mathfrak{s} \times \mathfrak{s}} \rho_r / \mu_r.$$

Критическое значение Reo.r кр определяют по выражению

$$\operatorname{Re}_{0.r \, \kappa p} = \left[\frac{86}{0.11 + 0.9 \, (w_{nn} \mu_{\rm w}/\sigma)^{2/3}}\right]^{1.19} \tag{1.94}$$
При пленочном течении в насадочных аппаратах часть насадки обычно не смачивается жидкостью, имеются застойные зоны, в отдельных местах жидкость перетекает от одного элемента насадки к другому в виде струй. В разных точках элемента насадки пленка может иметь различную толщину. Поэтому закономерности течения в пленочных и в насадочных аппаратах, несмотря на определенную аналогию, рассматриваются отдельно. Методики расчета рабочих скоростей, гидравлического сопротивления и других гидродинамических параметров в насадочных колоннах приведены в работах [3, 10, 12].

Пример. Определить гидравлическое сопротивление в вертикальном трубчатом пленочном аппарате при противоточном движении газа и жидкости. Исходные данные: длина трубки l=2 м, ее внутренний диаметр d=0.02 м, число трубок n=100, расход жидкости L=0.3 кг/с, ее плотность $\rho_{\rm w}=1000$ кг/м³, вязкость $\mu_{\rm w}=5\cdot10^{-4}$ Па·с, поверхностное натяжение $\sigma=0.067$ Н/м, расход газа G=0.05 кг/с, его плотность $\rho_{\rm r}=1$ кг/м³, вязкость $\mu_{\rm r}=2\cdot10^{-5}$ Па·с.

Найдем все величины, входящие в формулу (1.91). Скорость газа (без учета сечения, занятого пленкой)

$$w_{\rm f} = 4G/(\rho_{\rm f} n \pi d^2) = 4.0,05/(1.100.3,14.0,02^2) = 1,594$$
 m/c.

Полученное значение невелико, поэтому для определения скорости течения пленки можно использовать приведенные выше формулы. Рассчитаем критерий Re_{в.я.}, предварительно вычислив Г:

$$\Gamma = L/(100\pi d) = 0.3/(100 \cdot 3.14 \cdot 0.02) = 0.0477 \text{ kr}/(\text{c} \cdot \text{m}); \text{ Re}_{na} = 4 \cdot 0.0477/(5 \cdot 10^{-4}) = 382.$$

Таким образом, течение пленки ламинарное, можно применить формулу (1.84):

$$w_{n,n} = \sqrt[3]{0,0477^2 \cdot 9,81/(3,5 \cdot 10^{-4} \cdot 1000)} = 0,246 \text{ m/c}.$$

Относительная скорость газа

$$w_{\rm or} = 1.594 \pm 0.246 = 1.84 \, {\rm m/c}.$$

Определим толщину стекающей пленки по формуле (1.85):

$$\delta_{n,n} = \sqrt[3]{3 \cdot 0.0477 \cdot 5 \cdot 10^{-4} / (1000^2 \cdot 9.81)} = 1.96 \cdot 10^{-4}$$
 M.

Полученная величина мала по сравнению с диаметром трубки, поэтому нет необходимости делать перерасчет скорости газа; кроме того, эквивалентный диаметр можно принять равным внутреннему диаметру трубки: $d_{3 \kappa s} = 0.02$ м.

Чтобы выбрать формулу для расчета ξ, определим по формуле (1.94) значения Re_{our кр}и Re_{our}:

$$Re_{o.rsp} = \left[\frac{86}{0.11 + 0.9 (0.246 \cdot 5 \cdot 10^{-4} / 0.067)^{2/3}}\right]^{1.19} = 2414;$$

$$Re_{o.rsp} = 1.84 \cdot 0.02 \cdot 1 / (2 \cdot 10^{-5}) = 1840.$$

Поскольку Reor < Reor кв, используем формулу (1.92):

 $\xi = 86/1840 = 0.0467.$

Гидравлическое сопротивление аппарата

$$\Delta p = 0.0467 (2/0.02) (1 \cdot 1.84^2/2) = 7.7 \ \Pi a.$$

Брызгоунос. Брызгоунос складывается из двух составляющих. Одна из них образована мелкими каплями, скорость витания которых меньше скорости газа. Для определения скорости витания можно использовать формулы (1.28) и (1.29). Вторую (обычно основную) составляющую уноса образуют крупные капли, получившие значительную кинетическую энергию при образовании. Величина брызгоуноса зависит от вида контактного устройства, скорости движения фаз, физико-химических свойств газа (пара) и жидкости и других факторов и определяется по эмпирическим уравнениям.

Зависимости по расчету брызгоуноса в барботажных массообменных аппаратах приведены в работах [3, 7, 10]. Некоторые формулы и таблицы с примерами расчета даны в гл. 5 и 6. Унос в выпарных аппаратах рассмотрен в монографии [13] В пленочных абсорбционных аппаратах брызгоунос значителен лишь при прямоточном движении фаз из-за высоких скоростей газового потока. При восходящем прямотоке брызгоунос начинается, если выполняется условие:

$$w_{\rm r}\mu_{\rm w}/\sigma \ge (164/{\rm Re}_{\rm n,n})^5 \tag{1.95}$$

Брызгоунос может быть определен по уравнению

$$q/\Gamma = 0.039 \operatorname{Re}_{0.2}^{0.45} (w_{\rm r} \mu_{\rm w} / \sigma)^{0.38}$$
(1.96)

Пример. Определить относительную величину брызгоуноса в абсорбере с восходящим движением пленки по следующим данным: плотность орошения $\Gamma = 0.05 \text{ кг/(м·c)}$, вязкость жидкости $\mu_{\rm w} = 1 \cdot 10^{-3} \text{ Па·c}$, поверхностное натяжение $\sigma = 0.05 \text{ H/m}$, скорость газа $w_r = 20 \text{ м/c}$.

Проверим справедливость соотношения (1.95):

 $Re_{na} = 4\Gamma/\mu_{w} = 4 \cdot 0.05/1 \cdot 10^{-3} = 200;$ (164/Re_{na})⁵ = (164/200)⁵ = 0.37; $w_{r}\mu_{w}/\sigma = 20 \cdot 1 \cdot 10^{-3}/0.05 = 0.4.$

Таким образом, соотношение (1.95) справедливо, и в аппарате происходит брызгоунос. Относительный брызгоунос определим по формуле (1.96):

 $q/\Gamma = 0.039 \cdot 200^{0.45} \cdot 0.4^{0.38} = 0.299.$

приложения

Приложение 1.1. Основные технические характеристики насосов и вентиляторов, используемых в химической промышленности

M	0	Н, м ст.			Эле	Электродвигатель		
марка	Q, M⁻/C	жидкости		η _#	тип	<i>N</i> _н , кВт	η_18	
X2/25	4 2.10-4	25	50		АОЛ-12-2	11		
X8/18	$2, 4 \cdot 10^{-3}$	11,3	48,3	0,40	AO2-31-2	3		
		14,8				0	0.00	
X8/30	$2.4 \cdot 10^{-3}$	17.7	48.3	0.50	AO2-32-2	3	0,82	
,	-,	24	10,0	0,00	_	•		
N00/10		30	40.0	0.00	BAO-32-2	4	0,83	
X20/18	5,5 • 10 - 5	10,5	48,3	0,60	AO2-31-2	3	_	
		18			BAO-31-2	3	0,82	
X20/31	$5,5 \cdot 10^{-3}$	18	48,3	0,55	AO2-41-2	5,5	0,87	
		25			BA0.41.2	55	0.84	
X20/53	$5,5 \cdot 10^{-3}$	34,4	48,3	0,50	AO2-52-2	13	0,89	
		44	-				<u> </u>	
Y 45 /91	$1.95 \cdot 10^{-2}$	53	19.2	0.60	BAO-52-2	13	0,87	
A40/21	1,20.10	17.3	40,5	0,00	A02-51-2	10	0,00	
		21			BAO-51-2	10	0,87	
X45/31	$1,25 \cdot 10^{-2}$	19,8	48,3	0,60	AO2-52-2	13	0,89	
		25			BAO-52-2	13	0.87	
X45/54	$1,25 \cdot 10^{-2}$	32,6	48,3	0,60	AO2-62-2	17	0,88	
		42			AO2-71-2	22	0,88	
		54			AO2-72-2	30	0,89	

Таблица 1. Технические характеристики центробежных насосов

Продолжение приложения 1.1

M	03/-	<i>Н</i> , м ст.			Эле	Электродвигатель		
марка	Q, M°/C	жндкости		Πя	тип	<i>N</i> и, кВт	η ₄₈	
X90/19	$2.5 \cdot 10^{-2}$	13	48,3	0,70	AO2-51-2	10	0,88	
		16			AO2-52-2	13	0,89	
		19			AO2-62-2	17	0,88	
X90/33	$2,5 \cdot 10^{-2}$	25	48,3	0,70	AO2-62-2	17	0,88	
,		29,2			AO2-71-2	22	0,90	
		33			AO2-72-2	30	0,90	
X90/49	$2,5 \cdot 10^{-2}$	31,4	48,3	0,70	AO2-71-2	22	0,88	
,		40			AO2-72-2	30	0,89	
		49			AO <u>2-81-2</u>	<u> </u>	_	
X90/85	$2,5 \cdot 10^{-2}$	50	48,3	0,65	AO2-81-2	40	—	
•		70			AO2-82-2	55		
		85			AO2-91-2	75	0,89	
X160/29/2	$4,5 \cdot 10^{-2}$	20	48,3	0,65	BAO-72-2	30	0,89	
		24			AO2-72-2	30	0,89	
		29			AO2-81-2	40	_	
X160/49/2	4,5·10 ⁻²	33	48,3	0,75	AO2-81-2	40	<u> </u>	
		40,6			AO2-82-2	55	—	
		49			AO2-91-2	75	0,89	
X160/29	$4,5 \cdot 10^{-2}$	29	24,15	0,60	AO2-81-4	40	—	
X280/29	$8 \cdot 10^{-2}$	21	24,15	0,78	AO2-81-4	40	—	
		25			AO2-82-4	55		
		29			AO2-91-4	75	0,92	
X280/42	$8 \cdot 10^{-2}$	29,6	24,15	0,70	AO2-91-4	75	0,92	
		35			_	_		
		42			AO2-92-4	100	0,93	
X280/72	8·10 ⁻²	51	24,15	0,70	AO-101-4	125	0,91	
		62			AO-102-4	160	0,92	
		72			AO-103-4	200	0,93	
X500/25	1,5.10-1	19	16	0,80	AO2-91-6	55	0,92	
		22			—	_	_	
		25			AO2-92-6	75	_	
X500/37	1,5.10-1	25	16	0,70	AO-102-6	125	0, 92	
		31,2			—		_	
		37			AO-103-6	160	0,93	

Примечания. 1. Насосы предназначены для перекачивания химически активных и нейтральных жидкостей, не имеющих включений или же с твердыми включениями, составляющими до 0,2 %, при размере частиц до 0,2 мм. 2. Каждый насос может быть изготовлен с тремя различными диаметрами рабочего колеса, что соответствует трем значениям напора в области оптимального п...

Таблица 2.	Технические	характеристики	центробежных	питательных
многоступен	нчатых насос	08		

Марка	Q, м ³ /с	<i>Н</i> , м ст. жндкости		դո	<i>N</i> _н , кВт
ПЭ 65-40	$1,8 \cdot 10^{-2}$	440	50	0.65	108
ПЭ 65-53	$1.8 \cdot 10^{-2}$	580	50	0.65	143
ПЭ 100-53	$2.8 \cdot 10^{-2}$	580	50	0.68	210
ПЭ 150-53	$4.2 \cdot 10^{-2}$	580	50	0,70	305
ПЭ 150-63	$4,2.10^{-2}$	700	50	0,70	370
ПЭ 250-40	$6.9 \cdot 10^{-2}$	450	50	0.75	370
ПЭ 250-45	$6,9 \cdot 10^{-2}$	500	50	0,75	410

Примечания. 1. Насосы предназначены для перекачивания воды, имеющей рН 7—9,2, температуру не более 165 °С и не содержащей твердых частиц. 2. Допустимо превышение напора до 18 % от значений, указанных в таблице. 3. Минимальная подача для насосов ПЭ 65-40, ПЭ 65-53 и ПЭ 100-53 составляет 6·10⁻³ м³/с, для насосов ПЭ 150-53 и ПЭ 150-63 — 3,2·10⁻² м³/с, для насосов ПЭ 250-40 и ПЭ 250-45 — 1,8·10⁻² м³/с.

Марка	<i>Q</i> , м ³ /с	Н, м ст. жидкости	n, c^{-1}	ημ	<i>N</i> _н , кВт
ЦНС 13-70	$3,61 \cdot 10^{-3}$	70	50	0,48	5,40
ЦНС 13-350	$3,61 \cdot 10^{-3}$	350	50	0,49	26.00
ЦНС 38-44	$1,05 \cdot 10^{-2}$	44	50	0,67	7.00
ЦНС 38-66	$1,05 \cdot 10^{-2}$	66	50	0.67	10.50
ЦНС 60-50	$1,67 \cdot 10^{-2}$	50	25	0.67	13.0
ЦНС 60-75	$1,67 \cdot 10^{-2}$	75	25	0.67	19.5
ЦНС 60-330	$1,67 \cdot 10^{-2}$	330	50	0.71	77.0
ЦНС 105-343	$2.92 \cdot 10^{-2}$	343	50	0.74	136.5
ЦНС 105-490	$2,92 \cdot 10^{-2}$	490	50	0.74	195.0
ЦНС 180-340	$5.0 \cdot 10^{-2}$	340	25	0.74	232
ЦНС 180-500	$5.0 \cdot 10^{-2}$	500	50	0.72	350
ЦНС 180-600	$5.0 \cdot 10^{-2}$	600	50	0.72	420
ЦНС 180-700	$5.0 \cdot 10^{-2}$	700	50	0.72	490
ЦНС 300-540	8.33.10-2	540	25	0.76	594
ЦНС 300-600	8,33 - 10-2	600	25	0.76	660
ЦНС 300-650	8.33 • 10 - 2	650	50	0.76	700
ЦНС 500-320	1.39 • 10 - 1	320	25	0.76	580
LHC 500-480	1.39 10-1	480	25	0.77	870
ЦНС 500-560	1,39.10-1	560	25	0.77	1015
ЦНС 500-640	1.39 10-	640	25	0,77	1160

Таблица 3. Технические характеристики центробежных многоступенчатых секционных насосов

Примечания. 1. Насосы предназначены для перекачивания воды и жидкостей, имеющих сходные с волой свойства по вязкости и химической активности, с массовой долей механических примесей не более 0.1 % и размером твердых частиц не более 0.1 мм. 2. Допускаемое производственное предельное отклонение напора — плюс 5 %, минус 3 %.

Марка	Q. м ³ /с	<i>Н</i> , м ст. жидкости		ղո	Марка	Q, м ³ /с	<i>Н</i> , м ст. жидкости	n, c⁻'	ղ"
006-15	0.075	4.6	48.3	0.78	OB5-47	0.70	4.5	12.15	0.85
ОГ8-15	0.072	11.0	48.3	0.80	020	0.90	8.0	12.15	0.85
ОГ6-25	0.175	3.4	24.15	0.83	OB8-47	0,70	11.0	16	0.86
ОГ8-25	0.160	8.0	24.15	0.86	OB5-55	1,45	11,0	16	0,85
ОГ6-30	0,300	4.4	24,15	0.83	OB6-55	0,94	4,5	12,15	0,84
ОГ8-30	0,290	11,0	24,15	0,86		1,25	7,5	16	0,84
ΟΓ6-42	0,550	4,2	16	0,84	OB8-55	1,18	17,0	16	0,86
ОГ8-42	0,525	9,9	16	0.86	OB5-70	2,25	11.0	12,15	0,84
ΟΓ6-55	0,900	4,1	12,15	0.84	OB5-70	1,55	4,7	9,75	0,83
ОГ8-55	0.900	10.0	12.15	0.86		1,90	7.3	12,15	0.83
ОГ6-70	1.530	4,3	9,75	0,84	OB8-70	1,85	16,0	12,15	0,86
ΟΓ8-70	1,480	10.4	9.75	0.86				•	

Таблица 4. Технические характеристики осевых насосов

Примечания. 1. Насосы предназначены для подачи воды (или других жидкостей, сходных с водой по вязкости и химической активности) с содержанием не более 0,3 % взвешенных частиц, при температуре не выше 35 °C. 2. Насосы ОГ — с горизонтальным расположением вала — ОВ — с вертикальным.

Марка	03/-	Н, м ст		Электр	Электродвигатель		
	Q, M'/C	жидкости		тип	<i>N</i> ", кВт	ηде	
ОХ2-23Г ОХ6-34ГА ОХ6-34Г ОХ6-46Г	0,111 0,278 0,444 0,693	4,5 4,5 4,5 4	24,1 24,5 24,5 16,4	AO2-62-4 AO2-81-4 AO2-82-4 MA-36-51/6	17 40 55 100	0,89 0,91	

Таблица 5. Технические характеристики осевых циркуляционных насосов

Manya	0	Н. м. ст.		Электродви				
марка	Q, M ⁻ /C	жидкости		тип	Электродвигатель N _" , кВт η _{д"} 125 0,92 12-35-8 200 — 12-55-8 250 — 12-55-8 250 —			
ОХ6-54Г	0,971	4.5	16,3	AO-102-6M	125	0,92		
ОХ6-70ГС-1	1,75	4,5	12,2	АО (ДА 30) 12-35-8	200			
ОХ6-70ГС-2	2,22	4,5	12,2	АО (ДА 30) 12-55-8	250			
ΟΧ6-87Γ-1	2,22	3,5-4,5	9,8	АО (ДА 30) 13-55-10	320			
ОХ6-87Г-2	2,78	3,5-4	9,8	АО (ДА 30) 13-55-10	320	_		

Примечание. Насосы предназначены для циркуляции агрессивных растворов плотностью до 1500 кг/м³ при температуре до 150 °C (насос ОХ6-46Г — до 106 °C, насос ОХ6-87Г-2 — до 137 °C).

Марка	Q, м ³ /с	Н, м вод. ст.	<i>n</i> , c ⁻¹	η"
BC-0.5/18	0,00040	24	24,15	0,38
BK-1/16	0,00058 0,00080	12 22	24,15	0,25
BK-1.25/25	0,00100 0,00106 0.00110	16 14 29	24.15	0.27
	0,00125	25 21	,	-,

Таблица 6. Технические характеристики вихревых насосов малой производительности

Примечание. Насосы предназначены для подачи воды и других жидкостей (в том числе химически активных), не содержащих абразивных включений, при температуре не выше 85 °C.

Таблица 7. Технические характеристики плунжерных насосов с регулируемой подачей

				игатель	ель	
Марка	Q, M°/C	<i>Н</i> , м вод. ст.	тил	n, c ⁻¹	<i>N</i> _н , кВт	η ₄₈ 0,76 0,82 0,82 0,82 0,82
НД 630/10	1.75 • 10-4	100	BAO-21-4	25	1.1	0.76
НД 1000/10	$2.78 \cdot 10^{-4}$	100	AO2-31-4	25	2.2	
НД 1600/10	4.45.10-4	100	AO2-32-4	25	3.0	
			BAO-32-4		3.0	0.82
НД 2500/10	6.95.10-4	100	AO2-32-4	25	3.0	
			BAO-32-4	_	3,0	0.82
ДК-64	1,75.10-4	630	BAO-31-4	25	3,0	0.82
XTp10/100	$2,78 \cdot 10^{-3}$	1000	BAO-82-2	_	55	<u> </u>

Примечания. 1. Насосы предназначены для дозирования нейтральных и агрессивных жидкостей при температуре до 200 °C (серия НД) или до 100 °C (ДК-64 и ХТр 10/100). 2. В таблице указаны максимально возможные рабочие значения подачи и напора.

Марка	<i>Q</i> , м ³ /с	Давление на выходе, МПа	Марка	Q, м ³ /с	Давление на выходе, МПа
ΠΤ-1-0,63/400 ΠΤ-1-1/400 ΠΤ-1-1/250 ΠΤ-1-1,6/250 ΠΤ-1-1,6/160 ΠΤ-1-2,5/160 ΠΤ-1-2,5/100	$1,75 \cdot 10^{-4} 2,78 \cdot 10^{-4} 2,78 \cdot 10^{-4} 4,44 \cdot 10^{-4} 4,44 \cdot 10^{-4} 6,95 \cdot 10^{-4} \\ 6,95$	40 40 25 25 16 16 10	ΠΤ-1-10/25 ΠΤ-1-16/25 ΠΤ-1-10/100 Τ-2-1,6/630 Τ-2-2,5/400 Τ-2-4/250 Τ-2-2,5/250	$2,78 \cdot 10^{-3} 4,44 \cdot 10^{-3} 2,78 \cdot 10^{-3} 4,44 \cdot 10^{-4} 6,95 \cdot 10^{-4} 1,11 \cdot 10^{-3} 6,95 \cdot 10^{-4}$	2,5 2,5 10 63 40 25 25

Таблица 8. Технические характеристики трехплунжерных насосов

Продолжение табл. 8

Марка	Q, м ³ /с	Давление на выходе, МПа	Марка	Q, м ³ /с	Давление на выходе, МПа
ПТ-1-4/100	$1,11 \cdot 10^{-3}$	10	T-2-6,3/160	$1,75 \cdot 10^{-3}$	16
ΠT-1-4/63	$1,11 \cdot 10^{-3}$	6,3	T-2-10/100	$2,78 \cdot 10^{-3}$	10
ПТ-1-6,3/63	$1.75 \cdot 10^{-3}$	6,3	T-2-16/63	$4,44 \cdot 10^{-3}$	6,3
ПТ-1-6,3/40	$1,75 \cdot 10^{-3}$	4	T-2-25/40	6,95 • 10 - 3	4,0
ПТ-1-10/40	$2,78 \cdot 10^{-3}$	4	T-2-40/25	$1,11 \cdot 10^{-2}$	2,5

Примечание. Насосы предназначены для перекачивания нейтральных и агрессивных жидкостей с температурой от — 50 °C до 250 °C и кинематической вязкостью не выше 8·10⁻⁴ м²/с. Допустимое содержание твердых частиц в перекачиваемой жидкости не более 0,2 %.

Марка		адН ∏а			Элект	Электродвигатель			
Марка	Q, M°/C	pgH, IIa	n, c	η _"	тип	<i>N</i> _н , кВт	Ŋ _{дв}		
В-Ц14-46-5К-02	3,67 4,44 5,55	2360 2450	24,1	0,71	AO2-61-4 AO2-62-4	13 17	0,88 0,89		
В-Ц14-46-8К-02	5,35 5,28 6,39 7,78	1770 1820 1870	16,15	0,73	AO2-62-6 AO2-71-6 AO2-72-6	13 17 22	0,88 0,90		
В-Ц14-46-8К-02	6,94 9,72	2450 2600 2750	16	0,70	AO2-82-6 AO2-82-6 AO2-91-6	30 40 55	0,50 — — 0.92		
В-Ц12-49-8-01	12,50 15,25 18,0	5500 5600 5700	24,15	0,68	4A280S4 4A280M4 4A315S4	110 132 160			
ЦП-40-8К	1,39—6,95	1470-3820	26,65	0,61	_	_	_		
	Вент	иляторы мал	ой прои	зводительно	ости *				
Ц1-181,5 Ц1-354 Ц1-690 Ц1-1000	0,050 0,098 0,192 0,278	618 967 1500 1110	46,7 46,7 46,7 46,7	Ц1-1450 Ц1-2070 Ц1-4030 Ц1-8500	0,402 0,575 1,120 2,360	2450 1280 2840 3280	46,7 46,7 46,7 46,7		

Таблица 9. Технические характеристики центробежных вентиляторов

* Приведены значения только Q, pgH и n.

Таблица 10. Технические характеристики газодувок

Марка				Элект	родвигатель	
марка	Q, M ² /C	ρg Η, 11a		тип	<i>N</i> _ж , кВт	Ŋ _{AP}
TB-25-1.1	0,833	10 000	48.3	AO2-71-2	22	0.88
TB-100-1,12	1,67	12 000	48.3	AO2-81-2	40	
TB-150-1,12	2,50	12 000	48,3	AO2-82-2	55	
TB-200-1,12	3,33	12 000	48,3	AO2-91-2	75	0,89
TB-250-1,12	4,16	12 000	49,3	AO2-92-2	100	0,91
TB-350-1,06	5,86	6 000	48,3	AO2-82-2	55	
TB-450-1,08	7,50	8 000	49,5	A2-92-2	125	0,94
TB-500-1,08	8,33	8 000	50,0	BAO-315S-2	132	_
TB-600-1,1	10,0	10 000	49,4	A3-315M-2	200	
РГН-1200А	0,167	30 000	16,7	AO2-62-6	13	_
2A-34	0,630	80 000	25.0	4A250-S443	75	_
TB-42-1,4	1,0	40 000	48,3	AO2-82-2	55	
TB-50-1,6	1,0	60 000	49,3	AO2-92-2	100	_
TB-80-1,2	1,67	20 000	48,3	AO2-82-2	55	_
ΤΓ-170-1,1	2,86	28 000	49,3	AO2-92-2	100	_
ТГ-300-1,18	5,0	18 000	50,0	BAO-315M-2	160	—

Примечание. Газодувки с ρgH≤12000 Па можно рассматривать как вентиляторы высокого давления; газодувки с ρgH≥18000 Па нужно рассчитывать как компрессоры.

Приложение 1.2. Основные параметры фильтров непрерывного действия

.	F _¢ ,	Z,,		Распр	еделени	не зон по п	оверхно	верхности барабана (в угловых градусах)					
Фильтр	м ²	шт.		Ψ¢	Pel	$\varphi_{np} + \varphi_{c2}$	φo	φ _p	Фы	Ψ ∎2	Физ	Фн4	
Б0Ш3-1,75Р	3	16	0,00167— 0.0333	107	71	101	19	20	2	5	30	5	
Б0Ш5-1,75Р	5												
Б03-1,75К	3	18	0,00167—	125	60	99	25	24	4	5	14	4	
Б05-1,75К	5		0.0333										
Б05-1,75У	5	24	0,00167— 0.030	124,5	67	103	2 0	20	2	5	13,5	5	
Б010-2,6У	10	24	0,00217 - 0.0333	132	59,5	103	20	20	2	5	13,5	5	
Б010-2,6Р	10	24	0,00167—	125	71	93,5	19,5	18	2	4,5	2 2 ,5	4	
Б020-2,6У	20	24	0,00217-	132	59,5	103	20	20	2	5	13,5	5	
Б040-ЗУ	40	24	0,0095, 0,0142, 0,0287	135	56,5	103	20	20	2	5	13,5	5	

Таблица 1. Основные параметры барабанных вакуум-фильтров общего назначения с наружной фильтрующей поверхностью

Примечание. F_Φ — поверхность фильтра; z_n — число ячеек; n — частота вращения барабана; φ_Φ — угол сектора фильтрования; φ_{c1} — сектора подсушки осадка; φ_n — сектора промывки; φ_{c2} — сектора сушки осадка после промывки; φ₀ — зоны съема осадка; φ_p — зоны регенерации; φ_{w1}, φ_{w2}, φ_{w3}, φ_{w4} — углы мертвых зон соответственно между I и II, II и III, III и IV, IV и I технологическими зонами.

Фильтр	Fe. M ²		d., MM		Расп зон	ределение (в градус	углов :ax)
	φ,				Фн	Ффн	Фсн
Д9-1,8У Л9-1,8К	9	2	1800	0,0025-0,015	160	117	139
Д18-1,8У	18	4	1800	(0,0017-0,02)			
Д17-1,8У Д27-1,8У Л27-1,8К	27	6	1800				
Д34-2,5 Л34-2,5К	34	4	2500	0,0017 - 0,01 (0.0017 - 0.02)	166	120	137
Д51-2,5У Л51-2,5К	51	6		(0,000)			
Д68-2,5У Л68-2,5К	68	8					
Д100-2,5У	102	12	2500				

Таблица 2. Основные параметры дисковых вакуум-фильтров

Примечания. 1. F_{ϕ} — поверхность фильтра; z_a — число дисков; d_a — диаметр диска; n — частота вращения; φ_{κ} — угол погружения в суспензию; $\varphi_{\phi,\kappa}$ — угол фильтрования; $\varphi_{c.\kappa}$ — угол сушки. 2. Число секторов $z_c = 12$. Угол съема осадка $\varphi_o = 35^\circ$ Угол регенерации $\varphi_p = 35^\circ$

Таблица 3. Основные параметры ленточных вакуум-фильтров

Фильтр	<i>F</i> _ф , м²	<i>b</i> , мм	<i>l</i> , мм	<i>v</i> , м/с	<i>N</i> , кВт
Л1-0,5У Л1-0,5К	1,0	500	2000	0,013-0,08 (0.067-0.083)	2,8
Л1,6-0,5У Л1,6-0,5К	1,6	500	3200	0,013—0,08 (0,01—0,13)	2,8

Фильтр	F _ф , м ²	<i>b</i> , мм	1, мм	<i>U</i> , м/с	<i>N</i> . кВт
Л2,5-0,5У Л2.5-0.5К	2,5	500	4800	0,013-0,08 (0.0167-0.167)	2,8
Л3,2-0,5У Л3,2-0,5К	3,2	500	6400	0,0167-0,1 (0.022-0.22)	4,5
Л4-0,5У Л4-0,5К	4,0	500	8000	0,025-0,15 (0,025-0,267)	4,5

Примечание. F_ф — поверхность фильтрации; b рабочая ширина ленты; I — общая длина вакуум-камеры: v — скорость движении лепты.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Касаткин А. Г. Основные процессы и аппараты химической технологии. Изд. 9-е, пер. и доп. М.: Химия, 1973. 754 с.
- 2. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Изд. 10-е, пер. и доп. Л.: Химия, 1987. 576 с.
- 3. Рамм В. М. Абсорбция газов. М.: Химия, 1976. 655 с.
- 4. Черкасский В. М. Насосы, вентиляторы, компрессоры. М.: Энергия, 1977. 424 с.
- 5. Рекус Г Г. Электропривод и электрооборудование предприятий химической промышленности. М.: Изд. МХТИ им. Д. И. Менделеева, 1971. 292 с.
- 6. Доманский И. В. и др. Машины и аппараты химических производств/Под ред. В. Н. Соколова. Л.: Машиностроение, 1982. 384 с.
- 7 Тарат Э. Я., Мухленов И. П., Туболкин А. Ф., Тумаркина Е. С. Пенный режим и пенные аппараты. Л.: Химия, 1977 304 с. 8. *Циборовский Я*. Основы процессов химической технологии. Л.: Химия, 1967. 720 с.
- 9. Кутателадзе С. С., Стырикович М. Л. Гидравлика газожидкостных систем. М.-Л.: Госэнергоиздат, 1958. 232 с.
- Александров И. А. Ректификационные и абсорбционные аппараты. М.: Химия, 1971. 296 с.
 Стабников В. Н. Расчет и конструирование контактных устройств ректификационных и абсорбционных аппаратов. Киев: Техника, 1970. 208 с.
- Хоблер Т. Массопередача и абсорбция. Л.: Химия, 1964. 479 с.
 Кутепов А. М., Стерман Л. С., Стюшин Н Г Гидродинамика и теплообмен при парообразовании. М.: Высшая школа, 1977. 352 с.

ГЛАВА 2

РАСЧЕТ ТЕПЛООБМЕННЫХ АППАРАТОВ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- *с* средняя массовая теплоемкость;
- D диаметр кожуха;
- внутренний диаметр теплообменных труб;
- F поверхность теплопередачи;
- G массовый расход теплоносителя;
- g ускорение свободного падения;
 К коэффициент теплопередачи;
- *L* длина теплообменных труб;
- 1 определяющий размер в критериях подобия;
- *М* масса;
- N число пластин, мощность;
- n число труб; число параллельных потоков;
- p давление;
- Δp гидравлическое сопротивление;
- Q тепловая нагрузка;
- q удельная тепловая нагрузка;
- г удельная массовая теплота конденсации (испарения);

- r₃ термическое сопротивление слоя загрязнении;
- S площадь поперечного сечения потока;
- t -температура;
- Δt разность температур стенки и теплоносителя;
- ω скорость движения теплоносителя:
- z число ходов в кожухотрубчатых теплообменниках;
- α коэффициент теплоотдачи;
- β коэффициент объемного расширения;
- δ_{ст} толщина стенки теплопередающей поверхности;
- λ теплопроводность; коэффициент трения;
- µ динамическая вязкость;
- ρ плотность;
- σ поверхностное натяжение;
- $Re = \omega l\rho/\mu$ критерий Рейнольдса;
- $Nu = \alpha l/\lambda$ критерий Нуссельта; $Pr = c\mu/\lambda$ критерий Прандтля;

 $Gr = gl^3 \rho^2 \beta \Delta t / \mu^2$ — критерий Грасгофа.

Индексы:

- 1 теплоноситель с большей средней температурой (горячий);
- 2 теплоноситель с меньшей средней температурой (холодный);
 - н начальное значение; наружный размер; насос;
- к --- конечное значение; кожух;
- ст стенка;
- т теплообменник;
- тр трубное пространство;
- мтр --- межтрубное пространство;

ш — штуцер.

2.1. ОБЩАЯ СХЕМА ТЕХНОЛОГИЧЕСКОГО РАСЧЕТА ТЕПЛООБМЕННЫХ АППАРАТОВ

Расчет теплообменного аппарата включает определение необходимой поверхности теплопередачи, выбор типа аппарата и нормализованного варианта конструкции, удовлетворяющих заданным технологическим условиям оптимальным образом. Необходимую поверхность теплопередачи определяют из основного уравнения теплоперелачи:

$$F = Q/(K\Delta t_{\rm cp}) \tag{2.1}$$

Тепловую нагрузку Q в соответствии с заданными технологическими условиями находят из уравнения теплового баланса для одного из теплоносителей:

а) если агрегатное состояние теплоносителя не меняется — из уравнения

$$Q = G_i c_i [t_{in} - t_{in}], \ i = 1, 2; \tag{2.2}$$

б) при конденсации насыщенных паров без охлаждения конденсата или при кипении --- из уравнения

$$Q = G_i r_i, \ i = 1, 2; \tag{2.3}$$

в) при конденсации перегретых паров с охлаждением конденсата

$$Q = G_1 \left(I_{1\mu} - c_1 t_{1\kappa} \right), \tag{2.4}$$

где I_{1и} — энтальпия перегретого пара.

Тепловые потери при наличии теплоизоляции незначительны, поэтому при записи уравнений (2.2) — (2.4) они не учитывались.

Один какой-либо технологический параметр, не указанный в исходном задании (расход одного из теплоносителей или одна из температур), можно найти с помощью уравнения теплового баланса для всего аппарата в целом, приравнивая правые части уравнений (2.2) — (2.4) для горячего и холодного теплоносителей.

Если агрегатное состояние теплоносителя не меняется, его среднюю температуру можно определить как среднеарифметическую между начальной и конечной температурами:

$$t_i = (t_{i_{\mathsf{R}}} + t_{i_{\mathsf{K}}})/2, \quad i = 1, 2.$$
(2.5)

Более точное значение средней температуры одного из теплоносителей можно получить, используя среднюю разность температур:

$$t_i = t_j \pm \Delta t_{cp}$$

где t_i — среднеарифметическая температура теплоносителя с меньшим перепадом температуры вдоль поверхности теплообмена.

При изменении агрегатного состояния теплоносителя его температура постоянна вдоль всей поверхности теплопередачи и равна температуре кипения (или конденсации), зависящей от давления и состава теплоносителя.

В аппаратах с прямо- или противоточным движением теплоносителей средняя разность температур потоков определяется как среднелогарифмическая между большей и меньшей разностями температур теплоносителей на концах аппарата:

$$\Delta t_{\rm cp} \equiv \Delta t_{\rm cp, \, \text{aor}} = (\Delta t_6 - \Delta t_{\rm M}) / \ln (\Delta t_6 / \Delta t_{\rm M}). \tag{2.6}$$

Если эти разности температур одинаковы или отличаются не более чем в два раза, то среднюю разность температур можно приближенно определить как среднеарифметическую между ними:

$$\Delta t_{\rm cp.\,ap} = (\Delta t_6 + \Delta t_{\rm M})/2.$$

В аппаратах с противоточным движением теплоносителей Δt_{cp} при прочих равных условиях больше, чем в случае прямотока. Это различие практически исчезает при очень малом изменении температуры одного из теплоносителей. При сложном взаимном движении теплоносителей, например при смешанном или перекрестном токе, Δt_{cp} принимает промежуточное значение между значениями при противотоке и прямотоке. Его можно рассчитать, вводя поправку $\varepsilon_{\Delta I} \leqslant 1$ к среднелогарифмической разности температур для противотока, рассчитанной по формуле (2.6):

$$\Delta t_{\rm cpr} = \epsilon_{\Delta t} \Delta t_{\rm cp.\,nor}$$

Эту поправку для наиболее распространенных схем взаимного направления движения теплоносителей можно рассчитать теоретически [1, т. 1; 2, 3]. В частности, для параллельно-смешанного тока теплоносителей с одним ходом в межтрубном пространстве и двумя ходами по трубам (например, в двухходовом кожухотрубном теплообменнике) имеем:

$$\epsilon_{\Delta I} = \frac{\eta/\delta}{\ln\left[\left(2-P\left(1+R-\eta\right)\right]/\left[2-P\left(1+R+\eta\right)\right]\right]},$$
(2.7)
rae $\eta = \sqrt{R^2+1}; \ \delta = \frac{R-1}{\ln\left[\left(1-P\right)/(1-RP)\right]} \bigg|_{R\neq 1} = \frac{1-P}{P}\bigg|_{R \to 1}$
 $P = \frac{t_{2\kappa} - t_{2\kappa}}{t_{1\kappa} - t_{2\kappa}}; \qquad R = \frac{t_{1\kappa} - t_{1\kappa}}{t_{2\kappa} - t_{2\kappa}}$

Уравнение (2.7) приближенно справедливо для любого четного числа ходов теплоносителя в трубах (т. е. для многоходовых кожухотрубных теплообменников).

Поскольку при смешанном токе вдоль части теплообменной поверхности теплоносители движутся прямоточно, максимальное значение параметра P (называемого тепловой эффективностью) меньше, чем при противотоке (когда $P_{\max}^{\text{прот}} = 1$, так как $\max t_{2\kappa} = t_{1\kappa}$), но больше, чем при прямотоке (когда $\max t_{2\kappa} = t_{1\kappa} < t_{1\kappa}$). Это значение, при котором $\varepsilon_{\Delta t} \rightarrow 0$, в соответствии с уравнением (2.7) равно:

$$P_{\max}^{nps_{M}} < P_{\max} = 2/(1+R+\eta) < P_{\max}^{npot} = 1.$$
(2.8)

Рис. 2.1. Определение поправки є_м при нечетном соотношении числа ходов теплоносителей

Очевидно, что эффективность *Р* ≥ *P*_{тах} при данной схеме движения теплоносителей физически нереализуема.

При последовательном соединении m теплообменников, имеющих один ход в межтрубном пространстве и любое четное число ходов по трубам, поправку ε_M можно также вычислить по уравнению (2.7), подставив в него вместо P функцию j(P):

$$f(P) = \frac{1 - (X)^{1/m}}{R - (X)^{1/m}} \bigg|_{R \neq 1} = \frac{P}{m - P(m-1)} \bigg|_{R = 1},$$
(2.9)

где X = (PR - 1)/(P - 1).

По такой схеме движения теплоносителей предельное значение тепловой эффективности несколько выше, чем в одном многоходовом теплообменнике:

$$P_{\max} = \frac{Z^m - 1}{Z^m - R} \bigg|_{R \neq 1} = \frac{2m}{2m + \sqrt{2}} \bigg|_{R = 1},$$
(2.10)

где $Z = (\eta - R + 1)/(\eta + R - 1).$

Результаты расчета по такой схеме можно использовать для пластинчатых теплообменников с различным четным соотношением ходов, совершаемых теплоносителями в зависимости от компоновки пластин.

При нечетном соотношении ходов можно использовать графики [4, 5], приведенные на рис. 2.1. Графики зависимостей, полученных непосредственно для пластинчатых теплообменников, приведены в литературе [1, т. 2].

Для определения поверхности теплопередачи и выбора варианта конструкции теплообменного аппарата необходимо определить коэффициент теплопередачи. Его можно рассчитать с помощью уравнения аддитивности термических сопротивлений на пути теплового потока:

$$1/K = 1/\alpha_1 + \delta_{cT}/\lambda_{cT} + r_{31} + r_{32} + 1/\alpha_2$$

где α₁ и α₂ — коэффициенты теплоотдачи со стороны теплоносителей; λ_{ст} — теплопро-

	<i>К</i> , Вт/	(м ² ·К)		<i>К</i> , Вт/ (м ² ·К)		
Вид теплообмена	для вынуж- денного движения	для свобод- ного движения	Вид теплообмена	для вынуж- денного движення	для свобод- ного движения	
От газа к газу От газа к жидкости От конденсирующегося пара к газу От жидкости к жидкости: для воды для углеводородов и ма- сел	1040 1060 1060 8001700 120270	4-12 6-20 6-12 140-430 30-60	От конденсирующегося водя- ного пара: к воде к кипяшей жидкости к органическим жидко- стям От конденсирующегося пара органических жидкостей к воде	800—3500 — 120—340 300—800	300—1200 300—2500 60—170 230—460	

Таблица 2.1. Ориентировочные значения коэффициента теплопередачи К

Теплоносители	1/r ₃ , Вт/(м ² ·К)	Теплоносители	1/r ₃ , Вт/(м ² ·K)
Вода: загрязненная	1400 1860	Нефтепродукты, масла, пары хладоагентов	2 900
среднего качества	1860-2900	Нефтепродукты сырые	1 160
дистиллированная	11 600	лы, жидкие хладоагенты	3 800
Воздух	2 800	Водяной пар, содержащий масла Пары органических жидкостей	5 800 11 600

Таблица 2.2. Тепловая проводимость загрязнений стенок 1/гз

водность материала стенки; $\delta_{c\tau}$ — толщина стенки; r_{31} , r_{32} — термические сопротивления слоев загрязнений с обеих сторон стенки.

Это уравнение справедливо для передачи тепла через плоскую или цилиндрическую степку при условии, что $R_{\scriptscriptstyle \rm II}/R_{\scriptscriptstyle \rm B} < 2$ (где $R_{\scriptscriptstyle \rm H}$ и $R_{\scriptscriptstyle \rm B}$ — наружный и внутренний радиусы цилиндра).

Однако на этой стадии расчета точное определение коэффициента теплопередачи невозможно, так как α_1 и α_2 зависят от параметров конструкции рассчитываемого теплообменного аппарата. Поэтому сначала на основании ориентировочной оценки коэффициента теплопередачи приходится приближенно определить поверхность и

выбрать конкретный вариант конструкции, а затем провести уточненный расчет коэффициента теплопередачи и требуемой поверхности.

Сопоставление ее с поверхностью выбранного нормализованного теплообменника дает ответ на вопрос о пригодности выбранного варианта для данной технологической задачи. При значительном отклонении расчетной поверхности от выбранной следует перейти к другому варианту конструкции и вновь выполнить уточненный расчет. Число повторных расчетов зависит главным образом от степени отклонения ориентировочной оценки коэффициента теплопередачи от его уточненного значения. Многократное новторение однотипных расчетов предполагает использование ЭВМ.

Следует, однако, иметь в виду, что трудоемкость повторных расчетов резко снижается по мере выявления характера зависимости коэффициентов теплоотдачи от параметров конструкции аппарата.

Рис. 2.2. Схема расчета теплообменников

Ориентировочные значения коэффициентов теплопередачи, а также значения тепловой проводимости загрязнений стенок по данным [6] приведены в табл. 2.1 и 2.2.

Трудоемкость таких расчетов несколько снижается, если из опыта известна оптимальная область гидродинамических режимов движения теплоносителей вдоль поверхности для выбранного типа конструкции (при таком ограничении уменьшается число возможных вариантов решения задачи).

В любом случае, особенно при использовании ЭВМ, легко можно получить несколько конкурентоспособных вариантов решения технологической задачи. Дальнейший выбор должен быть сделан на основе технико-экономического анализа по тому или иному критерию оптимальности.

Схема расчета теплообменников приведена на рис. 2.2.

2.2. УРАВНЕНИЯ ДЛЯ РАСЧЕТА КОЭФФИЦИЕНТОВ ТЕПЛООТДАЧИ

Выбор уравнений для уточненного расчета коэффициентов теплоотдачи зависит от характера теплообмена (без изменения агрегатного состояния, при кипении или при конденсации), от вида выбранной поверхности теплообмена (плоской, гофрированной, трубчатой, оребренной), от типа конструкции (кожухотрубчатые, двухтрубные, змеевиковые и др.), от режима движения теплоносителя. В общем виде критериальная зависимость для определения коэффициентов теплоотдачи имеет вид:

$$Nu = f(Re, Pr, Gr, \Gamma_1, \Gamma_2, \dots),$$

где Г₁, Г₂, ... симплексы геометрического подобия.

Во многие расчетные формулы для определения коэффициента теплоотдачи в явном или неявном виде входит температура стенки. Ее можно определить из соотношения

$$t_{\rm cri} = t_i \pm K \Delta t_{\rm cp} / \alpha_i, \quad i = 1, 2.$$
 (2.11)

Поскольку на первой стадии уточненного расчета α_i и *К* неизвестны, надо задаться их ориентировочными значениями, а в конце расчета проверить правильность предварительной оценки t_{cri} .

Ниже приведены уравнения для расчета коэффициентов теплоотдачи в наиболее часто встречающихся случаях теплообмена.

1. При движении теплоносителя в прямых трубах круглого сечения или в каналах некруглого сечения без изменения агрегатного состояния коэффициент теплоотдачи определяют по следующим уравнениям:

а. При развитом турбулентном движении (Re≥10⁴) — по уравнению

$$Nu = 0.023 Re^{0.8} Pr^{0.4} (Pr/Pr_{cr})^{0.25}, \qquad (2.12)$$

где Рг_{ст} — критерий Прандтля, рассчитанный при температуре стенки. Определяющим размером в критериях Re и Nu является эквивалентный диаметр трубы, определяющей температурой, при которой рассчитывают физические свойства среды, — средняя температура теплоносителя. Пределы применимости уравнения (2.12):

$$Re = 10^4 - 5 \cdot 10^6$$
; $Pr = 0.6 - 100$; $L/d \ge 50$.

Для изогнутых труб (змеевиков) значение а, полученное из уравнения (2.12), умножают на поправку

$$\alpha_{3M} = \alpha \left(1 + 3.54 d / D \right),$$

где d — внутренний диаметр трубы змеевика; D — диаметр витка эмеевика.

б. При 2300 < Re < 10 000 и GrPr < 8 · 10⁵ приближенное значение коэффициента теплоотдачи можно определить по графику, приведениому в [6]

в. В ламинарном режиме (Re≤2300) возможны два случая:

 при значениях GrPr ≤ 5·10⁵, когда влияние свободной конвекции можно не учитывать, коэффициент теплоотдачи для теплоносителя, движущегося в трубах круглого сечения, определяют с помощью уравнений [1, т. 1; 5]:

RePr
$$(d/L) > 12$$
, Nu = 1,61 [RePr (d/L)]^{1/3} $(\mu/\mu_{cr})^{0.14}$; (2.13)

RePr
$$(d/L) \leq 12$$
, Nu = 3,66 $(\mu/\mu_{cr})^{0.14}$, (2.14)

где µ_{ст} — вязкость теплоносителя при температуре стенки;

2) при значениях GrPr> 5.10⁵ наступает так называемый вязкостно-гравитационный режим, при котором влиянием свободной конвекции пренебречь нельзя. В этом режиме на теплоотдачу существенно влияет взаимное направление вынужденного движения и свободной конвекции; ряд формул приведен в работах [1, т. 1; 5, 6]. Коэффициент теплоотдачи при вязкостно-гравитационном режиме течения приближенно можно определить по уравнению [7]

$$Nu = 0.15 (RePr)^{0.33} (GrPr)^{0.1} (Pr/Pr_{cr})^{0.25}$$
(2.15)

В уравнениях (2.13) — (2.15) определяющий размер — эквивалентный диаметр, определяющая температура — средняя температура теплоносителя.

2. При движении теплоносителя в межтрубном пространстве двухтрубного теплообменника коэффициент теплоотдачи можно рассчитать по формулам (2.12), (2.15), подставляя в качестве определяющего размера эквивалентный диаметр кольцевого сечения между трубками $d_3 = D_B - d_H$ (где $D_B - B$ внутренний диаметр наружной трубы; $d_H - Hapywhin duametr Bhytpehheй трубы).$

3. При движении теплоносителя в межтрубном пространстве кожухотрубчатых теплообменников с сегментными перегородками коэффициент теплоотдачи рассчитывают по следующим уравнениям [6]:

$$Re \ge 1000, Nu = 0.24 Re^{0.6} Pr^{0.36} (Pr/Pr_{cr})^{0.25};$$
 (2.16)

$$Re < 1000. Nu = 0.34 Re^{0.5} Pr^{0.36} (Pr/Pr_{cr})^{0.25}.$$
 (2.17)

В уравнениях (2.16), (2.17) за определяющий геометрический размер принимают наружный диаметр теплообменных труб. Скорость потока определяют для площади сечения потока между перегородками (табл. 2.3, 2.4, 2.5).

4. При обтекании шахматного пучка оребренных труб коэффициент теплоотдачи рассчитывают по уравнению [6]

$$Nu = 0.25 (d_{u}/t)^{-0.54} (h/t)^{-0.14} Re^{0.65} Pr^{0.4}, \qquad (2.18)$$

где d_{μ} — наружный диаметр несущей трубы; t — шаг между ребрами; $h = 0.5 (D - d_{\mu})$ — высота ребра; D — диаметр ребра.

Определяющий геометрический размер — шаг ребра t. Уравнение (2.18) применимо при $\text{Re} = 3000 - 25\ 000$ и $d_{\text{H}}/t = 3 - 4.8$. Полученный из уравнения (2.18) коэффициент теплоотдачи при обтекании пучка оребренных труб α_{p} подставляют в формулу для расчета коэффициента теплопередачи, отнесенного к полной наружной поверхности:

$$\frac{1}{K} = \frac{1}{\alpha_{\rm p}} + \frac{1}{\alpha_{\rm TP}} \cdot \frac{F_{\rm H}}{F_{\rm B}} + \sum \frac{\delta}{\lambda}.$$
(2.19)

где α_{rp} — коэффициент теплоотдачи для теплоносителя внутри трубы; F_{μ} — полная наружная поверхность оребренной трубы, включая поверхность ребер; F_{μ} — внутренняя поверхность несущей трубы; $\sum \delta/\lambda = \delta_{cr}/\lambda_{cr} + r_{31} + r_{32}$ — сумма термических сопротивлений стенки трубы и слоев загрязнений.

5. При движении теплоносителя в каналах, образованных гофрированными пластинами в пластинчатых теплообмешниках, коэффициент теплоотдачи рассчитывают [8] по уравнению

$$Nu = a \operatorname{Re}^{b} \Pr^{c} (\Pr/\Pr_{cr})^{0.25}.$$
 (2.20)

_			труб, шт.		Поверхность теплообмена (в м ²)** при длине труб, м 10						Площа чения п 10 ²	Площадь сечения	
D кожуха, мл	<i>d</i> труб, мм	Число ходов	Общее число	1,0	1,5	2,0	3,0	4,0	6,0	9,0	в вырезе пе- регородок	между пере- городками	одного хода по трубам, 10 ² м ²
159	20×2	1	19	1.0	2.0	2.5	3.5	_	_	_	0.3	0.5	0.4
273	25×2 20×2	1 1	13 61	1,0 4.0	1,5 6.0	2,0 7,5	3,0 11,5	_	_		0,4 0,7	0,8	0,5
	25×2	1	37	3,0	4,5	6,0	9,0	_		_	0,9	1,1	1,3
325	20×2	1	100	_	9,5 85	12,5	19,0	25,0 22.5	_	_	1,1	2,0	2,0
	25×2	ĩ	62	_	7,5	10,0*	14,5	19,5		_	1,3	2,9	2,1
400	20.20	2	56		6,5	9,0	13,0	17,5			1,3	1,5	1,0
400	20 X 2	2	166	_	_	23,0	34,0 31.0	40,0 42.0	63.0		1.7	2,5	3,6 1.7
	25×2	<u>c</u> 1	111	—	-	17,0	26,0	35,0	52,0	_	2,0	3,1	3,8
600	20~2	2	100	_	_	16,0 49	24,0 73	31,0 Qe	47,0 147		2,0	2,5	1,7
000	20 ~ 2	2	370	_	_	47	70	93	139	_	4,1	4,8	3,7
		4	334	—	—	42	63	84	126		4,1	4,8	1,6
	25×2	0	257	_		40 40	6U 61	79 81	121	_	3,7	4.8 5.3	0,9 89
	//- %	3 Ž	240			38	57	75	113		4,0	4,5	4,2
		4 6	206	_	-	32	49	65	97		4,0	4,5	1,8
800	20×2	0	717	_		31 90	40	180	270	405	3,7 6.9	4,5 9,1	1,1
		2	690	—	_	87	130	173	260	390	6,9	7,0	6,9
		4	638	—	_	80 79	120	160	240	361	6,9	7,0	3,0
	25×2	1	465	_	_	73	109	135	233	349	7.0	7,0	2,0
		2	442	-		69	104	139	208	312	7,0	7,0	7,7
		4	404	—	—	63	95	127	190	285	7,0	7,0	3,0
1000	20×2	1	1173	_	_	00	221	295	442	663	0,5 10,1	15.6	2,2
	/(-	2	1138	_	_	_	214	286	429	643	10,1	14,6	11,4
		4	1072				202	269	404	606	10,1	14,6	5,1
	25×2	1	747	_	_	_	176	235	393	590 528	9,6 10.6	14,0	3,4 25,9
	-0//-	2	718	—	_	-	169	226	338	507	10,6	13,0	12,4
		4	666		—	-	157	209	314	471	10,6	13,0	5,5
1200	20×2	0 1	1701	_		_	151	202 427	302 641	404 961	10,2	13,0	3,6 34,2
	/\2	2	1658			_	—	417	625	937	14,5	17,6	16,5
		4	1580	—		—	—	397	595	893	14,5	17,6	7,9
	25×2	1	1083		-	_	_	368 340	582 510	073 765	13,1	17.0	4,9 37.5
		2	1048		—		_	329	494	740	16,4	16,5	17,9
		4	986	—	_		—	310	464	697	16,4	16,5	8,4
		6	958	—		—	—	301	451	677	14,2	16,5	5,2

Таблица 2.3. Параметры кожухотрубчатых теплообменников и холодильников (по ГОСТ 15118—79, ГОСТ 15120—79 и ГОСТ 15122—79)

Холодильники диаметром 325 мм и более могут быть только с числом ходов 2, 4 или 6.
 Рассчитана по наружному днаметру труб.

				-		-		_	Пло	-
D кожуха,	<i>d</i> труб*,	Число	Площадь се-	Повер	хность при дл	теплоо ине тру	бмена /б, м	(M ²)	са: уз сече	мого Кого Ния в
ου, μο 		XOLOB	бам, м ²	3,0	6,0) ***	9,0	***	межтрубном простран- стве ***, м ²	
325	20×2	2	0,007 —	13	26	_	_		0,012	_
	25×2	2	0,007 —	10	20	_		_	0,012	
400	20×2	2	0,012 —	23	46	—	—		0,020	—
	25×2	2	0,014 —	19	38		—	—	0,019	_
500	20×2	2	0,020 —	38	76	—	—	—	0,031	-
	25×2	2	0,023 —	31	62	_		—	0,030	—
600	20×2	2	0,030 0,034	—	117	131	176	196	0,048	0,042
		4	0,013 0,014	—	107	117	160	175	0,048	0,042
		6	— 0,008	—		113			0,048	0,042
	25×2	2	0,034 0,037	_	96	105	144	157	0,043	0,040
		4	0,015 0,016	—	86	94	129	141	0,043	0,040
000	00.140	6	— 0,007	_		87			0,043	0,040
800	20×2	2	0,026 0,063	_	212	243	318	364	0,043	0,071
		4	0,025 0,025		197	225	295	337	0,078	0,071
	05.4.0	6			170	216			0,078	0,071
	25 X 2	2	0,000 0,009		170	101	200	280	0,074	0,000
		4	0,023 0,024	_	157	173	235	259	0,074	0,000
1000	20~2	0			246	104	510		0,074	0,008
1000	20 \ 2	2	0,092 0,100	_	220	379	405	567	0,115	0,105
		-	0,043 0,045	_	330	368	450	307	0,115	0,105
	95×9	2		_	284	325	496	499	0,117	0,103
	2072	4	0.041 0.051		267	301	400	451	0,117	0,112
		6	- 0.034	_	201	290	400		0117	0,112
1200	20×2	2	0 135 0 160		514	604	771	906	0 138	0 147
.200	20/12	4	0.064 0.076	_	494	576	741	864	0 138	0 147
		6	- 0.046	_		563		_	0 138	0 1 4 7
	25×2	$\tilde{2}$	0.155 0.179		423	489	635	733	0 126	0.113
	/ (-	4	0.072 0.086		403	460	604	690	0.126	0.113
		6	- 0.054	_	_	447	_		0.126	0.113
1400	20×2	$\overline{2}$	0,188 0,220	_	715	831	1072	1246	0.179	0.198
		4	0,084 0,102		693	798	1040	1197	0.179	0.198
		6	- 0,059	_	_	782	_	_	0,179	0,198
	25×2	2	0,214 0,247		584	675	876	1012	0,174	0,153
	· ·	4	0,099 0,110	_	561	642	841	963	0,174	0,153
		6	- 0,074	—	_	626			0.174	0.153

Таблица 2.4. Параметры кожухотрубчатых теплообменников и конденсаторов с плавающей головкой (по ГОСТ 14246—79 и ГОСТ 14247—79)

* Трубы Ø 25×2 мм должны быть изготовлены из высоколегированных сталей; допускаются трубы из углеродистой стали, но Ø 25×2,5 мм.
 ** Шесть ходов по трубам может быть только у конленсаторов.

Шесть ходов по трубам может быть только у конденсаторов.

*** Данные в правых столбцах относятся к расположению труб в трубных решетках по вершинам равносторонних треугольников, остальные — по вершинам квадратов (по ГОСТ 13202-77).

Коэффициент а определяют из следующих данных:

Тип (площадь) пластины, м ²	0,2	0,3	0,6	1,3
Турбулентный режим	0,065	0,1	0,135	0,135
Ламинарный режим	0,46	0,6	0,6	0,6

Показатели степени b и c выбирают в зависимости от режима течения и типа пластин: при турбулентном течении (в пределах Re = 50 - 30000 и Pr = 0.7 - 80) b = 0.73, c = 0,33; при ламинарном течении (Re ≤ 50 , Pr ≥ 80) b = 0,33, c = 0,33.

6. Для жидкости, перемешиваемой в аппарате с мешалкой, коэффициент теплоотдачи рассчитывают [6, 9] по уравнению

$$Nu = a \operatorname{Re}^{m} \operatorname{Pr}^{0.33} (\mu/\mu_{\rm cr})^{0.14}, \qquad (2.21)$$

D кожуха,	Площадь сечения одного хода по трубам*, м ²		Повер	охность при дли	теплоо(нне тру	Площадь самого узкого сечения в межтрубцом			
М М			3,0	6,0	6,0**)**	пространстве **, м²	
325	0,007	_	14	27			_	0.011	
400	0,013	-	26	51	_			0,020	
500	0,022	_	43	85	-	_		0,032	_
600	0,031	0,039	_	120	150	178	223	0,047	0.037
800	0,057	0,067	<u> </u>	224	258	331	383	0,085	0.073
1000	0,097	0,112	_	383	437	565	647	0.120	0.108
1200	0,142	0,165	_	564	651	831	961	0.135	0.151
1400	0,197	0,234	_	790	930	1160	1369	0,161	0,187

Таблица 2.5. Параметры кожухотрубчатых теплообменников с U-образными трубами (по ГОСТ 14245—79)

Рассчитана по наружному диаметру труб.

** Данные в правых столбцах относятся к расположению труб в трубной решетке по вершинам равносторонних треугольников, остальные — по вершинам квадратов (по ГОСТ 13203—77)

где Nu = $\alpha D/\lambda$; Re = $nd_{\rm M}^2\rho/\mu$; a = 0.36; m = 0.67 — при передаче тепла через рубашку: a = 0.87, m = 0.62 — при передаче тепла с помощью змеевика; D — внутренний диаметр аппарата; n — частота вращения мешалки, с⁻¹; $d_{\rm M}$ — диаметр окружности, описываемой мешалкой.

7. При пленочной конденсации насыщенного пара и ламинарном стекании пленки конденсата под действием силы тяжести коэффициент теплоотдачи рассчитывают по формуле

$$\boldsymbol{\alpha} = a \sqrt{\lambda^2 \rho^2 r g} / (\mu M l), \qquad (2.22)$$

где для вертикальной поверхности a = 1,15, l = H (H — высота поверхности, м): для одиночной горизонтальной трубы a = 0,72, $l = d_u$ (d_u — наружный диаметр трубы, м).

В этой формуле $\Delta t = t_{\text{кона}} - t_{\text{ст 1}}$. Удельную теплоту конденсации *r* определяют при температуре конденсации $t_{\text{кона}}$; физические характеристики конденсата рассчитывают при средней температуре пленки конденсата $t_{\text{пл}} = 0.5 (t_{\text{копл}} + t_{\text{ст 1}})$. Во многих случаях, когда Δt не превышает 30—40 град, физические характеристики могут быть определены при температуре конденсации $t_{\text{кона}}$, что не приведет к значительной ошибке в определении α .

При конденсации пара на наружной поверхности пучка из *n* горизонтальных труб средний коэффициент теплоотдачи несколько ниже, чем в случае одиночной трубы, вследствие утолщения пленки конденсата на трубах, расположенных ниже: $\alpha_{cp} = = \epsilon \alpha$.

Приближенно можно принять $\varepsilon = 0.7$ при $n \le 100$ и $\varepsilon = 0.6$ при n > 100. При подстановке в формулу (2.22) $\Delta t = q/\alpha$ получим:

$$\alpha = a\lambda \sqrt[3]{\rho^2 rg/(\mu lq)}$$
(2.23)

где для вертикальных поверхностей a = 1,21, l = H (в м); для одиночных горизонтальных труб a = 0,645, $l = d_{\mu}$ (в м).

Зная расход пара G₁ (кг/с) и используя уравнение теплоотдачи

 $H\Delta t = G_1 r / (\alpha \pi d_{\rm H} n)$ или $d_{\rm H} \Delta t = G_1 r / (\alpha \pi L n)$,

можно подстановкой в формулу (2.22) получить следующие удобные для расчетов формулы:

для вертикальных труб

$$\alpha = 3.78\lambda^{3} \overline{\rho^{2}d_{n}n/(\mu G_{1})}; \qquad (2.24)$$

для n горизонтальных труб длиной L (в м)

$$\boldsymbol{\alpha} = 2,02\epsilon\lambda_{\lambda}^{3} \rho^{2}Ln/(\mu G_{1}). \qquad (2.25)$$

53

Коэффициент теплоотдачи для конденсации пара на гофрированной поверхности пластин при $(t_{kohg} - t_{crl}) = \Delta t < 10$ град рассчитывают по формуле (2.22), в которую в качестве высоты поверхности подставляют приведенную длину канала L (см. табл. 2.12). При $\Delta t \ge 10$ град используют другую формулу [8]:

$$Nu = a \operatorname{Re}^{0.7} \operatorname{Pr}^{0.4}, \qquad (2.26)$$

где $\operatorname{Re} = Lq/(\mu r) = G_1L/(\mu F)$ (F — полная поверхность теплообмена, м²). В случае $\Delta t < 30-40$ град физические свойства конденсата можно определять при температуре конденсации.

Коэффициент а зависит от типа (площади) пластины:

Площадь пластины, м ²	0,2	0,3	0,6	1,3
Коэффициент а	800	322	240	201

Более подробные сведения по теплоотдаче при конденсации паров, в частности для турбулентного течения пленки конденсата, можно найти в литературе [5].

8. При пузырьковом кипении коэффициент теплоотдачи рассчитывают по следующим уравнениям:

а) при кипении на поверхностях, погруженных в большой объем жидкости [10]

$$\alpha = 0.075 \left[1 + 10 \left(\frac{\rho}{\rho_{\pi}} - 1 \right)^{-2/3} \right] \left(\frac{\lambda^2 \rho}{\mu \sigma T_{\text{KMR}}} \right)^{1/3} q^{2/3}; \qquad (2.27)$$

б) при кипении в трубах [11]

$$\alpha = 780\lambda^{1.3}\rho^{0.5}\rho_n^{0.06}q^{0.6} / (\sigma^{0.5}r^{0.6}\rho_{n0}^{0.66}c^{0.3}\mu^{0.3}).$$
(2.28)

Критическую удельную тепловую нагрузку, при которой пузырьковое кипение переходит в пленочное, а коэффициент теплоотдачи принимает максимальное значение, можно оценить по формуле, справедливой для кипения в большом объеме:

$$q_{\kappa\rho} = 0, 14r \sqrt{\rho_n} \sqrt[4]{g\sigma\rho}. \tag{2.29}$$

В формулах (2.27) — (2.29) все физические характеристики жидкости следует определять при температуре кипения, соответствующей рабочему давлению ($T_{кип}$, K). Плотность пара при атмосферном давлении p_0 и рабочем давлении p определяют по соотношениям

$$\rho_{n\,0} = (M/22,4) \; \frac{273}{T_{NNR0}}; \qquad \rho_n = (M/22,4) \; \frac{273}{T_{NNR0}} \cdot \frac{p}{p_0},$$

где *М* — молекулярная масса пара; *Т*_{кнп 0} — температура кипения при атмосферном давлении (в K).

2.3. ОСНОВНЫЕ КОНСТРУКЦИИ И ПАРАМЕТРЫ НОРМАЛИЗОВАННЫХ ТЕПЛООБМЕННЫХ АППАРАТОВ

2.3.1. Кожухотрубчатые теплообменные аппараты

Кожухотрубчатые теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, конденсаторов и испарителей.

Теплообменники предназначены для нагрева и охлаждения, а холодильники для охлаждения (водой или другим нетоксичным, непожаро- и невзрывоопасным хладоагентом) жидких и газообразных сред. В соответствии с ГОСТ 15120—79 и ГОСТ 15122—79 кожухотрубчатые теплообменники и холодильники могут быть двух типов: Н — с неподвижными трубными решетками и К — с линзовым компенсатором неодинаковых температурных удлинений кожуха и труб. Наибольшая допускаемая разность температур кожуха и труб для аппаратов типа Н может составлять 20— 60 град, в зависимости от материала кожуха и труб, давления в кожухе и диаметра аппарата.

Рис. 2.3. Кожухотрубчатый двухходовый (по трубному пространству) холодильник: 1 — крышка распределительной камеры; 2 — распределительная камера; 3 — кожух; 4 — теплообменные трубы; 5 — перегородка с сегментным вырезом; 6 — линзовый компенсатор; 7 штуцер; 8 — крышка

Теплообменники и холодильники могут устанавливаться горизонтально или вертикально, быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали, а трубы холодильников — также и из латуни. Распределительные камеры и крышки холодильников выполняют из углеродистой стали. Стандартный двухходовый по трубному пространству кожухотрубчатый холодильник изображен на рис. 2.3.

Поверхность теплопередачи нормализованных теплообменников и холодильников, параметры конструкций, необходимые для уточненного определения требуемой поверхности и гидравлического сопротивления, а также массы аппаратов, приведены в табл. 2.3, 2.6—2.8.

Кожухотрубчатые конденсаторы предназначены для конденсации паров в межтрубном пространстве, а также для подогрева жидкостей и газов за счет теплоты конденсации пара. Они могут быть с неподвижной трубной решеткой или с температурным компенсатором на кожухе, вертикальные или горизонтальные. В соответствии с ГОСТ 15121—79, конденсаторы могут быть двух-, четырех- и шестиходовыми по трубному пространству. От холодильников они отличаются бо́льшим диаметром штуцера для подвода пара в межтрубное пространство.

Для отвода конденсата и предотвращения проскока пара в линию отвода конденсата теплообменные аппараты, обогреваемые насыщенным водяным паром, должны снабжаться конденсатоотводчиками [11]. Расчет поплавкового конденсатоотводчика состоит в определении

D кожуха,	Диаметр для труб	(в мм) услов бного простран по тр	Днаметры условного прохода штуцеров для межтрубного			
мм	1	2	2 4		пространства, мм	
159	80		_		80	
273	100	_		_	100	
325	150	100	_	-	100	
400	150	150	-	_	150	
600	200	200	150	100	200	
800	250	250	200	150	250	
1000	300	300	200	150	300	
1200	350	350	250	200	350	
1400	—	350	25 0	200	_	

Таблица 2.6. Диаметры условного прохода штуцеров кожухотрубчатых теплообменников

D	ł	Чис	ло сегмент	гных перегород	ок прид.	лине труб, м	
кожуха, мм	1,0	1,5	2,0	3,0	4,0	6,0	9,0
159	6	10	14	26	_	_	_
273	4	8	12	18	_		_
325	_	6	8	14 (16)	18	(36; 38)	
400		_	6	lò í	14	22 (24; 26)	
600	_	—	4	8	10	18 (16)	(24)
800		_	4	6	8	14 (12)	22 (20)
1000		_	_	4	6	10	16 (18)
1200		_	_		6	8	14 (12
1400							

Таблица 2.7 Число сегментных перегородок в нормализованных кожухотрубчатых теплообменниках

Примечание. Числа в скобках относятся к теплообменникам с плавающей головкой и с U-образными трубами.

Таблица 2.8. Масса кожухотрубчатых теплообменников, холодильников, испарителей и конденсаторов со стальными трубами (по ГОСТ 15119—79 — ГОСТ 15122—79)

р,	D	Чис-	Т	рубы (2	5 20×	2 мм, д	линой,	м	Ť	рубы 🤅	∂ 25×3	2 мм, д	линой,	м
МПа	кожу- ха, мм	ло ходов	1,5	2,0	3,0	4,0	6,0	9,0	1,5	2,0	3,0	4,0	6,0	9,0
Масса теплообменников и холодильников, кг, не более														
1.6	159	1	196	217	263	_		_	192	211	255	_	_	-
1.6	273	i	388	455	590	_			465	527	649	_		_
1.6	325	i	495	575	735	895			485	540	680	820		_
i.6	325	ż	510	575	740	890		_	485	550	690	820	_	_
1.0	400	ī	_	860	1130	1 430	1 850	_	—	780	1 035	1 290	1 750	_
1.0	400	2	_	870	1090	1 370	1 890	_	_	820	1 040	1 260	1 600	_
1.0	600	ī	_	1540	1980	2 480	3 4 5 0	_	_	1350	1 810	2 4 1 0	3 1 5 0	
1.0	600	2.4.6	_	1650	2100	3 500	3 380	_	-	1480	1 890	2 290	3 130	_
1.0	800	1	_	2560	3520	4 150	5 800	8 400	_	2280	3 1 3 0	3 720	5 360	7 400
1.0	800	2.4.6	_	2750	3550	4 350	5 950	8 500	_	2520	3 2 3 0	3 950	5 360	7 480
0.6	1000	1	_	_	5000	6 250	9 0 3 0	12 800	—	_	4 500	5 600	7 850	11 200
0.6	1000	2.4.6			5450	6 750	9 2 5 0	12 850	_	_	4 850	6 1 0 0	8 166	11 400
0.6	1200	-, -, -	_	_		9 000	12 800	18 400	_	_	_	8 000	11 250	16 000
0,6	1200	246	_	_	-	9 750	13 400	18 900	_	_	_	8 700	11 860	16 550
10	600	-, -, -			_	_		_	_	1340	1 760	2 180	_	
10	000	246	_	_	1970	2 4 2 0	3 320	_	_	_	1 780	2 2 2 2 0	2 930	
16		1				•	0 0 - 0			1400	1 790	2 200	_	_
16		246			2050	2 510	3 4 5 0	_		_	1 850	2 2 5 0	3 060	_
10	800	1	_	-				_		2300	3 200	3 660	_	_
10	000	246	_		3600	4 400	5 900	_	_		3 200	3 900	5 200	_
1.6		2, 4, 0	_			1 400	0000	_		2400	3 350	3 840		_
16		246		_	3850	4 500	6 1 0 0	_	_		3 4 5 0	4 050	5 600	_
10	1000	2, 1, 0	_					_	_	3600	4 850	5 950		_
1,0	1000	246	_	_	5450	6 700	9 250	_	_	_	4 950	6 100	8 1 2 0	_
1,6		1			0100	0.00	0 200			3800	5 000	6 050	_	_
1,6		246	_	_	5750	7 100	9 700	_	_	_	5 250	6 350	8 650	_
10	1 200	1		_	0.00			_	_	_	6 700	8 150	_	_
1.0	1200	246				10 100	13450	_	_	_		9 100	12 000	_
1,0		2, 4, 0				10 100	10 100	_	_	_	7 000	8 600		_
1.6		246	_	_	_	10 400	13 700					9 380	12 150	
1,0	1400	2, 4, 0				10 400	10700	_	_	_	8 630	10 680		_
1.0	1400	246	_	_	_	_	18 390	_	_	_			16 260	_
1,0		2, 4, 0		_		_	.0.000	_	_	_	11 200	13 200	.0 200	
1.0		2 4 6		_	_	_	18 790	_	_	_			16 830	

Примечания. І. Испарители могут быть только одноходовыми из труб 25×2 мм. 2. Для труб длиной 1 м масса теплообменников и холодильников равна 174 кг при D = 159 мм и 320 кг при D = 273 мм.

диаметра условного прохода D_v по максимальному коэффициенту пропускной способности k:

<i>D</i> _y , мм	20	25	32	40	50	80
<i>k</i> , т/ч	1,0	1,6	2,5	4,0	6,3	10,0

Требуемое значение коэффициента пропускной способности определяют в зависимости от

расхода водяного конденсата G (в т/ч) и перепада давления \p (в МПа) между давлением пара и давлением в линии отвода конденсата: $k=0.575G/\sqrt{3p}$

В кожухотрубчатых испарителях в трубном пространстве кипит жидкость, а в межтрубном пространстве может быть жидкий, газообразный, парообразный, парогазовый или парожидкостной теплоноситель. Согласно ГОСТ 15119—79 эти теплообменники могут быть только вертикальными одноходовыми, с трубками диаметром 25×2 мм. Они могут быть с неподвижной трубной решеткой или с температурным компенсатором на кожухе. Основные параметры кожухотрубчатых конденсаторов и испарителей по ГОСТ 15119—79 и 15121—79 приведены в табл. 2.9.

Применение кожухотрубчатых теплообменников с температурным компенсатором на кожухе (линзовый компенсатор) ограничено предельно допустимым давлением в кожухе, равным 1,6 МПа. При большем давлении в кожухе (1,6—8,0 МПа) следует применять теплообменники с плавающей головкой или с U-образными трубами.

На рис. 2.4 изображен кожухотрубчатый теплообменник с плавающей головкой, предназначенной для охлаждения (нагревания) жидких или газообразных сред без

D кожуха,	<i>d</i> труб,	Число	Общее число	Пол (зерхность т м²) при дл	еплообмена ине труб,	a ** M	Площадь сече-
ММ	ММ	ходов *	труо, шт.	2,0	3.0	4,0	6,0	по трубам, м ²
600	20×2	2	370	_	70	.93	139	0.037
		4	334		63	84	126	0.016
		6	316		60	79	119	0.009
	25×2	1	257	40	61	81	_	,
		2	240	_	57	75	113	0,042
		4	206		49	65	97	0,018
		6	196	_	46	61	91	0,011
800	20×2	2	690		130	173	260	0,069
		4	638	-	120	160	240	0,030
		6	618	_	116	155	233	0,020
	25×2	1	465	73	109	146		
		2	442	_	104	139	208	0,077
		4	404	_	95	127	190	0,030
		6	384	_	90	121	181	0,022
1000	20×2	2	1138		214	286	429	0,114
		4	1072		202	269	404	0,051
		6	1044		197	262	393	0,034
	25×2	1	747	117	176	235		_
		2	718	_	169	226	338	0,124
		4	666	_	157	209	314	0,055
		6	642	_	151	202	302	0,036
1200	20×2	2	1658		_	417	625	0,165
		4	1580		_	397	595	0,079
		6	1544	_	_	388	582	0,049
	25×2	1	1083		256	340	_	·
		2	1048	_	_	329	494	0,179
		4	986		_	310	464	0,084
		6	958	_	_	301	451	0,052
1400	20×2	2	2298	_	—	_	865	0,230
		4	2204	_		_	831	0,110
		6	2162	_	_		816	0,072
	25×2	1	1545		372	486	_	
		2	1504		_		708	0,260
		4	1430				673	0,118
		6	1396	-			657	0.080

Таблица 2.9. Параметры кожухотрубчатых конденсаторов и испарителей (по ГОСТ 15119—79 и ГОСТ 15121—79)

* Испарители могут быть только одноходовыми.

** Рассчитана по наружному диаметру труб.

Рис. 2.4. Кожухотрубчатый теплообменник с плавающей головкой:

1 — крышка распределительной камеры; 2 — распределительная камера; 3 — кожух; 4 — теплообменные трубы; 5 — перегородка с сегментным вырезом; 6 — штуцер; 7 — крышка плавающей головки; 8 — крышка кожуха

Рис. 2.5. Кожухотрубчатый теплообменник с U-образными трубами: 1 — распределительная камера; 2 — кожух; 3 — теплообменные трубы; 4 — перегородка с сегментным вырезом; 5 — штуцер

Рис. 2.6. Кожухотрубчатый испаритель с паровым пространством:

1 — кожух; 2 — трубчатая решетка плавающей головки; 3 — теплообменные трубы; 4 — неподвижная трубная решетка; 5 — распределительная камера; 6 — крышка распределительной камеры; 1 — люк для монтажа трубного пучка; 11 — выход остатка продукта; 111 — дренаж; 1V — вход жидкого продукта; V — выход газа или жидкости (теплового агента); VI — вход пара или жидкости (теплового агента); VI — выход и агента); VI — выход пара или и акента и акента); VI — выход и акента и аке

изменения их агрегатного состояния. Не закрепленная на кожухе вторая трубная решетка вместе с внутренней крышкой, отделяющей трубное пространство от межтрубного, образует так называемую плавающую головку. Такая конструкция исключает температурные напряжения в кожухе и в трубах. Эти теплообменники, нормализованные в соответствии с ГОСТ 14246—79, могут быть двух- или четырехходовыми, горизонтальными длиной 3, 6 и 9 м или вертикальными высотой 3 м. Поверхности теплопередачи и основные параметры их приведены в табл. 2.4.

Кожухотрубчатые конденсаторы с плавающей головкой (ГОСТ 14247—79) отличаются от аналогичных теплообменников бо́льшим диаметром штуцера для подвода пара в межтрубное пространство. Допустимое давление охлаждающей среды в трубах до 1,0 МПа, в межтрубном пространстве — от 1,0 до 2,5 МПа. Эти аппараты могут быть двух-, четырех- и шестиходовыми по трубному пространству. Диаметр кожуха от 600 до 1400 мм, высота труб 6,0 м. Поверхности теплопередачи и основные параметры их также представлены в табл. 2.4.

Теплообменники с U-образными трубами (рис. 2.5) применяют для нагрева и охлаждения жидких или газообразных сред без изменения их агрегатного состояния. Они рассчитаны на давление до 6,4 МПа, отличаются от теплообменников с плавающей головкой менее сложной конструкцией (одна трубная решетка, нет внутренней крышки), однако могут быть лишь двухходовыми, из труб только одного сортамента: 20×2 мм. Поверхности теплообмена и основные параметры этих теплообменников в соответствии с ГОСТ 14245—79 приведены в табл. 2.5.

Кожухотрубчатые испарители с трубными пучками из U-образных труб или с плавающей головкой имеют паровое пространство над кипящей в кожухе жидкостью. В этих аппаратах, всегда расположенных горизонтально, горячий теплоноситель (в качестве которого могут быть использованы газы, жидкости или пар) движется по трубам. Согласно ГОСТ 14248—79, кожухотрубчатые испарители могут быть с коническим днищем (рис. 2.6) диаметром 800—1600 мм и с эллиптическим днищем диаметром 2400—2800 мм. Последние могут иметь два или три трубных пучка. Допустимые давления в трубах составляют 1,6—4,0 МПа, в кожухе — 1,0—2,5 МПа при рабочих температурах от — 30 до 450 °С, т. е. выше, чем для испарителей с линзовым компенсатором. Испарители с паровым пространством изготовляют только двухходовыми, из труб длиной 6,0 м, диаметром 25×2 мм. Поверхности теплообмена и основные параметры испарителей с паровым пространством в соответствии с ГОСТ 14248—79 приведены в табл. 2.10.

D кожуха, мм	Число трубных пучков, шт.	Число вод пучке	о труб дном *, шт.	Повер: теплооб м	хность мена *, 2	Площадь сеч хода по тр	чения одного рубам *, м ²
800	1	134	82	51	38	0,013	0,013
1000	1	220	132	85	62	0,022	0,020
1200	1	310	204	120	96	0,031	0,031
1600	1	572	362	224	170	0,057	0,055
2400	1	134	_	51	_	0,013	_
2400	1	220	_	85		0,022	_
2400	1	310		120	_	0,031	_
2400	1	572	_	224		0,057	_
2400	2	310	204	24 0	192	0,031	0,031
2600	3	310	204	360	288	0,031	0,031
2800	2	572	362	448	362	0,057	0,055

Таблица 2.10. Параметры кожухотрубчатых испарителей с паровым пространством (по ГОСТ 14248—79)

 Данные в правых столбцах относятся к трубным пучкам с плавающей головкой, остальные с U-образными трубами.

2.3.2. Теплообменники типа «труба в трубе»

При небольших тепловых нагрузках, когда требуемая поверхность теплообмена не превышает 20—30 м², целесообразно применение теплообменников типа «труба в трубе». Такие теплообменники изготовляют следующих типов: 1) неразборные однопоточные малогабаритные; 2) разборные одно- и двухпоточные малогабаритные; 3) разборные однопоточные; 5) разборные многопоточные.

Неразборный теплообменник типа «труба в трубе» изображен на рис. 2.7 Эти теплообменники могут иметь один ход или несколько (обычно четное число) ходов.

Конструкции разбориых теплообменников показаны по рис. 2.8 и 2.9. Однопоточный малогабаритный теплообменник (рис. 2.8) имеет распределительную камеру для наружного теплоносителя, разделенную на две зоны продольной перегородкой. В крышке размещен калач, соединяющий теплообменные трубы. Кожуховые трубы крепятся в трубных решетках, теплообменные трубы герметизируются с помощью сальниковых уплотнений. Однопоточные разборные теплообменники из труб большого диаметра (более 57 мм) выполняются без распределительной камеры, так как штуцер для подвода наружного теплоносителя можно приварить непосредственно к кожуховым трубам.

Двухпоточный разборный теплообменник (рис. 2.9) имеет две распределительные камеры, а в крышке размещены два калача. Поверхность теплообмена и проходные сечения для теплоносителей при прочих равных условиях в два раза больше, чем в однопоточном теплообменнике. Многопоточные теплообменники типа «труба в трубе» принципиально не отличаются от двухпоточных. Поверхности теплообмена и основные нараметры нормализованных теплообменников типа «труба в трубе» приведены в табл. 2.11 и 2.12.

Рис. 2.9. Разборный двухпоточный малогабаритный (d_n до 57 мм) теплообменник типа «труба в трубе»:

1, 2 — распределительные камеры соответственно для внутреннего и наружного теплоносителя; 3 — кожуховая труба: 4 — теплообменная труба: 5 — крышка

Диаметр теплооб- менных	Число парал- лельных	Число теплообмен- ных труб в одном	Пс no	оверхно наружн	ость теп Іому ди труб	лообме аметру б, м	на (вм придл	и ²) ікне	Диаметр ** труб кожуха, мм
труб, мм	потоков	аппарате, шт.	1,5	3.0	4,5	6,0	9,0	12,0	
25×3	1	1*	0.12	0.24	0.36	0.48		_	57 × 4
	1	2	0.24	0.48	0.72	0.96		_	
	2	4	0.48	0.96	1.44	1.92	_	_	
38×3.5	1	1*	0.18	0.36	0.54	0.72	_		57×4 ; 76 $\times 4$;
	2	2	0.36	0.72	1.08	1.44			89 × 5
	2	4	0.72	1.44	2.16	2.88		_	
48×4	1	1*	0.23	0,45	0.68	0.90	_	_	76×4: 89×5:
	1	2	0,46	0,90	1,36	1.80	_		108×4
	2	4	0,92	1,80	2,72	3,60	_		
57×4	1	1*	0,27	0,54	0,81	1,08		_	89×5; 108×4
	1	2	0,54	1,08	1,62	2,16	_		
	2	4	1,08	2,16	3,24	4,32	_		
76×4	1]*	_	_		1,43	2,14	2,86	108×4 ; 133×4
		2		_	2,14	2,86	4,28		
89×5	1	1*		_	—	1,68	2,52	3,36	133×4 ; $159 \times 4,5$
		2			2,52	3,36	5,04	<u> </u>	
108×4	1	1*	_			2,03	3,05	4,06	$159 \times 4,5; 219 \times 6$
		2	_	_	3,05	4,06	6,10	_	
133×4	1	1*			_	2,50	3,75	5,0	219×6
		2	—	_	3,76	5,0	7,50	_	
159×4,5	1	1*	_	_		3,0	4,5	6,0	219×6
		2	—	-	4,5	6,0	9,0	—	

Таблица 2.11. Поверхности теплообмена и основные параметры неразборных и разборных однопоточных и двухпоточных теплообменников типа «труба в трубе»

* Относится к одному ходу неразборных теплообменников.

** Толщины труб указаны для условных давлений не выше 1,6 МПа.

Число	Число	Поверхн	ость теплообм и длине труб,	ена (м ²) м	Плошадь се 1	ечений потоков, 0 ⁴ м ²
парал- лельных потоков	труб в одном аппарате, шт.	3,0	6,0	9,0	внутри тепло- обменных труб	в кольцевых зазорах межтрубного пространства
3 5 7 12 22	6 10 14 24 44	3 5 —	6 10 14 24 44	21 36 66	38 63 88 151 277	92 154 216 371 680

Таблица 2.12. Поверхности теплообмена и основные параметры разборных многопоточных теплообменников типа «труба в трубе»*

* Диаметр теплообменных труб 48×4 мм, диаметр кожуховых труб 89×5 мм. Допускаются также теплообменные трубы диаметром 38×3,5 и 57×4 мм и кожуховые трубы диаметром 108×4 мм при тех же длинах. Предельные условные давления теплоносителей 1,6 и 4,0 МПа.

2.3.3. Пластинчатые теплообменники

В пластинчатых теплообменниках поверхность теплообмена образована набором тонких штампованных гофрированных пластин. Эти аппараты могут быть разборными, полуразборными и неразборными (сварными). В пластинах разборных теплообменников (рис. 2.10) имеются угловые отверстия для прохода теплоносителей и пазы, в которых закрепляются уплотнительные и компонующие прокладки из специальных

Рис. 2.10. Пространственная схема движения теплоносителей (*a*) и условная схема компоновки пластин (б) в однопакетном пластинчатом разборном теплообменнике: 1 — неподвижная плита; 2 — теплообменная пластина; 3 — прокладка; 4 — концевая пластина; 5 — под-

7 — неподвижная плита; 2 — теплоооменная пластина; 3 — прокладка; 4 — концевая пластина; 5 — подвижная плита

термостойких резин. Пластины сжимаются между неподвижной и подвижной плитами таким образом, что благодаря прокладкам между ними образуются каналы для поочередного прохода горячего и холодного теплоносителей. Плиты снабжены штуцерами для присоединения трубопроводов. Неподвижная плита крепится к полу, пластины и подвижная плита закрепляются в специальной раме. Группа пластин, образующих систему параллельных каналов, в которых данный теплоноситель движется только в одном направлении (сверху вниз или наоборот), составляет пакет. Пакет по существу аналогичен одному ходу по трубам в многоходовых кожухотрубчатых теплообменниках.

На рис. 2.11 даны примеры компоновки пластин. При заданном расходе теплоносителя увеличение числа пакетов приводит к увеличению скорости теплоносителя, что

а — симметричная двухпакетная схема; б — несимметричная схема (три пакета для горячего теплоносителя, два — для холодного)

Таблица 2.13. Поверхность теплообмена и основные параметры разборных пластинчатых теплообменников (по ГОСТ 15518—83)

				пр	и повер	хности	одной	пласти	ны / (н	и ²)				
	f = 0,2		<i>j</i> = 0,3				f = 0,5	•	-	f = 0,6			<i>f</i> = 1,3	
F	N	м	F	N	M **	F	N	M ***	F	N	M **	F	N	М
1	8	570	3	12	280	31,5	64	1740	10	20	960	200	156	5 350
2	12	590	5	20	315	50	100	2010	16	30	1030	300	232	6 470
5	28	650	8	30	345	63	126	2200	25	44	1130	400	310	7610
6,3	34	670	10	36	365	80	160	2460	31,5	56	1220	500	388	11 280
10	52	750	12,5	44	400	100	200	2755	40	70	1300	600	464	12 430
12,5	66	800	16	56	440	140	280	3345	50	86	1400	800	620	14 740
16	84	1340	20	70	485	160	320	4740	63	108	1530	_	_	_
25	128	1480	—		_	220	440	5630	80	136	1690	_	_	_
31.5	160	1600	_		_	280	560	6570	100	170	1900	_	_	_
40	204	1750	_		—	300	600	6810	140	236	2290	_	_	_
_	_	_	_		-	320	640	7100	160	270	2470	_		_
			_		_	_	_	_	200	340	3920	_	_	_
_	_	<u> </u>	_		_		_		250	420	4400	-		_
_	—	—	—		-	—	_	_	300	504	4890	-	—	-

Поверхность теплообмена F (м²), число пластин N (шт.) н масса аппарата M (кг) при поверхности одной пластины f (м²)

Теплообменники со сдвоенными пластинами (полуразборные).

** Для слабо агрессивных и нейтральных сред со скоростью коррозни металла менее 0,05 мм в год (для агрессивных сред масса больше в среднем на 8—10 %).

*** Для давлений до 1,6 МПа.

интенсифицирует теплообмен, но увеличивает гидравлическое сопротивление. При оптимальной компоновке пластин число пакетов для горячего и холодного теплоносителя может быть неодинаковым (как на рис. 2.11, 6). В условном обозначении схемы компоновки число слагаемых в числителе соответствует числу пакетов (последовательных ходов) для горячего теплоносителя, в знаменателе — для холодного; каждое слагаемое означает число параллельных каналов в пакете (в конденсаторах однопакетная компоновка пластин по ходу пара).

В полуразборных теплообменниках пластины попарно сварены, доступ к поверхности теплообмена возможен только со стороны хода одной из рабочих сред.

Разборные аппараты могут работать при давлении 0,002-1,0 МПа и температуре рабочих сред от -20 до +180 °C, полуразборные — при давлении 0,002-2,5 МПа и той же температуре; неразборные (сварные) аппараты могут работать при давлении 0,0002-4,0 МПа и температуре от -100 до +300 °C.

Разборные теплообменники изготовляют по ГОСТ 15518—83 в трех исполнениях: I — на консольной раме, II — на двухопорной раме, III — на трехопорной раме.

	Площадь пластины, м ²							
Характеристики	0,2	0,3	0,6	1,3				
Габариты пластины, мм:								
длина	960	1370	1375	1915				
ширина	460	300	600	920				
толщина *	1,0	1,0	1,0	1,0				
Эквивалентный диаметр канала, мм	8,8	8,0	8,3	9,6				
Поперечное сечение канала, 10 ⁴ м ²	17,8	11,0	24,5	42,5				
Приведенная длина канала, м	0,518	1,12	1,01	1,47				
Масса пластины, кг **	2,5	3,2	5,8	12,0				
Диаметр условного прохода штуцеров, мм	80; 150	65	200	300				

Таблица 2.14. Конструктивные характеристики разборных пластинчатых теплообменников (по данным [8])

* В облегченном варианте толщина пластины может быть уменьшена до 0,5 мм.

** Для пластины толщиной 0,8 мм.

Рис. 2.12. Пластинчатый теплообменник на двухопорной раме: 1--4 — штуцеры для теплоносителей

Теплообменник в исполнении II показан на рис. 2.12. В табл. 2.13 и 2.14 даны поверхности теплообмена и основные параметры разборных пластинчатых теплообменников.

Более подробные сведения о разборных, полуразборных и сварных теплообменниках приведены в литературе [8]

2.3.4. Спиральные теплообменники

В спиральных теплообменниках (рис. 2.13) поверхность теплообмена образована двумя листами из углеродистой или коррозионно-стойкой стали, свернутыми на специальном станке в спирали. С помощью приваренных дистанционных штифтов между листами сохраняется одинаковое по всей спирали расстояние, равное 12 мм. Таким образом, получаются два спиральных канала, заканчивающихся в центре двумя получилиндрами, отделенными друг от друга перегородкой. К периферийной части листов приварены коробки. Каждый полуцилиндр с торцевой стороны и каждая коробка имеют штуцер для входа или выхода теплоносителя. С торцов спирали зажимают между дисками с помощью крышек. Для герметизации используют прокладки из резины, паронита, асбеста или мягкого металла. Согласно ГОСТ 12067—80, спиральные теплообменники имеют поверхности теплообмена 10—100 м², работают при давлениях до 1 МПа и температуре от -20 до +200 °C. Поверхности теплообмена и основные параметры их приведены в табл. 2.15.

2.3.5. Блочные графитовые теплообменники

Теплообменники из графита широко распространены в химической промышленности благодаря очень высокой коррозионной стойкости и высокой [до 100 Вт/(м·К)] теплопроводности графита. Наибольшее применение находят блочные теплообменники. Основным элементом их является графитовый блок, имеющий форму параллелепипеда, в котором просверлены вертикальные и горизонтальные непересекающиеся отверстия для прохода теплоносителей (рис. 2.14). Аппарат собирают из одного или нескольких блоков. С помощью боковых металлических плит в каждом блоке организуется двухходовое движение теплоносителя по горизонтальным отверстиям. Теплоноситель, движущийся по вертикальным каналам в теплообменниках, собранных из блоков размером $350 \times 515 \times 350$ мм³ (второе число — длина горизонтальных каналов), может совершать один или два хода, в зависимости от конструкции верхней и нижней крышек. В аппаратах, собранных из блоков с увеличенными боковыми гранями ($350 \times 700 \times 350$), теплоноситель, движущийся по вертикальным каналам, может совершать два или четыре хода.

<i>F</i> , м ²	Толщина листа, мм	Ширипа листа, м	Длина канала, м	Площадь сечения канала, 10 ⁴ м ²	Масса теплооб- менника, кг, не более	d штуцеров для жидких теплоиосителей, мм
10.0	35	0.4	12.5	48	1170	65
12.5	3.5	0.4	15.6	60	1970	65
160	3,5	0.5	16,0	60	1480	65
20.0	3.5	0.4	25.0	48	1770	100
20.0	4.0	0.7	14.3	84	1620	100
25.0	3.5	0.5	25.0	60	2270	100
25,0	4.0	0.7	17.9	84	1970	100
31,5	3.5	0,5	31.5	60	2560	100
31,5	4.0	0,7	22.5	84	2560	100
40,0	3,9	1,0	20,0	120	2760	100
40,0	4,0	0,7	28,6	84	3160	100
50,0	3,9	1,0	25,0	120	3460	150
50,0	6,0	1,1	22,7	138	3960	150
63,0	3,9	1,0	31,5	120	4260	150
63,0	6,0	1,1	28,6	138	4760	150
80,0	3,9	1,0	40,0	120	5450	150
80,0	6,0	1,1	36,4	138	5450	150
100,0	3,9	1,0	50,0	120	5960	150
100,0	4,0	1,25	40,0	150	5960	150

Таблица 2.15. Поверхности теплообмена и основные параметры спиральных теплообменников (по ГОСТ 12067—80)

3 Под ред. Ю. И. Дытнерского

Рис. 2.13. Спиральный теплообменник

Рис. 2.14. Схема блочного (из двух блоков) графитового теплообменника:

I — графитовый блок; 2 — вертикальные З — горизонтальные каналы; 4 — корпус

<i>F</i> , м²	Число блоков, шт.	Каналы в блоке			Цена за штуку, руб.		
		горизонталь- ные, число *, шт.	вертикальные		олна агрессив-	лве агрессивные	
			диаметр, мм	число, шт.	ная среда	среды	
		Бл	оки 350×515	×350 мм			
5.4	2	126	28	84	835	1090	
7,2	2	180	12	252	835	1090	
10,8	4	126	28	84	1520	2030	
14,4	4	180	12	252	1520	2030	
16,2	6	126	28	84	2185	2950	
21,6	6	180	12	252	2185	2950	
		Блоки 3 50×70	0×350 мм; 2	? вертикаль	ных хода		
14.6	4	126	28	108	2115	2705	
19.6	4	180	12	324	2060	2725	
21.9	6	126	28	108	2900	4126	
29,4	6	180	12	324	2910	3955	
		Блоки 350×70	00×350 мм; 4	вертикалы	ных хода		
13.4	4	126	28	96		2585	
19.0	4	180	12	324		2725	
20,1	6	126	28	96		3780	
28,5	6	180	12	324	~	3850	

Таблица 2.16. Поверхности теплообмена и основные параметры блочных графитовых теплообменников (по данным [12])

* Диаметр горизонтальных каналов 12 мм.

Блочные графитовые теплообменники можно использовать для теплообмена между средами, одна из которых коррозионно-активна. Если коррозионно-активны обе среды, боковые плиты защищают специальными графитовыми вкладышами.

Поверхности теплообмена и основные параметры блочных графитовых теплообменников в соответствии с данными [12] приведены в табл. 2.16.

2.4. РАСЧЕТ ТЕПЛООБМЕННЫХ АППАРАТОВ

2.4.1. Расчет кожухотрубчатого теплообменника

Рассчитать и подобрать нормализованный кожухотрубчатый теплообменник для теплообмена между двумя водно-органическими растворами. Горячий раствор в количестве $G_1 = 6,0$ кг/с охлаждается от $t_{1n} = 112.5$ °C до $t_{1k} = 40$ °C. Начальная температура холодного раствора ($G_2 = 21.8$ кг/с) равна $t_{2n} = 20$ °C. Оба раствора — коррозионно-активные жидкости с физико-химическими свойствами, близкими к свойствам воды. Горячая жидкость при средней температуре $t_1 = 76.3$ °C имеет следующие физико-химические характеристики: $\rho_1 = 986$ кг/м³; $\lambda_1 = 0.662$ BT/(м·K); $\mu_1 = = 0.00054$ Па·с; $c_1 = 4190$ Дж/(кг·K).

Расчет теплообменника проводят последовательно в соответствии с общей блок-схемой (см. рис. 2.2).

1. Определение тепловой нагрузки:

$$Q = 6.0 \cdot 4190 (112.5 - 40) = 1.822650$$
 BT.

2. Определение конечной температуры холодного раствора из уравнения теплового баланса: $t_{2\kappa} = t_{2\mu} + Q/(G_2c_2) = 20 + 1\,822\,650/(21,8\cdot4180) = 40,0$ °С, где 4180 Дж/(кг·К) — теплоемкость c_2 холодного раствора при его средней температуре $t_2 = 30$ °С. Остальные физико-химические свойства холодной жидкости при этой температуре: $\rho_2 = 996$ кг/м³; $\lambda_2 = 0,618$ Вт/(м·К); $\mu_2 = = 0,000804$ Па·с.

3. Определение среднелогарифмической разности температур: $\Delta t_{\rm cp,nor} = [(112,5-40) - (40-20)]/\ln(72,5/20) = 40,8$ град.

 Ориентировочный выбор теплообменника. Решение вопроса о том, какой теплоноситель направить в трубное пространство, обусловлено его температурой, давлением, коррозионной активностью, способностью загрязнять поверхности теплообмена, расходом и др. В рассматриваемом примере в трубное пространство с меньшим проходным сечением (см. параметры многоходовых теплообменников в табл. 2.3) целесообразно направить теплоноситель с меньшим расходом, т. е. горячий раствор. Это позволит выровнять скорости движения теплоносителей и соответствующие коэффициенты теплоотдачи, увеличивая таким образом коэффициент теплопередачи. Кроме того, направляя поток холодной жидкости в межтрубное пространство, можно отказаться от теплоизоляции кожуха теплообменника.

Примем ориентировочное значение Re_{1 ор} = 15 000, что соответствует развитому турбулентному режиму течения в трубах. Очевидно, такой режим возможен в теплообменнике, у которого число труб, приходящееся на один ход, равно:

для труб диаметром d_н = 20 × 2 мм

$$\frac{n}{z} = \frac{4G_1}{\pi d \operatorname{Re}_{1 \operatorname{op}} \mu_1} = \frac{4 \cdot 6,0}{\pi \cdot 0,016 \cdot 15 \ 000 \cdot 0,00054} = 59;$$

для труб диаметром d_н = 25 × 2 мм

$$\frac{n}{z} = \frac{4 \cdot 6.0}{\pi \cdot 0.021 \cdot 15\ 000 \cdot 0.00054} = 45.$$

Поскольку в данном примере свойства теплоносителей мало отличаются от свойств воды, примем минимальное ориентировочное значение коэффициента теплопередачи, соответствующее турбулентному течению (см. табл. 2.1): $K_{op} = 800 \text{ Bt}/(\text{m}^2 \cdot \text{K})$. При этом ориентировочное значение поверхности теплообмена составит

$$F_{\rm op} = 1.822.650/(40.8 \cdot 800) = 55.8 \text{ m}^2$$

Как видно из табл. 2.3, теплообменники с близкой поверхностью имеют диаметр кожуха 600—800 мм. При этом только многоходовые аппараты с числом ходов z = 4 или 6 имеют соотношения n/z, близкие к 50.

В многоходовых теплообменниках средняя движущая сила несколько меньше, чем в одноходовых, вследствие возникновения смешанного взаимного направления движения теплоносителей. Поправку для среднелогарифмической разности температур определим по уравнению (2.7):

$$P = \frac{40 - 20}{112,5 - 20} = 0,216; \qquad R = \frac{112,5 - 40}{40 - 20} = 3,625;$$

$$\eta = \sqrt{3,625^2 + 1} = 3,76; \qquad \delta = (3,625 - 1)/\ln\left(\frac{1 - 0,216}{1 - 3,625 \cdot 0,216}\right) = 2,044;$$

$$e_{\Delta t} = \frac{3,76/2,044}{\ln\left[\left[2 - 0,216\left(1 + 3,625 - 3,76\right)\right]\right]} = 0,813;$$

$$\Delta t_{cp} = 40,8 \cdot 0,813 = 33,2 \text{ град}.$$

С учетом поправки ориентировочная поверхность составит:

$$F_{\rm op} = 1\ 822\ 650/(33,20\cdot800) = 68,7\ {\rm M}^2.$$

Теперь целесообразно провести уточненный расчет следующих вариантов (см. табл. 2.3):

1K: D = 600 mm; $d_n = 25 \times 2 \text{ mm}$; z = 4; n/z = 206/4 = 51,5; **2K:** D = 600 mm; $d_n = 20 \times 2 \text{ mm}$; z = 6; n/z = 316/6 = 52,7; **3K:** D = 800 mm; $d_n = 25 \times 2 \text{ mm}$; z = 6; n/z = 384/6 = 64,0.

5. Уточненный расчет поверхности теплопередачи. Вариант 1К:

$$\operatorname{Re}_{1} = \frac{4G_{1}}{\pi d (n/z) \mu_{1}} = \frac{4 \cdot 6,0}{\pi \cdot 0,021 \cdot 51,5 \cdot 0,00054} = 13\ 081;$$
$$\operatorname{Pr}_{1} = \frac{c_{1}\mu_{1}}{\lambda_{1}} = \frac{4190 \cdot 0,00054}{0,662} = 3,42.$$

67

В соответствии с формулой (2.12) коэффициент теплоотдачи к жидкости, движущейся по трубам турбулентно, равен:

$$\alpha_1 = \frac{0,662}{0,021} \cdot 0,023 (13\ 081)^{0.8} (3,42)^{0.4} = 2330 \text{ Bt}/(\text{m}^2 \cdot \text{K}).$$

Поправкой (\Pr/\Pr_{ct})^{0.25} здесь можно пренебречь, так как разность температур t_1 и t_{ct} невелика (менее $\Delta t_{cp} = 33.2$ град).

Площадь сечения потока в межтрубном пространстве между перегородками (см. табл. 2.3) S_{мтр} = 0,045 м²; тогда

$$\operatorname{Re}_2 = 21.8 \cdot 0.025 / (0.045 \cdot 0.000804) = 15064;$$

$$Pr_2 = 4180 \cdot 0.000804 / 0.618 = 5.44.$$

В соответствии с формулой (2.16) коэффициент теплоотдачи к жидкости, движущейся в межтрубном пространстве, составит:

$$\alpha_2 = (0.618/0.025) \cdot 0.24 \cdot (15\ 064)^{0.6} \cdot (5.44)^{0.36} = 3505\ \text{Bt}/(\text{M}^2 \cdot \text{K}).$$

Оба теплоносителя — малоконцентрированные водные растворы; поэтому в соответствии с табл. 2.2 примем термические сопротивления загрязнений одинаковыми, равными $r_{s1} = r_{s2} =$ =1/2900 м² К/Вт. Повышенная коррозионная активность этих жидкостей диктует выбор нержавеющей стали в качестве материала труб. Теплопроводность нержавеющей стали примем равной $\lambda_{cr} = 17.5 \ Br/(м K)$. Сумма термических сопротивлений стенки и загрязнений равна

 $\sum \delta / \lambda = 0.002 / 17.5 + 1/2900 + 1/2900 = 0.000804 \text{ M}^2 \cdot \text{K/BT}.$

Коэффициент теплопередачи равен

$$K = 1/(1/2330 + 1/3505 + 0,000804) = 659 \text{ BT}/(\text{m}^2 \cdot \text{K}).$$

Требуемая поверхность составит

$$F = 1.822.650/(33.2 \cdot 659) = 83.4 \text{ m}^2$$

Из табл. 2.3 следует, что из выбранного ряда подходит теплообменник с трубами длиной 6,0 м и номинальной поверхностью F_{1K}=97 м² При этом запас

$$\Delta = (97 - 83, 4) \cdot 100/83, 4 = 16, 4\%$$

Масса теплообменника (см. табл. 2.8) $M_{1K} = 3130$ кг Вариант 2К. Аналогичный расчет дает следующие результаты: $\text{Re}_1 = 16~770$, $\alpha_1 =$ = 3720 BT/($M^2 \cdot K$), Re₂ = 11 308. α_2 = 3687 BT/($M^2 \cdot K$), K = 744 BT/($M^2 \cdot K$), F = 74, 1 M² H3 TA6.1. 2.3 следует, что теплообменник длиной 4,0 м имеет недостаточный запас поверхности ($\Delta < 10~\%$), поэтому для данной задачи он непригоден. Теплообменник длиной 6,0 м, поверхностью 119 м², не имеет преимуществ по сравнению с вариантом IK, так как при большей массе (M_{2к}=3380 кг) он заведомо будет иметь большее гидравлическое сопротивление.

Вариант ЗК. Результать расчета: Ret=10540, α_1 =1985 Вт/(м²·K), Re₂=9694, α_2 =2707 Вт/(м²·K), K=596 Вт/(м²·K), F=92,4 м² Из табл. 2.3 следует, что теплообменник с трубами длиной 4,0 м, номинальной поверхностью F_{3K} =121 м² подходит с запасом Λ =30,9 %. Его масса M_{3K} =3950 кг больше, чем в варианте 1К, однако в полтора раза меньшая длина труб выгодно отличает его от варианта 1К. Помимо большей компактности такой теплообменник должен иметь меньшее гидравлическое сопротивление в межтрубном пространстве. Стремясь получить еще меньшую длину труб, целесообразно рассмотреть дополнительный вариапт — 4К. Вариант 4К. D=800 мм, d₁=20×2 мм, z=6. n/z=618/6=103.

Результаты расчета: Re₁=8560, $\alpha_1 = 2030$ BT/($M^2 \cdot K$), Re₂=7754, $\alpha_2 = 2941$ BT/($M^2 \cdot K$), $K = 611 \text{ Br}/(\text{m}^2 \cdot \text{K}), F = 90.3 \text{ m}^2$

Из табл. І Приложения видно, что теплообменник с трубами длиной 3,0 м, номинальной поверхностью $F_{4K} = 116 \text{ м}^2$ подходит с запасом $\Delta = 28,5 \%$. Его масса $M_{4K} = 3550 \text{ кг}$, что на 400 кг меньше, чем в варианте ЗК.

Дальпейшее сопоставление трех конкурентоспособных вариантов (1К, 3К и 4К) проводят по гидравлическому сопротивлению.

Расчет гидравлического сопротивления кожухотрубчатых теплообменников. Гидравлический расчет проводят по формулам, приведенным ниже.

В трубном пространстве перепад давления определяют по формуле (1.1), в которой длина пути жидкости равна Lz. Скорость жидкости в трубах

$$\omega_{\rm TP} = 4G_{\rm TP} z / (\pi d^2 n \rho_{\rm TP}) \tag{2.30}$$

Коэффициент трения определяют по формулам (1.4) — (1.7). При Re_{тр}> 2300 его можно также определить по формуле [6]

$$\lambda = 0.25 \left\{ lg \left[\frac{e}{3.7} + \left(\frac{6.81}{Re_{rp}} \right)^{0.9} \right] \right\}^{-2}$$
(2.31)

где $e = \Delta/d$ — относительная шероховатость труб; Δ — высота выступов шероховатостей (в расчетах можно принять $\Delta = 0.2$ мм).

Коэффициенты местных сопротивлений потоку, движущемуся в трубном пространстве:

$$\xi_{rp\,1} = 1,5$$
 — входная и выходная камеры;
 $\xi_{rp\,2} = 2,5$ — поворот между ходами;
 $\xi_{rp\,3} = 1,0$ — вход в трубы и выход из них.

Местное сопротивление на входе в распределительную камеру и на выходе из нее следует рассчитывать по скорости жидкости в штуцерах. Диаметры штуцеров нормализованных кожухотрубчатых теплообменников приведены в табл. 2.6.

В межтрубном пространстве гидравлическое сопротивление можно рассчитать по формуле:

$$\Delta \rho_{\rm MTP} = (\sum \xi_{\rm MTP}) \rho_{\rm MTP} w_{\rm MTP}^2 / 2. \tag{2.32}$$

Скорость жидкости в межтрубном пространстве определяют по формуле

$$w_{\rm MTP} = G_{\rm MTP} / (S_{\rm MTP} \rho_{\rm MTP}), \qquad (2.33)$$

где S_{мтр} — наименьшее сечение потока в межтрубном пространстве (см. табл. 2.3—2.5). Коэффициенты местных сопротивлений потоку, движущемуся в межтрубном пространстве:

 $\xi_{m au p \ I} = 1,5$ — вход и выход жидкости; $\xi_{m au p \ I} = 1,5$ — поворот через сегментную перегородку; $\xi_{m au n \ J} = 3m/Re_{m au n}^{0,2}$ — сопротивление пучка труб [13, с. 455],

где $\operatorname{Re}_{\mathsf{мтр}} = G_{\mathsf{мтр}} d_{\mathsf{H}} / (S_{\mathsf{мтр}} \mu_{\mathsf{мтр}}); m$ — число рядов труб, которое приближенно можно определить следующим образом.

Общее число труб при их размещении по вершинам равносторонних треугольников равно $n = 1 + 3a + 3a^2$, где a - число огибающих трубы шестиугольников (в планетрубной доски) Число труб в диагонали шестиугольника*b*можно определить, решивквадратное уравнение относительно*a*:

$$b = 2a + 1 = 2\sqrt{(n-1)/3 + 0.25}$$

Число рядов труб, омываемых теплоносителем в межтрубном пространстве, приближенно можно принять равным 0,5*b*, т е.

$$m = \sqrt{(n-1)/3 + 0.25} \approx \sqrt{n/3}$$
 (2.34)

Сопротивление входа и выхода следует также определять по скорости жидкости в штуцерах, диаметры условных проходов которых приведены в табл. 2.6.

Число сегментных перегородок зависит от длины и диаметра аппарата. Для нормализованных теплообменников эти числа приведены в табл. 2.7

Расчетные формулы для определения гидравлического сопротивления в трубном и межтрубном пространствах окончательно принимают вид:

$$\Delta \rho_{\tau p} = \lambda \frac{Lz}{d} \cdot \frac{w_{\tau p}^2 \rho_{\tau p}}{2} + [2,5 \ (z-1) + 2z] \ \frac{\rho_{\tau p} w_{\tau p}^2}{2} + 3 \ \frac{\rho_{\tau p} w_{\tau p, up}^2}{2}, \qquad (2.35)$$

где z — число ходов по трубам;

$$\Delta \rho_{\rm MTP} = \frac{3m (x+1)}{{\rm Re}_{\rm MTP}^{0.2}} \cdot \frac{\rho_{\rm MTP} w_{\rm MTP}^2}{2} + 1.5x \frac{\rho_{\rm MTP}^2 w_{\rm MTP}^2}{2} + 3 \frac{\rho_{\rm MTP} w_{\rm MTP,\,III}^2}{2}, \qquad (2.36)$$

69

где *х* — число сегментных перегородок; *m* — число рядов труб, преодолеваемых потоком теплоносителя в межтрубном пространстве.

6. Расчет гидравлического сопротивления. Сопоставим три выбранных варианта кожухотрубчатых теплообменников по гидравлическому сопротивлению.

Вариант 1К. Скорость жидкости в трубах

$$w_{\rm rp} = \frac{G_1}{S_{\rm rp}\rho_1} = \frac{6}{0.018 \cdot 986} = 0.338 \text{ M/c}.$$

Коэффициент трения рассчитывают по формуле (2.31):

$$\lambda = 0.25 \left\{ \lg \left[\frac{0.2 \cdot 10^{-3}}{0.021 \cdot 3.7} + \left(\frac{6.81}{13\ 081} \right)^{0.9} \right] \right\}^{-2} = 0.0422.$$

Диаметр штуцеров в распределительной камере $d_{\text{тр.ш}} = 0,150$ м; скорость в штуцерах

 $w_{\text{TP, W}} = 6.0 \cdot 4 / (\pi 0.15^2 \cdot 986) = 0.344 \text{ M/c}.$

В трубном пространстве следующие местные сопротивления: вход в камеру и выход из нее, три поворота на 180°, четыре входа в трубы и четыре выхода из них.

В соответствии с формулой (2.35) гидравлическое сопротивление трубного пространства равно

$$\Delta p_{\rm TP} = 0.0422 \frac{6 \cdot 4}{0.021} \cdot \frac{986 \cdot 0.338^2}{2} + [2.5 (4 - 1) + 2 \cdot 4] \frac{986 \cdot 0.338^2}{2} + 3 \frac{986 \cdot 0.344^2}{2} = 2716 + 873 + 175 = 3764 \ \Pi a.$$

Число рядов труб, омываемых потоком в межтрубном пространстве, $m \approx \sqrt{206/3} = 8,29$; округляя в большую сторону, получим m = 9. Число сегментных перегородок x = 18 (см. табл. 2.7). Диаметр штуцеров к кожуху $d_{wтp.u} = 0,200$ м, скорость потока в штуцерах

$$w_{\text{MTP}, \text{W}} = 21.8 \cdot 4 / (\pi 0.2^2 \cdot 996) = 0.697 \text{ M/c}.$$

Скорость жидкости в наиболее узком сечении межтрубного пространства площадью $S_{m\tau p} = 0,040 \text{ м}^2$ (см. табл. 2.3) равна

$$w_{\rm MTP} = 21.8/(0.040 \cdot 996) = 0.547 \text{ M/c}.$$

В межтрубном пространстве следующие местные сопротивления: вход и выход жидкости через штуцера, 18 поворотов через сегментные перегородки (по их числу x = 18) и 19 сопротивлений трубного пучка при его поперечном обтекании (x+1).

В соответствии с формулой (2.36) сопротивление межтрубного пространства равно

$$\Delta p_{\mathsf{MTP}} = \frac{3 \cdot 9 (18 + 1)}{(16947)^{0.2}} \cdot \frac{996 \cdot 0.547^2}{2} + 18 \cdot 1.5 \frac{996 \cdot 0.547^2}{2} + 3 \frac{996 \cdot 0.697^2}{2} =$$

= 10902 + 4023 + 725 = 15650 Па.

Вариант 3К. Аналогичный расчет дает следующие результаты: ω_{тр} = 0,277 м/с; λ = 0,0431; ω_{тр} = 0,344 м/с; Δρ_{тр} = 2965 Па; ω_{мтр} = 0,337 м/с; ω_{мтр} = 0.446 м/с; m = 12; x = 8; Δρ_{мтр} = 3857 Па. Сопоставление этого варианта с вариантом 1К показывает, что, как и ожидалось, по гидрав-

лическому сопротивлению вариант ЗК лучше.

Βαρμαμτ 4K. Результаты расчета: $w_{\tau p} = 0.304$ м/c; $\lambda = 0.0472$; $w_{\tau p} = 0.344$ м/c; $\Delta p_{\tau p} = 3712$ Πa; $w_{\pi \tau p} = 0.337$ м/c; $w_{\pi \tau p} = 0.446$ м/c; m = 15; x = 6; $\Delta p_{\pi \tau p} = 3728$ Πa.

Сопротивление этого теплообменника мало отличается от сопротивления предыдущего, а его масса на 400 кг меньше. Поэтому из дальнейшего сравнения вариант ЗК можно исключить, считая конкурентоспособными лишь варианты 1К и 4К. Выбор лучшего из них должен быть сделан на основе технико-экономического анализа.

2.4.2. Расчет пластинчатого теплообменника

Для той же технологической задачи, что и в разд. 2.4.1, рассчитать и подобрать нормализованный пластинчатый теплообменник.

Эффективность пластинчатых и кожухотрубчатых теплообменников близка. Поэтому ориентнровочный выбор пластинчатого теплообменника целесообразно сделать, сравнив его с лучшим вариантом кожухотрубчатого. Из табл. 2.13 следует, что поверхности, близкие к 100 м², имеют теплообменники с пластинами площадью 0,6 м² Для уточненного расчета выберем три варианта:

1П: $F = 80 \text{ м}^2$, число пластин N = 136, тип пластин 0.6;

2П: $F = 63 \text{ м}^2$, число пластин N = 108, тип 0,6;

3П: F = 50 м², число пластин N = 86, тип 0,6.

Расчет по пунктам 1—4 аналогичен расчету в разд. 2.4.1, поэтому опускаем его. 5. Уточненный расчет требуемой поверхности.

Вариант 1П. Пусть компоновка пластин самая простая: Сх:68/68, т. е. по одному пакету (ходу) для обоих потоков. Скорость горячей жидкости в 68 каналах с проходным сечением 0,00245 м² (см. табл. 2.14) равна

 $w_1 = 6.0/(986 \cdot 68 \cdot 0.00245) = 0.0365 \text{ m/c}.$

Эквивалентный диаметр каналов $d_3 = 0,0083$ м (см. табл. 2.14); тогда

 $Re_1 = 0.0365 \cdot 0.0083 \cdot 986 / 0.00054 = 553 > 50$

т. е. режим турбулентный, поэтому по формуле (2.20) находим:

 $\alpha_1 = (0.662/0.0083) \ 0.135 \cdot 553^{0.73} \cdot 3.42^{0.43} = 1836 \ \text{Bt}/(\text{m}^2 \cdot \text{K}).$

Скорость холодной жидкости в 68 каналах:

 $w_2 = 21.8/(996 \cdot 68 \cdot 0.00245) = 0.1314 \text{ m/c};$

 $Re_2 = 0.1314 \cdot 0.0083 \cdot 996 / 0.000804 = 1351 > 50;$

 $\alpha_2 = (0.618/0.0083) 0.135 \cdot 1351^{0.73} \cdot 5.44^{0.43} = 4017 \text{ BT}/(\text{m}^2 \cdot \text{K}).$

Сумма термических сопротивлений гофрированной пластины из нержавеющей стали толщиной 1,0 мм (см. табл. 2.14) и загрязнений составляет:

$$\sum \delta/\lambda = 1.0 \cdot 10^{-3}/17.5 + 1/2900 + 1/2900 = 0.000747 \text{ m}^2 \cdot \text{K/BT}.$$

Коэффициент теплопередачи равен:

$$K = (0,000747 + 1/1836 + 1/4017)^{-1} = 649 \text{ Br}/(\text{m}^2 \cdot \text{K})$$

Требуемая поверхность теплопередачи

 $F = 1.822.650/(649 \cdot 40.8) = 68.8 \text{ m}^2$.

Теплообменник номинальной поверхностью F_{1П}=80 м² подходит с запасом

 $\Delta = (80 - 68, 8) 100/68, 8 = 16, 3 \%.$

Его масса M_{1П}=1690 кг (см. табл. 2.13).

Вариант 2П. Схема компоновки пластин Сх:54/54. Результаты расчета:

 $w_1 = 6.0/(986 \cdot 54 \cdot 0.00245) = 0.046 \text{ m/c}; \text{ Re}_1 = 0.046 \cdot 0.0083 \cdot 986/0.00054 = 697;$ $\alpha_1 = 1836(697/553)^{0.73} = 2147 \text{ Bt/(m}^2 \cdot \text{K});$

 $w_2 = 21.8/(996 \cdot 54 \cdot 0.00245) = 0.165 \text{ m/c}; \text{ Re}_2 = 0.165 \cdot 0.0083 \cdot 996/0.000804 = 1697;$

$$\alpha_2 = 4017 (1697/1351)^{0.73} = 4744 \text{ Br}/(\text{m}^2 \cdot \text{K}); \quad K = (1/2174 + 1/4744 + 0.000747)^{-1} = 705 \text{ Br}/(\text{m}^2 \cdot \text{K});$$

 $F = 1.822.650/(40.8 \cdot 705) = 63.3 \text{ m}^2.$

Номинальная поверхность $F_{2\Pi}$ = 63,0 м² недостаточна, поэтому необходимо применить более сложную компоновку пластин. Очевидно, целесообразно увеличить скорость движения теплоносителя с меньшим коэффициентом теплоотдачи, т. е. горячей жидкости. При этом следует иметь в внду, что несимметричная компоновка пластин, например по схеме Cx: (27+27)/54, приведет к уменьшению средней движущей силы, поскольку возникнет параллельно-смешанный вариант взаимного направления движения теплоносителей. При симметричной компоновке, т. е. при одинаковом числе ходов для обонх теплоносителей, сохраняются противоток и среднелогарифмическая разность температур.

Рассмотрим Čx: (27 + 27)/54. Скорость горячей жидкости и число Re₁ возрастут вдвое, а коэффициент теплоотдачи α₁ увеличится в соответствии с формулой (2.20) в 2^{0.73} = 1,66 раза. Коэффициент α₂ останется неизменным. Получим:

$$\alpha_1 = 2174 \cdot 1,66 = 3605 \text{ BT}/(\text{m}^2 \cdot \text{K});$$

 $K = (1/3605 + 1/4744 + 0,000747)^{-1} = 810 \text{ BT}/(\text{m}^2 \cdot \text{K}).$

В данном случае поправку на среднелогарифмическую движущую силу можно найти так же, как для кожухотрубчатых теплообменников с одним ходом в межтрубном пространстве и четным числом ходов в трубах:

Тогда
$$M_{cp} = 40,8 \cdot 0,813 = 33,2$$
 °C

Требуемая поверхность теплопередачи $F = 1.822.650/(810.33,2) = 67,8 \text{ м}^2$

Номинальная поверхность $F_{2\Pi} = 63,0 \text{ м}^2$ по-прежнему недостаточна.

Перейдя к симметричной компоновке пластин, например по схеме Cx: (27+27)/(27+27), вернемся к схеме чистого противотока с одновременным увеличением α_2 в 1,66 раза:

$$\alpha_2 = 4744 \cdot 1.66 = 7875 \text{ Bt}/(\text{m}^2 \cdot \text{K});$$

 $K = (1/3605 + 1/7875 + 0.000747)^{-1} = 869 \text{ Bt}/(\text{m}^2 \cdot \text{K});$
 $F = 1.822.650/(40.8 \cdot 869) = 51.4 \text{ m}^2.$

Теперь нормализованный теплообменник подходит с запасом $\Delta = (63-51,4) 100/51,4 = 22,6\%$. В этом теплообменнике скорость горячей жидкости $w_1 = 0.046 \cdot 2 = 0.092$ м/с, $\text{Re}_1 = 697 \cdot 2 = 1394$, скорость холодной жидкости $w_2 = 0.165 \cdot 2 = 0.33$ м/с, $\text{Re}_2 = 1697 \cdot 2 = 3394$. Масса аппарата $M_{2\Pi} = 1530$ кг.

Вариант 3П. Учтя опыт предыдущих расчетов, примем трехпакетную симметричную компоновку пластин: Сх: (14+14+15)/(14+14+15) (всего в аппарате 86 пластин, $F_{3\Pi} = 50$ м²). При этом скорости и числа Re возрастут в 27/14 = 1,93 раза:

$$w_1 = 0.092 \cdot 1.93 = 0.1774 \text{ m/c}; \text{ Re}_1 = 1394 \cdot 1.93 = 2688;$$

 $w_2 = 0.33 \cdot 1.93 = 0.636 \text{ m/c}, \text{ Re}_2 = 3394 \cdot 1.93 = 6546.$

Коэффициенты теплоотдачи возрастут в (1,93)^{0,73}=1,615 раза:

 $\alpha_1 = 3605 \cdot 1,615 = 5823 \text{ BT}/(\text{m}^2 \cdot \text{K}); \quad \alpha_2 = 7875 \cdot 1,615 = 12 \ 720 \text{ BT}/(\text{m}^2 \cdot \text{K}); \quad K = 1003 \text{ BT}/(\text{m}^2 \cdot \text{K});$

$$F = 44,5 \text{ M}^2$$
; $\Delta = 12,4 \%$; $M_{3\Pi} = 1400 \text{ km}$

Для выбора оптимального варианта из трех конкурирующих необходимо определить гидравлические сопротивления в аппаратах.

Расчет гидравлического сопротивления пластинчатых теплообменников. Гидравлическое сопротивление для каждого теплоносителя определяют по формуле [8]:

$$\Delta p = x\xi \frac{L}{d_{*}} \frac{\rho w^{2}}{2} + 3 \frac{\rho w_{m}^{2}}{2}, \qquad (2.37)$$

где L — приведенная длина каналов, м (см. табл. 2.14); $d_s \rightarrow$ эквивалентный диаметр каналов, м; x -число пакетов для данного теплоносителя, w_m — скорость в штуцерах на входе и выходе; $\xi = a_1/\text{Re} -$ для ламинарного движения, $\xi = a_2/\text{Re}^{0.25} -$ для турбулентного движения. Коэффициенты a_1 и a_2 зависят от типа (площади) пластины:

Площадь пластины, м ²	0,2	0,3	0,6	1,3
<i>a</i> ₁	425	425	320	400
<i>a</i> ₂	19,6	19,3	15,0	17,0

Для определения скорости в штуцерах в табл. 2.14 приведены диаметры условных проходов штуцеров. При скорости жидкости в штуцерах меньше 2,5 м/с нх гидравлическое сопротивление можно не учитывать.

6. Расчет гидравлических сопротивлений.

Вариант 1П. Результаты расчета гидравлических сопротнвлений:

 $\xi_1 = 15.0/\sqrt{553} = 3.09; \ \dot{x}_1 = 1; \ L = 1.01 \text{ m}; \ d_w = 0.2 \text{ m}; \ \omega_1 = 0.0365 \text{ m/c}; \ \omega_{1w} = 6.0 \cdot 4/(\pi \cdot 0.2^2 \cdot 986) = = 0.194 \text{ m/c} < 2.5 \text{ m/c};$

$$\begin{split} \Delta p_1 &= 3.09 \frac{1.01}{0.0083} \cdot \frac{986 \cdot 0.0365^2}{2} = 247 \ \Pi a; \\ \xi_2 &= 15.0/\sqrt[4]{1351} = 2.47; \ x_2 = 1; \\ \omega_2 &= 0.1314 \ \text{m/c}; \ \omega_{2m} = \frac{21.8 \cdot 4}{\pi \ 0.2^2 \cdot 996} = 0.697 \ \text{m/c} < 2.5 \ \text{m/c}; \\ \Delta p_2 &= 2.47 \frac{1.01}{0.0083} \cdot \frac{996 \cdot 0.1314^2}{2} = 2584 \ \Pi a. \end{split}$$

72
Вариант 2П. Результаты расчета:

$$\xi_{1} = \frac{15.0}{\sqrt{1394}} = 2.45; \ x_{1} = 2; \ \omega_{1} = 0.092 \text{ M/c};$$
$$\Delta p_{1} = 2 \cdot 2.45 \frac{1.01}{0.0083} \cdot \frac{986 \cdot 0.092^{2}}{2} = 2488 \text{ \Pi a};$$
$$\xi_{2} = \frac{15.0}{\sqrt{3394}} = 1.965; \ x_{2} = 2; \ \omega_{2} = 0.33 \text{ M/c};$$
$$\Delta p_{2} = 2 \cdot 1.965 \frac{1.01}{0.0083} \cdot \frac{996 \cdot 0.33^{2}}{2} = 25.935 \text{ \Pi a}.$$

Вариант 3П. Результаты расчета:

$$\xi_{1} = \frac{15.0}{\sqrt{2688}} = 2.08; \ x_{1} = 3; \ \omega_{1} = 0.1774 \text{ m/c};$$
$$\Delta p_{1} = 3 \cdot 2.08 \frac{1.01}{0.0083} \cdot \frac{986 \cdot 0.1774^{2}}{2} = 11.781 \text{ Ta};$$
$$\xi_{2} = \frac{15.0}{\sqrt{6546}} = 1.67; \ x_{2} = 3; \ \omega_{2} = 0.636 \text{ m/c}.$$

$$\Delta \rho_2 = 3 \cdot 1.67 \frac{1.01}{0.0083} \cdot \frac{.996 \cdot 0.636^2}{.2} = 122\ 807\ \ \Pi a.$$

Как видно из разд. 2.4.1 и 2.4.2, уменьшение массы аппаратов сопровождается увеличением гидравлических сопротивлений и, следовательно, ростом энергетических затрат на их преодоленне. Окончательный выбор наилучшего варианта из пяти теплообменников (двух кожухотрубчатых и трех пластинчатых) — задача технико-экономического анализа.

2.4.3. Расчет пластинчатого подогревателя (конденсатора)

Выбрать тип, рассчитать и подобрать нормализованный вариант конструкции пластинчатого теплообменника для подогрева $G_2 = 2,0$ кг/с коррозионно-активной органической жидкости от температуры $t_{2u} = 20$ °C до $t_{2x} = 80$ °C. При средней температуре $t_2 = 0,5$ (20 + 80) = 50 °C эта жидкость имеет следующие физико-химические характеристики: $\rho_2 = 900$ кг/м³, $\mu_2 = 0,000534$ Па·с, $\lambda_2 = 0,458$ Вт/(м·K), $c_2 = 3730$ Дж/(кг·K), $\Pr_2 = 4,35$.

Для подогрева использовать насыщенный водяной пар давлением 0,6 МПа. Температура конденсации $t_1 = 158,1$ °C. Характеристики конденсата при этой температуре: $\rho_1 = 908 \text{ кr/m}^3$, $\mu_1 = 0.000177 \text{ Па} \cdot \text{с}$, $\lambda_1 = 0.683 \text{ Br/(м·K)}$, $r_1 = 2.095 000 \text{ Дж/кr}$, $\text{Pr}_1 = 1.11$.

Расчет проводим последовательно в соответствии с общей схемой (см. рис. 2.2).

1. Тепловая нагрузка аппарата составит:

$$Q = 2,0.3730.(80 - 20) = 447\ 600\ Bt.$$

2. Расход пара определим из уравнения теплового баланса:

$$G_1 = 447\ 600/2\ 095\ 000 = 0.214\ \kappa r/c$$

3. Средняя разность температур

$$\Delta t_{cp} = \frac{(158, 1-20) - (158, 1-80)}{\ln (138, 1/78, 1)} = 105,3 \text{ град.}$$

4. Коэффициенты теплопередачи в пластинчатых теплообменниках выше, чем их ориентировочные значения, приведенные в табл. 2.1. В разд. 2.4.2 коэффициент теплопередачи в пластинчатых теплообменниках достигал 1000 Вт/(м²·K). Примем K_{ор}=1250 Вт/(м²·K). Тогда ориентировочное значение требуемой поверхности составит:

$$F_{\rm op} = 447\ 600/(105,3\cdot 1250) = 3,40\ {\rm m}^2$$

Рассмотрим пластинчатый подогреватель (конденсатор паров) поверхностью 3,0 м²; поверхность пластины 0,3 м², число пластин N = 12 (см. табл. 2.13).

5. Скорость жидкости и число Re в шести каналах площадью поперечного сечения канала 0,0011 м² и эквивалентным диаметром канала 0,008 м (см. табл. 2.14) равны:

$$w_2 = \frac{G_2}{\rho_2 (N/2) S} = \frac{2.0}{900 \cdot 6 \cdot 0.0011} = 0.337 \text{ m/c};$$

$$Re_2 = 0.337 \cdot 0.008 \cdot 900 / 0.000534 = 4540.$$

Коэффициент теплоотдачи к жидкости рассчитаем по формуле (2.20):

$$\alpha_2 = \frac{0.458}{0.008} 0.1 \cdot 4540^{0.73} \cdot 4.35^{0.43} = 5035 \text{ Bt}/(\text{m}^2 \cdot \text{K}).$$

Для определения коэффициента теплоотдачи от пара по формуле (2.26) примем, что Δt≥10 град. Тогда в каналах с приведенной длиной L=1,12 м (см. табл. 2.14) получим:

$$\begin{aligned} & \operatorname{Re}_{1} = 0.214 \cdot 1.12 / (0.000177 \cdot 3.0) = 451; \\ & \alpha_{1} = (0.683 / 1.12) \ 322 \cdot 451^{0.7} \cdot 1.11^{0.4} = 14 \ 761 \ \operatorname{Bt} / (\operatorname{m}^{2} \cdot \operatorname{K}) \end{aligned}$$

Термическим сопротивлением загрязнений со стороны пара можно пренебречь. Толщина пластин 1,0 мм (см. табл. 2.14), материал — нержавеющая сталь, $\lambda_{cr} = 17,5$ Вт/(м·К). Сумма термических сопротивлений стенки пластин и загрязнений со стороны жидкости составит:

$$\sum \delta/\lambda = 1.0 \cdot 10^{-3}/17.5 + 1/5800 = 0.000229 \text{ (m}^2 \cdot \text{K})/\text{Bt}.$$

Коэффициент теплопередачи

$$K = (1/5035 + 1/14761 + 0.000229)^{-1} = 2016 \text{ BT}/(\text{m}^2 \cdot \text{K})$$

По формуле (2.11) проверим правильность принятого допущения относительно Δt :

 $\Delta t = 2016 \cdot 105, 3/14761 = 14, 4 > 10.$

Требуемая поверхность теплопередачи

$$F = 447\ 600/(105,3 \cdot 2015) = 2,11\ \text{m}^2.$$

Теплообменник номинальной поверхностью $F = 3.0 \text{ м}^2$ подходит с запасом $\Delta = 42.2 \text{ %}$. Масса этого аппарата M = 291 кг (см. табл. 2.13).

6. Гидравлическое сопротивление пластинчатого подогревателя определим по формуле (2.37). Диаметр присоединяемых штуцеров $d_{\rm m}$ = 0,065 (см. табл. 2.14).

Скорость жидкости в штуцерах

$$w_{\rm m} = 2.0 \cdot 4 / (900 \cdot \pi \cdot 0.065^2) = 0.67 \text{ m/c} < 2.5 \text{ m/c},$$

поэтому их гидравлическое сопротивление можно не учитывать [8] Коэффициент трения

$$\xi = a_2 / \sqrt{\text{Re}} = 19.3 / \sqrt{4540} = 2.36$$

Для однопакетной компоновки пластин *w* = 1. Гидравлическое сопротивление

$$\Delta p = 2,35 \frac{1,12}{0,008} \cdot \frac{900 \cdot 0,337^2}{2} = 16\ 820\ \ \Pi a.$$

2.4.4. Расчет кожухотрубчатого конденсатора

Рассчитать и подобрать нормализованный вариант конструкции кожухотрубчатого конденсатора смеси паров органической жидкости и паров воды (дефлегматора) для конденсации $G_1 = 0.8$ кг/с паров. Удельная теплота конденсации смеси $r_1 = 1$ 180 000 Дж/кг, температура конденсации $t_1 = 66$ °C. Физико-химические свойства конденсата при температуре конденсации: $\lambda_1 = 0.8$

=0,219 Вт/(м·К), $\rho_1 = 757$ кг/м³, $\mu_1 = 0,000446$ Па·с. Тепло конденсации отводить водой с начальной температурой $t_{2\mu} = 25$ °C.

Примем температуру воды на выходе из конденсатора $(_{2\kappa} = 33 \text{ °C}.$ При средней температуре $t_2 = 0.5 (25 + 33) = 29 \text{ °C}$ вода имеет следующие физико-химические характеристики : $\rho_2 = 996 \text{ кг/м}^3 c_2 = 4180 \text{ Дж/(кг-K)}, \lambda_2 = 0.616 \text{ BT/(м-K)}, \mu_2 = 0.00082 \text{ Па·с, } \Pr_2 = c_2\mu_2/\lambda_2 = 5.56.$

Расчет проводим последовательно в соответствии с общей блок схемой (см. рис. 2.2).

1. Тепловая нагрузка аппарата

$$Q = 1 180\ 000 \cdot 0.8 = 944\ 000\ Bt.$$

2. Расход воды

$$G_2 = 944\ 000/[4180\ (33-25)] = 28,2\ \kappa r/c.$$

3. Средняя разность температур

$$\Delta t_{cp} = (66 - 25) - (66 - 33) / \ln(41/33) = 36.9$$
 rpag.

4. В соответствии с табл. 2.1 примем K_{ор} == 600 Вт/(м²·К). Ориентировочное значение поверхности

$$F_{\rm op} = 944\ 000/(600 \cdot 36,9) = 42,6\ {\rm m}^2$$

Задаваясь числом $Re_2 = 15000$, определим соотношение n/z для конденсатора из труб диаметром $d_{\rm H} = 25 \times 2$ мм:

$$\frac{n}{z} = \frac{4G_2}{\pi d\mu_2 \operatorname{Re}_2} = \frac{4 \cdot 28.2}{\pi \cdot 0.021 \cdot 0.00082 \cdot 15000} = 139.$$

где *п* — общее число труб; *z* — число ходов по трубному пространству; *d* — внутренний диаметр труб, м.

5. Уточненный расчет поверхности теплопередачи. В соответствии с табл. 2.9 соотношение n/z принимает наиболее близкое к заданному значение у конденсаторов с диаметром кожуха D=600 мм, диаметром труб 25×2 мм, числом ходов z=2 и общим числом труб n=240:

$$n/z = 240/2 = 120.$$

Наиболее близкую к ориентировочной поверхность теплопередачи имеет нормализованный аппарат с длиной труб L=3,0 м; F=57,0 м²

Действительное число Re2 равно

$$\operatorname{Re}_{2} = \frac{4G_{2}z}{\pi dn\mu_{2}} = \frac{4\cdot 28, 2\cdot 2}{\pi \cdot 0, 021 \cdot 240 \cdot 0, 00082} = 17\ 376.$$

Коэффициент теплоотдачи к воде определим по уравненню (2.12), пренебрегая поправкой $(Pr/Pr_{\rm cr})^{0.25}$:

$$\alpha_2 = \frac{0.616}{0.021} \ 0.023 \cdot 17 \ 376^{0.8} 5.56^{04} = 3304 \ \text{Bt}/(\text{m}^2 \cdot \text{K}).$$

Коэффициент теплоотдачи от пара, конденсирующегося на пучке вертикально расположенных труб, определим по уравнению (2.24):

$$\alpha_1 = 3,78 \cdot 0,219 \sqrt[3]{\frac{757^2 \cdot 0,025 \cdot 240}{0,000446 \cdot 0,6}} = 1939 \text{ Br/(m^2 \cdot K)}.$$

Сумма термических сопротивлений стенки труб из нержавеющей стали и загрязнений со стороны воды и пара равна:

$$\sum \delta/\lambda = 2 \cdot 10^{-3}/17.5 + 1/1860 + 1/11600 = 0.000738 \text{ m}^2 \cdot \text{K/BT}.$$

Коэффициент теплопередачи

$$K = \left(\frac{1}{3304} + \frac{1}{1939} + 0,000738\right)^{-1} = 643 \text{ BT}/(\text{m}^2 \cdot \text{K}).$$

Требуемая поверхность теплопередачи

$$F = 944\ 000/(36.9 \cdot 643) = 39.8\ \text{m}^2$$

Как видно из табл. 2.9, конденсатор с длиной труб 2,0 м и поверхностью 57.0 м² подходит с запасом:

$$\Delta = (57, 0 - 39, 8) \ 100/39, 8 = 43, 2\%.$$

6. Гидравлическое сопротивление Δp_2 рассчитываем по формуле (2.35). Скорость воды в трубах

$$w_2 = \frac{4G_2z}{\pi d^2 n \rho_2} = \frac{4 \cdot 28, 2 \cdot 2}{\pi \cdot 0.021^2 \cdot 240 \cdot 996} = 0,68 \text{ m/c}.$$

Коэффициент трения по формуле (2.31) равен

$$\lambda = 0.25 \left\{ \lg \left[\frac{0.2 \cdot 10^{-3}}{0.021 \cdot 3.7} + \left(\frac{6.81}{17\ 376} \right)^{0.9} \right] \right\}^{-2} = 0.0412.$$

Скорость воды в штуцерах (см. табл. 2.6):

$$w_{2u} = \frac{4G_2}{\pi d_u^2 \rho_2} = \frac{4 \cdot 28,2}{\pi \cdot 0,2^2 \cdot 996} = 0,9 \text{ M/c.}$$

Гидравлическое сопротивление

$$\Delta p_2 = 0.0412 \frac{3 \cdot 2}{0.021} \cdot \frac{996 \cdot 0.68^2}{2} + [2.5 (2-1) + 2 \cdot 2] \frac{996 \cdot 0.68^2}{2} + 3 \frac{996 \cdot 0.9^2}{2} =$$

= 2711 + 1497 + 1210 = 5418 Па.

2.4.5. Расчет кожухотрубчатого испарителя

Рассчитать и подобрать нормализованный вариант конструкции кожухотрубчатого испарителя ректификационной колонны с получением $G_2=0.9$ кг/с паров водного раствора органической жидкости. Кипящая при небольшом избыточном давлении и температуре $t_2=102.6$ °C жидкость имеет следующие физико-химические характеристики: $\rho_2=957$ кг/м³, $\mu_2=0.00024$ Па·с, $\sigma_2=0.0583$ Н/м, $c_2=4200$ Дж/(кг·K), $\lambda_2=0.680$ Вт/(м·K), $r_2=2240000$ Дж/кг. Плотность паров при атмосферном давлении $\rho_{n0}=0.655$ кг/м³, плотность паров над кипящей жидкостью $\rho_n=0.6515$ кг/м³

Для определения коэффициента теплоотдачи от пара, конденсирующегося на наружной поверхности труб высотой *H*, используем формуду (2.23):

$$\alpha_1 = 1,21 \lambda_1 \sqrt[3]{\rho_1^2 r_1 g / (\mu_1 H q)} \equiv A q^{-1/3}.$$

Коэффициент теплоотдачи к кипящей в трубах жидкости определим по формуле (2.28):

$$\alpha_2 = 780 \frac{\lambda_2^{1.3} \rho_2^{0.5} \rho_n^{0.06} q^{0.6}}{\sigma_2^{0.5} r_2^{0.6} \rho_n^{0.6} \sigma_2^{0.3} \mu_2^{0.3}} \equiv Bq^{0.6}$$

Из основного уравнения теплопередачи и уравнения аддитивности термических сопротивлений следует, что

$$1/K = \Delta t_{\rm cp}/q = 1/\alpha_1 + \sum (\delta/\lambda) + 1/\alpha_2.$$

Подставляя сюда выражения для α_1 и α_2 , можно получить одно уравнение относительно неизвестного удельного теплового потока:

$$f(q) = \frac{1}{A} q^{4/3} + \left(\sum_{\lambda} \frac{\delta}{\lambda}\right) q + \frac{1}{B} q^{0.4} - \Delta t_{cp} = 0.$$
 (a)

Решив это уравнение относительно q каким-либо численным или графическим методом, можно определить требуемую поверхность F = Q/q.

Расчет проводим последовательно в соответствии с общей схемой (см. рис. 2.2).

1. Тепловая нагрузка аппарата

 $Q = 0.9 \cdot 2\ 240\ 000 = 2\ 016\ 000\ Bt.$

2. Расход греющего пара определим из уравнения теплового баланса:

 $G_1 = 2.016\ 000/2\ 208\ 000 = 0.913\ \kappa r/c.$

3. Средняя разность температур

$$\Delta t_{\rm cp} = 119,6 - 102,6 = 17,0 \ {}^{\circ}{\rm C}.$$

4. В соответствии с табл. 2.1 примем ориентировочное значение коэффициента теплопередачи $K_{op} = 1400 \text{ Br}/(\text{m}^2 \cdot \text{K})$. Тогда ориентировочное значение требуемой поверхности составит

$$F_{\rm op} = 2\,016\,000/(1400\cdot17) = 84.7\,{\rm m}^2$$

В соответствии с табл. 2.9 поверхность, близкую к ориентировочной, могут иметь теплообменники с высотой труб H=3,0 м или 2,0 м и диаметром кожуха D=0,8 м или же с высотой труб H=4,0 м н диаметром кожуха D=0,6 м.

5. Уточненный расчет поверхности теплопередачи.

Вариант 1И. Примем в качестве первого варианта теплообменник с высотой труб H=3,0 м, диаметром кожуха D=0,8 м и поверхностью теплопередачи F=109 м². Выполним его уточненный расчет, решив уравнение (a).

В качестве первого приближения примем ориентировочное значение удельной тепловой нагрузки: $q_1 = q_{op} = 2.016\ 000/109 = 18\ 495\ Br/m^2$

Для определения $f(q_1)$ необходимо рассчитать коэффициенты A и B:

$$A = 1,21 \cdot 0,686 \sqrt[3]{\frac{943^2 \cdot 2}{0,000231 \cdot 3,0}} = 2,514 \cdot 10^5;$$

$$B = 780 \frac{0.680^{1.3} \cdot 957^{0.5} \cdot 0.6515^{0.6}}{0.0583^{0.5} \cdot 2\ 240\ 000^{0.6} \cdot 0.65^{0.66} \cdot 4200^{0.3} \cdot 0.00024^{0.3}} = 12,11.$$

Толщина труб 2,0 мм, материал — нержавеющая сталь; $\lambda_{ct} = 17.5 \text{ Bt/(м·K)}$. Сумма термических сопротивлений стенки и загрязнений (термическим сопротивлением со стороны греющего пара можно пренебречь) равна:

$$\sum \delta/\lambda = 2 \cdot 10^{-1}/17.5 + 1/5800 = 0.000287 \text{ m}^2 \cdot \text{K/BT}.$$

Тогда

$$f(q_1) = \frac{18\,495^{4/3}}{2.514 \cdot 10^5} + 0,000287 \cdot 18\,495 + \frac{18\,495^{0.4}}{12.11} - 17,0 = -5,54.$$

Примем второе значение $q_2 = 30\ 000\ \text{Bt/m}^2$, получим:

$$f(q_2) = \frac{30\ 000^{4/3}}{2,514\cdot 10^5} + 0,000287\cdot 30\ 000 + \frac{30\ 000^{6.4}}{12,11} - 17,0 = 0,419$$

Третье, уточненное, значение q_3 оиределим в точке пересечения с осью абсцисс хорды, проведенной из точки *I* (18 495; -5,54) в точку *2* (30 000; +0,419) сечения с осью абсцисс хорды, проведенной из точки *I* для зависимости *f*(*q*) от *q*:

$$q_3 = q_2 - \frac{q_2 - q_1}{\int (q_2) - \int (q_1)} \int (q_2).$$
 (6)

Получим:

$$q_3 = 30\ 000 - \frac{30\ 000 - 18\ 495}{0,419 - (-5,54)}$$
 0,419 = 29 191 BT/m²;

$$f(q_3) = \frac{(29\ 191)^{4/3}}{2.514 \cdot 10^5} + 0,000287 \cdot 29\ 191 + \frac{(29\ 191)^{0.4}}{12.11} - 17,0 = -0,09.$$

Такую точность определения кория уравнения (а) можно считать достаточной, и q = =29 191 Вт/м² можно считать истинной удельной тепловой нагрузкой. Тогда требуемая поверхность составит

$$F = 2016\ 000/29\ 191 = 69,1\ \text{m}^2$$
.

В выбранном теплообменнике запас поверхности

$$\Delta = (109 - 69, 1) \ 100/69, 1 = 57, 7\%.$$

Масса аппарата $M_1 = 3200$ кг (см. табл. 2.8).

Вариант 2И. Требуемая поверхность ближе к номинальной поверхности $F = 73 \text{ м}^2$ теплообмещника с трубами высотой H = 2,0 м (см. табл. 2.9). Целесообразно проверить возможность $A = 2.514 \cdot 10^5 \sqrt[3]{3/2} = 2.878 \cdot 10^5$

Пусть q₁ = 2 016 000/73 = 27 616 Вт/м² Тогда

$$f(q_1) = \frac{(27\ 616)^{4/3}}{2.878 \cdot 10^5} + 0,000287 \cdot 27\ 616 + \frac{(27\ 616)^{0.4}}{12.11} - 17,0 = -1,49.$$

Пусть q₂=30 700 Вт/м² Тогда

$$\int (q_2) = \frac{(30\ 700)^{4/3}}{2.878 \cdot 10^5} + 0.000287 \cdot 30\ 700 + \frac{(30\ 700)^{0.4}}{12.11} - 17.0 = +0.30.$$

Найдем q3 по формуле (б):

$$q_3 = 30\ 700 - \frac{30\ 700 - 27\ 616}{0.30 - (-1.49)}\ 0.30 = 30\ 183\ \text{Bt/m}^2.$$

Тогда

$$f(q_3) = \frac{(30\,188)^{4/3}}{2.878 \cdot 10^5} + 0,000287 \cdot 30\,188 + \frac{(30\,183)^{0.4}}{12.11} - 17,0 = 0,042$$

Требуемая поверхность $F = 2.016.000/30.183 = 66.8 \text{ м}^2$. В выбранном теплообменнике запас поверхности

 $\Delta = (73 - 66, 8) 100/66, 8 = 9, 3 \%$.

Масса аппарата M₂ = 2300 кг (см. табл. 2.8).

Вариант ЗИ. Аналогичный расчет показывает, что для данной технологической задачи подходит также теплообменник высотой труб 4.0 м, диаметром кожуха 0,6 м, номинальной поверхностью 81 м² (см. табл. 2.9). Для этого варианта корень уравнения (a) q = 28500 Вт/м², и требуемая поверхность F = 70,7 м², что обеспечивает запас

$$\Delta = (81 - 70,7) 100/70,7 = 14,6 \%$$

Из табл. 2.8 видно, что этот аппарат имеет несколько меньшую массу:

 $M_3 = 2180$ Kr.

Удельные тепловые нагрузки в рассчитанных аппаратах значительно ниже критической тепловой нагрузки, которая даже в случае кипения жидкости в большом объеме в соответствии с уравнением (2.28) составляет

$$q_{\rm xp} = 0.14 \cdot 2\ 240\ 000\sqrt{0.6515}\ \sqrt{9.81 \cdot 0.0583 \cdot 957} = 1\ 224\ 300\ {\rm Bt}/{\rm M}^2$$

Следовательно, в рассчитанных аппаратах режим кипения будет пузырьковым. Коэффициенты теплоотдачи и теплопередачи в последнем варианте соответственно равны:

$$\alpha_1 = Aq^{-1/3} = 2,284 \cdot 10^5 (28\ 500)^{-1/3} = 7477\ \text{Bt}/(\text{m}^2 \cdot \text{K});$$

$$\alpha_2 \stackrel{\text{\tiny 4}}{=} Bq^{0.6} = 12,11\ (28\ 500)^{0.6} = 5702\ \text{Bt}/(\text{m}^2 \cdot \text{K});$$

$$K = q/\Delta t_{\text{cp}} = 28\ 500/17,0 = 1676\ \text{Bt}/(\text{m}^2 \cdot \text{K})$$

2.5. ВЫБОР ОПТИМАЛЬНОГО НОРМАЛИЗОВАННОГО ТЕПЛООБМЕННОГО АППАРАТА

В зависимости от цели оптимизации в качестве критерия оптимальности могут быть приняты различные параметры: габариты, масса аппарата, удельные энергетические затраты и т. п. Однако наиболее полным и надежным критерием оптимальности (КО) при выборе теплообменного аппарата принято считать [14—16] универсальный технико-экономический показатель — приведенные затраты П:

$$\Pi = \mathsf{E}\mathsf{K} + \mathsf{P}, \tag{2.38}$$

где Қ — капитальные затраты; Э — эксплуатационные затраты; Е — нормативный коэффициент эффективности капиталовложений. В соответствии с этим критерием наиболее эффективен тот из сравниваемых аппаратов, у которого приведенные затраты минимальны, т. е.

$$KO = \min \Pi = \min (EK + \Im). \tag{2.39}$$

Капитальные затраты К складываются из затрат на изготовление аппарата и его монтаж, причем затраты на монтаж очень малы по сравнению со стоимостью изготовления теплообменника, и ими можно пренебречь. Если по технологической схеме работа теплообменника неразрывно связана с работой обслуживающих его насосов или компрессоров, в капитальные затраты следует включить их полную стоимость или ее часть (пропорциональную доле β мощности, затрачиваемой на преодоление гидравлического сопротивления теплообменника, от всей необходимой мощности на перемещение теплоносителя):

$$\mathbf{K} = \mathbf{U}_{\tau} + \beta_1 \mathbf{U}_{\kappa_1} + \beta_2 \mathbf{U}_{\kappa_2}. \tag{2.40}$$

Эксплуатационные затраты Э можно разделить на две группы: пропорциональные капитальным затратам и не зависящие от капитальных затрат. К первой группе относятся амортизационные отчисления (определяемые коэффициентом k_a) и расходы на текущий ремонт и содержание оборудования (определяемые коэффициентом k_p); ко второй группе относятся расходы энергии на привод нагнетателей и стоимость теплоносителей:

$$\Im = K (k_a + k_p) + \coprod_{2} (N_1 + N_2) \tau + G_1 \coprod_{1} \tau + G_2 \coprod_{2} \tau, \qquad (2.41)$$

где т — число часов работы оборудования в году; Ц₃ — цена единицы электроэнергии; N_1 , N_2 — мощности нагнетателей, затрачиваемые на преодоление гидравлических сопротивлений теплообменника.

Поскольку при решении задачи оптимального выбора теплообменника расходы теплоносителей G_1 и G_2 заданы, затраты на них можно рассматривать как постоянные, а при поиске оптимального варианта конструкции их можно исключить. Тогда приведенные затраты П на теплообменник (в руб/год) можно приближенно рассчитать по формуле

$$\Pi = (E + k_a + k_p) (\coprod_{\tau} + \beta_1 \coprod_{\mu 1} + \beta_2 \coprod_{\mu 2}) + (N_1 + N_2) \coprod_{\eta \tau}.$$
(2.42)

Нормативный коэффициент эффективности капиталовложений в химической промышленности равен 0,15 год⁻¹ [16] Расчет годовых амортизационных отчислений и отчислений на ремонт оборудования для химической промышленности может быть проведен по средним нормам — соответственно 10 и 5 % от капитальных затрат [17]. Тогда можно принять

$$E + k_a + k_p = 0.3 \text{ rog}^{-1}$$

Цена на теплообменники различных конструкций Ц, устанавливаются соответствующим прейскурантом цен на химическое оборудование [18] Некоторые сведения, необходимые для решения задач оптимального выбора теплообменных аппаратов, приведены в табл. 2.17--2.19.

Стоимость насосов определяется по Прейскуранту № 23-01. Стоимость электроэнергии колеблется в довольно широких пределах: 0,01—0,03 руб/(кВт-ч). В среднем можно принять Ц₃=0,02 руб/(кВт-ч) и число часов работы оборудования за год т = 8000.

При поиске оптимального варианта из нормализованного ряда аппаратов наиболее простым и надежным оказывается метод полного перебора вариантов [14]. Этот метод, предполагающий использование ЭВМ, заключается в последовательном угочненном расчете каждого аппарата из определенной группы вариантов однотипной конструкции. Часть из них затем отбрасывают в силу различного рода ограничений (превышение требуемой поверхности над нормализованной; заведомо худшие, чем хотя бы у одного из остальных аппаратов, показатели — такие как масса и гидравлическое сопротивление; неприемлемые габариты и т. п.). Оставшиеся конкурентоспособные варианты сравнивают по приведенным затратам с целью выбора наилучшего варианта. Использование метода целенаправленного перебора позволяет по результатам расчета нескольких ориентировочно выбранных вариантов уточнить стратегию дальнейшего поиска, отказавшись от расчета значительного числа заведомо худших вариантов. Например, расчет всех вариантов многоходовых кожухотрубчатых теплообменников с одинаковыми размерами труб и кожуха нецелесообразен, если для данной задачи оказалась достаточной нормализованная поверхность одноходового, так как при той же массе многоходовые теплообменники имеют большее гидравлическое сопротивление. В другом случае, если оказалась недостаточной нормализованная поверхность шестиходового теплообменника, следует отказаться от просчета четырех- и двухходовых с теми же размерами труб и кожуха, так как их нормализованные поверхности заведомо окажутся недостаточными.

При выборе нескольких начальных вариантов можно руководствоваться рекомендуемыми на основании практического опыта ориентировочными значениями коэффициентов теплопередачи и скоростей теплоносителей или чисел Рейнольдса.

Достоинством технико-экономического критерия оптимальности является то, что лишь этот критерий позволяет выбрать наилучший вариант среди аппаратов различных конструкций. При этом окончательцый выбор производится из лучших аппаратов среди однотипных.

Пример. Выбор оптимального варианта холодильника жидкости (дополнение к расчетам в разд. 2.4.1 и 2.4.2).

Из пяти конкурентоспособных вариантов теплообменника (двух кожухотрубчатых и трех пластинчатых), рассчитанных в разд. 2.4.1 и 2.4.2, выбрать наилучший, удовлетворяющий технико-экономическому критерию — минимуму приведенных затрат

В разд. 2.4.1 методом целенаправленного перебора было рассчитано четыре варианта кожухотрубчатых теплообменников, из которых лишь два оказались конкурентоспособными: первый и четвертый. Лучший из них, т. е. оптимальный в своем классе конструкций, необходимо сравнить с лучшим из трех конкурентоспособных пластинчатых теплообменников, рассчитанных в разд. 2.4.2 для той же технологической задачи.

	Масса аппарата, т									
Относительная масса труб в общей массе аппарата, %	до 0.35	0,35-0,75	0.75—1.4	1,42,3	2,3-3,8	3,8-5,9	5,9-12,0	12,0-20,0	20,0-35,0	более 35,0
	Сталь уг.	леродис	тая (к	ожух і	ВСт.Зс	п5, тру	бы Ст.	.20)		
До 20	1625	1360	1165	1030	940	855	770	695	635	405
30	1510	1280	1115	1005	920	855	780	715	665	430
40	1410	1215	1085	990	915	850	790	730	680	455
50	1330	1170	1055	975	915	860	810	755	710	480
60	1270	1135	1040	970	915	870	815	775	740	505
70	1225	1110	1025	970	920	885	840	800	770	540
80	1200	1110	1030	98 5	935	905	860	825	795	575
(Сталь нержа	веюща	я (кож	сухит	рубы –	– сталі	5 12X I	8 <i>H10T</i>))	
До 20	3215	2895	2660	2505	2385	2295	2185	2095	2020	1940
30	3155	2885	2685	2555	2450	2370	2280	2200	2140	2075
40	3105	2875	2710	2605	2510	2435	2360	2285	2235	2180
50	3075	2880	2745	2655	2580	2520	2455	2385	2330	2280
60	3060	2900	2790	2705	2640	2585	2520	2475	2435	2385
70	3070	2935	2830	2765	2705	2670	2615	2565	2535	2485
80	3095	2980	2890	2835	2780	2740	2700	2650	2620	2580

Таблица 2.17. Оптовые цены (в руб. за 1 т) на кожухотрубчатые теплообменники типа ТН и ТЛ * (по данным [18, 4. 2])

* Эти цены можно приближенно отнести и к другим кожухотрубчатым теплообменным аппаратам, а также к выпарным аппаратам, у которых относительная масса греющих труб не менее 10 %.

Размерь	труб, мм	Масса аппарата, т							
внут- ренней	наруж- ной	до 0,18	0,18-0,35	0,35—0,75	0,75—1,4	1,42,3	2,3-3,8	3,8-5,9	более 5,9
			Оді	нопоточны	е из стали	ı 20			
25×3	57×4	1870	1660	1485				_	_
48×4	89×5	_	1365	1225	1110			_	
89×5	133×6	_	_	_	805	750		_	_
108×6	159×6	—	—		775	725	685	—	_
			Однопо	гочные из	стали 12Х	18H10T			
25×3	57×4	3560	3295	3120	—	_		-	_
48×4	89×5		2950	2 8 00	2650			_	
89×5	133×6	_	_	_	2225	2165		-	_
10 8 ×6	159×6	—	—	—	2165	2105	2060		
			Мно	огопоточнь	<i>ие из</i> стал	и 20			
48×4	89×5	_	-	_	930	870	820	780	725
57×4	108×5	_	_	_	860	810	760	725	675
	Многопоточные внитренние трибы из стали 12Х18Н10Т, нарижные — из стали 20								
48×4	89×5	'			1300	1235	1180	1175	1115
57×4	108 × 5	_			1320	1160	1115	1105	1055

Таблица 2.18. Оптовые цены (в руб. за 1 т) на теплообменники типа «труба в трубе» (по данным [18, ч. 2])

Таблица 2.19. Цены на теплообменники пластинчатые разборные (в руб. за штуку) с пластинами из стали 12X18H10T (по данным [18, ч. 1])

Поверхность теплообмена,	Чи пла площа,	сло стин дью, м ²	Цена для площар	а пластин цью, м ²	Поверхность теплообмена,	Чи плас площа,	сло стин дью,м²	Цена дл площа	я пластин дью, м ²
M	0,3	0,6	0,3	0,6	м	0,3	0,6	0,3	0.6
3 4 5 6,3 8 10 12,5 16 20 25	12 16 20 24 30 36 44 56 70 86		1060 1100 1200 1300 1400 1600 2000 2200 2400 2500	2700 3000 3200 3300 3600	31,5 40 50 63 80 100 110 125 140 150		56 70 86 108 136 170 186 210 236 252 270		4 300 4 700 5 300 6 000 7 200 8 000 8 300 9 300 10 100 10 500

С целью упрощения расчетов пренебрежем вкладом стоимости насосов в капитальные затраты, составляющим незначительную долю от стоимости теплообменника, однако оставим в приведенных затратах стоимость электроэнергии на прокачивание обоих теплоносителей через него. Учтем также, что трубы и кожух в кожухотрубчатых и пластины в пластинчатых теплообменниках должны быть изготовлены из нержавеющей стали.

К варианту 1К.

$$M = 3130$$
 кг, $\Delta p_{\tau p} = 3764$ Па, $\Delta p_{M r p} = 15650$ Па.

Масса труб:

$$M_{\rm tp} = \pi d_{\rm cp} \delta_{\rm tp} L n \rho_{\rm ct} = \pi 0,023 \cdot 0,002 \cdot 6,0 \cdot 206 \cdot 7850 = 1402 \text{ kg}$$

Доля массы труб от массы всего теплообменника

 $c = (1402/3130) \ 100 = 44.8 \ \%.$

Цена единицы массы теплообменника из нержавеющей стали Ц_{и ст} = 2,58 руб/кг (см. табл. 2.17). Цена теплообменника

$$\coprod_{r} = 3130 \cdot 2,58 = 8075 \text{ py6}.$$

Энергетические затраты на прокачивание горячей жидкости по трубам с учетом к. п. д. насосной установки, равного

$$\eta = \eta_{\rm H} \eta_{\rm AB} \eta_{\rm nep} = 0.7 \cdot 0.95 \cdot 0.95 = 0.63$$

составят:

$$N_1 = \frac{\Delta p_{\tau p} G_1}{\eta \rho_1 1000} = \frac{3764 \cdot 6.0}{0.63 \cdot 986 \cdot 1000} = 0.036 \text{ kBr}.$$

Энергетические затраты на прокачивание холодной жидкости по межтрубному пространству составят:

 $N_2 = \frac{\Delta p_{\mu\tau p} G_2}{\eta \rho_2 1000} = \frac{15\ 650 \cdot 21.8}{0.63 \cdot 996 \cdot 1000} = 0.544 \text{ kBt}.$

Приведенные затраты равны

 $\Pi_{1K} = 0.3 \cdot 8075 + (0.036 + 0.544) 0.02 \cdot 8000 = 2422.8 + 92.8 = 2515.3$ py6/rog.

К варианту 4К.

$$M = 3550$$
 кг, $\Delta p_{\tau p} = 3712$ Па, $\Delta p_{\text{мтр}} = 3728$ Па.

Результаты расчета:

$$M_{\rm rp} = 1645$$
 кг, Ц_т = 9160 руб., $N_1 = 0,036$ кВт, $N_2 = 0,1295$ кВт

Приведенные затраты

$$\Pi_{4K} = 0.3 \cdot 9160 + (0.036 + 0.1295) 0.02 \cdot 8000 = 2748 + 26.5 = 2774.5$$
 руб/год

Таким образом, среди кожухотрубчатых лучшим оказался теплообменник по варианту 1К. Рассмотрим конкурирующие пластинчатые теплообменники.

К варианту 1П.

$$M = 1690$$
 KG, $\Delta p_1 = 247$ Ha, $\Delta p_2 = 2584$ Ha.

Оптовая цена теплообменника с пластинами из нержавеющей стали Ц_т=7200 руб (см. табл. 2.19). Энергетические затраты для прокачивания горячей жидкости пренебрежимо малы; для холодной жидкости онн составляют

 $N_2 = 2584 \cdot 21.8 / (0.63 \cdot 996 \cdot 1000) = 0.09 \text{ kBt}.$

Приведенные затраты

 $\Pi_{1\Pi} = 0.3 \cdot 7200 + 0.09 \cdot 0.02 \cdot 8000 = 2160 + 14.4 = 2174.4 \text{ руб/год.}$

К варианту 2П.

M = 1530 κr, $\Delta p_1 = 2488$ Πa, $\Delta p_2 = 25.935$ Πa; $\Pi_{\tau} = 6000$ py6; $N_1 = 0.02$ κBτ, $N_2 = 0.9$ κBτ.

Приведенные затраты:

 $\Pi_{2\Pi} = 0.3 \cdot 6000 + 0.92 \cdot 0.02 \cdot 8000 = 1800 + 147.2 = 1947.2$ руб/год.

К варианту ЗП.

 $M = 1400 \text{ Kr}, \Delta p_1 = 11.781 \text{ Ha}, \Delta p_2 = 122.807 \text{ Ha};$

 $U_1 = 5300 \text{ руб}, N_1 = 0,114 \text{ кBT}, N_2 = 4,267 \text{ кBT}.$

Приведенные затраты

 $\Pi_{3\Pi} = 0.3 \cdot 5300 + (0.114 + 4.267) 0.02 \cdot 8000 = 1590 + 701.0 = 2291.0$ py6/rog.

Из расчетов следует, что лучшим из пластинчатых оказался теплообменник по варианту 2П. Он же оказался и более экономичным, чем лучший кожухотрубчатый теплообменник.

Для наглядности результаты расчетов сведены в таблицу (см. стр. 83).

Из таблицы видно, что разница в приведенных затратах между оптимальным вариантом 2П и наименее эффективным из конкурировавших 4К составляет 827,3 руб/год, или 29,8 %.

Технико-экономические	Вариант									
показатели	١K	4K	ıп	2П	ЗП					
<i>D</i> , м	0,6	0,8	_							
<i>L</i> , м	6,0	3,0	_	_	_					
<i>L</i> ₁ , м *	_	_	2,023	1,823	1.673					
K, BT/(M ² ·K)	6 59	611	649	869	1003					
<i>F</i> , м ²	97	116	80	63	50					
М, кг	3130	3650	1690	1530	1400					
$N_1 + N_2$, кВт	0,58	0,165	0,09	0,92	4,38					
0,3 Ц., руб/год	2422,5	2748,0	2160,0	1800,0	1590,0					
$(N_1 + N_2)$ \coprod_{37} , руб/год	92,8	26,5	14,4	147,2	701,0					
П, руб/год	2515,3	2774,5	2174,4	1947,2	2291,0					

* Остальные габаритные размеры: $L_2 \times H = 0.803 \times 1.77$ м (см. рис. 2.12).

При решении задачи оптимального выбора теплообменника число конкурентоспособных вариантов может значительно возрасти, если допустить варьирование ограничениями технологического характера. Например, при расчете холодильников и конденсаторов конечная температура оборотной воды, возвращающейся на градирню, задается проектировщиком в довольно широких пределах. В принципе эта температура должна быть результатом технико-экономической оптнмизации всей водооборотной системы. Очевидно, этот более высокнй уровень оптимизации затронет расчет не только теплообменника, но н градирни (или аппарата воздушного охлаждения), системы водоподготовки, насосов, а также энергозатрат на циркуляцию воды.

Другой путь расширения оптимальной задачи — проектирование многосекционной схемы передачи тепла [15]. При этом один аппарат заменяют несколькими аппаратами меньшего размера, соединенными параллельно или последовательно. Обычно к нескольким секциям прибегают в случае больших тепловых потоков или больших расходов теплоносителей. Несмотря на определенные недостатки многосекционной компоновки (большее количество арматуры, необходимость равномерной раздачи потоков и т. п.), по технико-экономическому критерию она может оказаться оптимальной.

2.6. ПОВЕРОЧНЫЙ РАСЧЕТ ТЕПЛООБМЕННЫХ АППАРАТОВ

Поверочный расчет теплообменника с известной поверхностью теплопередачи заключается, как правило, в определении конечных температур теплоносителей при их известных начальных значениях. Необходимость в таком расчете может возникнуть, например, если в результате проектного расчета был выбран нормализованный аппарат со значительным запасом поверхности, а также при проектировании сложных последовательно-параллельных схем соединения стандартных теплообменников. Поверочные расчеты могут понадобиться также с целью выявления возможностей имеющегося аппарата при переходе к непроектным режимам работы.

Поскольку среднюю двнжущую силу при двух неизвестных температурах заранее определить нельзя, поверочные расчеты удобнее проводить, преобразовав систему уравнений теплового баланса и теплопередачи в зависимость между эффективностью теплопередачи и числом единиц переноса. Эффективность теплопередачи *E* представляет собой безразмерное изменение температуры холодного (или горячего) теплоносителя, отнесенное к максимальному температурному перепаду в теплообменнике:

$$E_2 = (t_{2\kappa} - t_{2\kappa}) / (t_{1\kappa} - t_{2\kappa}) [= P в уравнении (2.7)];$$
(2.43)

$$E_1 = (t_{10} - t_{16}) / (t_{10} - t_{20}) = E_2 R, \qquad (2.44)$$

где

$$R = G_2 c_2 / G_1 c_1 = (t_{18} - t_{16}) / (t_{26} - t_{20}).$$
(2.45)

Число единиц переноса:

$$N_2 = KF / G_2 c_2; \tag{2.46}$$

$$N_1 = KF/G_1c_1 = N_2R. (2.47)$$

83

В теплообменнике при противотоке теплоносителей, агрегатное состояние которых не меняется, указанная зависимость имеет вид:

$$E_{2} = \frac{1 - \exp\left[N_{2}\left(R-1\right)\right]}{1 - R \exp\left[N_{2}\left(R-1\right)\right]} \bigg|_{R \neq 1} \qquad E_{2} = \frac{N_{2}}{N_{2}+1} \bigg|_{R \to 1}$$
(2.48)

При прямотоке

$$E_2 = (1 - \exp\{-N_2(R+1)\}) / (R+1).$$
(2.49)

Конечные температуры теплоносителей определяют по найденным эффективностям:

$$t_{2\kappa} = t_{2\kappa} + E_2 \left(t_{1\kappa} - t_{2\kappa} \right); \tag{2.50}$$

$$t_{18} = t_{10} - E_1 \left(t_{10} - t_{20} \right). \tag{2.51}$$

Расчеты выполняют, полагая, что коэффициент теплопередачи К известен из проектного расчета, и его возможное изменение вследствие изменения температур теплоносителей незначительно.

В рассмотренном выше примере оптимально подобранный пластинчатый теплообменник (вариант 2П) имел нормализованное значение поверхности $F_{\rm H}$ = 63,0 м², превышавшее расчетное (F = 51,4 м²) на 22,6 %. Определим конечные температуры теплоносителей при неизменном коэффициенте теплопередачи K = 869 Вт/(м²·K):

$$N_2 = KF_{\rm u}/(G_2c_2) = 869 \cdot 63, 0/(21, 8 \cdot 4180) = 0,60;$$

$$R = 21.8 \cdot 4180/(6, 0 \cdot 4190) = (112, 5 - 40)/(40 - 20) = 3,625;$$

$$I = \exp[10.6/(3.625 - 1)]$$

$$E_2 = \frac{1 - \exp[0.6(3.025 - 1)]}{1 - 3.625 \exp[0.6(3.625 - 1)]} = 0.232;$$

 $E_1 = E_2 R = 0.232 \cdot 3.625 = 0.841.$

Конечная температура холодного теплоносителя

$$l'_{2\kappa} = 20 + 0.232 (112.5 - 20) = 41.5$$
 °C;

конечная температура горячей жидкости

$$t'_{1\kappa} = 112,5 - 0,841 (112,5 - 20) = 34,7 \text{ °C}.$$

Обе температуры заметно отличаются от проектных: $t_{1\kappa} = t_{2\kappa} = 40$ °C.

Расчет усложняется в случае смешанного тока (как в многоходовых кожухотрубчатых теплообменниках или в пластинчатых с несимметричной компоновкой пластин), а также перекрестного тока. В этнх случаях среднюю движущую силу рассчитывают, вводя поправку с , к среднелогарнфмической. Тогда

$$E_{2} = \frac{1 - \exp\left[\epsilon_{\Lambda I} N_{2} (R-1)\right]}{1 - R \exp\left[\epsilon_{\Lambda I} N_{2} (R-1)\right]}$$
(2.52)

Поскольку ε_M зависит от искомых конечных температур [см., например, (2.7)], эффективность E_2 приходится рассчитывать приближенно методом итераций. Чтобы избежать итерационных расчетов, можно воспользоваться графиками зависимостей E_2 (R, N_2) для различных схем движения теплоносителей, приведенными в литературе [1, т. 1]. Другой приближенный метод расчета E_2 , названный методом q-тока, подробно описан в литературе [4, 15]. Согласно этому методу,

$$E_2 = \frac{1 - \exp\{N_2 [R (2\varphi - 1) - 1]\}}{1 - R\varphi \exp\{N_2 [R (2\varphi - 1) - 1]\} + R (1 - \varphi)},$$
(2.53)

где φ — характеристика схемы тока. Для противотока $\varphi = 1$, и выражение (2.53) сводится к (2.48); для прямотока $\varphi = 0$, и выражение (2.53) сводится к (2.49).

В общем случае ϕ зависит не только от схемы тока, но и от числа единиц переноса N_2 .

Однако при $N_2 \leqslant 2$ можно считать, что ψ сохраняет приблизительно постоянные значения, которые для некоторых схем приведены ниже:

Соотношение ходов в схеме	φ	max y
	при $N_2\!\leqslant\!2$	при $N_2 \to \infty, R \to 1$
1:2	0,398	0,500
1:4	0,394	0,438
1:3, из которых:		
а два прямоточных, один противоточный	0,350	0,400
6 — два противоточных, один прямоточный	0,438	0,500

Эффективность конденсаторов иасыщенных паров (в которых температуру горячего теплоносителя *t*₁ можно считать постоянной) не зависит от направления движения хладоагента:

$$E_2 = (t_{2\kappa} - t_{2\mu}) / (t_1 - t_{2\mu}) = 1 - \exp((-N_2), \qquad (2.54)$$

откуда $t_{2\kappa} = t_{2\mu} + E_2 (t_1 - t_{2\mu})$. По этому уравнению можно выполнить также поверочный расчет теплообменника в случае идеального перемешивания горячего теплоносителя или когда $G_1c_1 \gg G_2c_2$, поскольку в обоих случаях $t_1 \approx \text{const.}$ Если постоянна температура холодного теплоносителя, то

$$E_1 = (t_{10} - t_{18}) / (t_{10} - t_2) = 1 - \exp((-N_1)), \qquad (2.55)$$

откуда $t_{1\kappa} = t_{1\mu} - E_1 (t_{1\mu} - t_2)$.

В качестве примера рассмотрим рассчитанный ранее (см. разд. 2.4.3) пластинчатый подогреватель с номинальной поверхностью $F_{\rm H}$ = 3,0 м², превышающей необходимую на 42,2 %. В подогревателе с таким запасом поверхности может значительно возрасти не только конечная температура нагреваемой жидкости ($t_{2\kappa}$ = 80 °C), но и расход конденсирующегосн греющего пара (G_1 = 0,214 кг/с), если, конечно, жидкость не закипит и давление греющего пара будет постоянным. Примем вначале, что коэффициент теплопередачи также останется неизменным: K = =2016 Вт/($m^2 \cdot K$). Тогда

$$N_2 = KF_{\rm w}/(G_2c_2) = 2016 \cdot 3.0/(2.0 \cdot 3730) = 0.811;$$

$$E_2 = 1 - \exp(-0.811) = 0.555;$$

$$t'_{2\kappa} = 20 + 0.555 (158.1 - 20) = 96.7 \ ^{\circ}{\rm C};$$

$$G'_1 = 0.214 (96.7 - 20) / (80 - 20) = 0.274 \ \kappa r/c.$$

Изменение расхода пара может привести к изменению коэффициентов теплоотдачи от пара и теплопередачи:

$$\alpha'_1 = 14\ 761\ (0.274/0.214)^{0.7} = 17\ 549\ Br/(m^2 \cdot K);$$

 $K' = 2064\ Br/(m^2 \cdot K).$

Уточненные значения конечной температуры нагреваемой жидкости и расхода пара:

$$I_{2\kappa}'' = 20 + (158, 1-20) \left[1 - \exp\left(-\frac{2064 \cdot 3, 0}{2, 0 \cdot 3730}\right) \right] = 97, 9 \, ^{\circ}\text{C}.$$
$$G_{2}'' = 0,277 \, \text{ kr/c}.$$

Привести конечную температуру к проектному значению можно либо сократив запас поверхности уменьшением числа пластин, либо уменьшив среднюю разность температур снижением давления греющего пара.

Поверочный расчет испарителя, имеющего запас поверхности, заключается в определении истинной тепловой нагрузки по найденной в проектном расчете удельной нагрузке и нормализованному значению поверхности: $Q = qF_{\rm H}$.

Отсюда следует, что на величину запаса поверхности возрастут расходы конденсирующегося греющего пара и пара, получаемого в результате испарения кипящей жидкости.

Кроме указанных выше, возможны другие варианты поверочного расчета выходных параметров теплообменных аппаратов (например, при изменении расходов или начальных параметров теплоносителей).

- I. Справочник по теплообменникам. М.: Энергоатомиздат. 1987. Т. 1, 561 с; т. 2. 352 с.
- 2. Гельперин Н И. Основные процессы и аппараты химической технологии. М.: Химия, 1981. T. 1. 384 c.
- 3. Хаузен Х. Теплопередача при противотоке, прямотоке и перекрестном потоке: Пер. с нем. М.: Энергоиздат, 1981. 383 с.
- 4. Промышленные тепломассообменные процессы и установки/Под ред. А. М. Бакластова. М.: Энергоатомиздат, 1986. 327 с.
- 5. Кутателадзе С. С., Боришанский В. М. Справочник по теплопередаче. М.-Л.: Госэнергоиздат, 1959, 414 c.
- 6. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1987. 575 с. 7. Исаченко В. П., Осипова В. А., Сукомел А. С. Теплопередача. М.: Энергоиздат, 1981. 417 с.
- 8. Каталог. Пластинчатые теплообменные аппараты. М.: ЦИНТИХИМНЕФТЕМАШ, 1983. 56 с.
- Штербачек З., Тауск П. Перемешивание в химической промышленности: Пер. с чешск./ Под ред. И. С. Павлушенко. Л.: Госхимиздат, 1964. 415 с.
- Михеев М. А., Михеева И. М. Основы теплопередачи. М.: Энергия, 1977. 342 с.
 Касаткин А. Г. Основные процессы и аппараты химической технологии. М.: Химия, 1973. 752 с. 12. Каталог. Химическая аппаратура и изделия из графитовых материалов, выпускаемые Новочеркасским электродным заводом. М.: МИНЦВЕТМЕТ СССР, 1982. 90 с.
- 13. Плановский А. Н., Рамм В. М., Каган С. Э. Процессы и аппараты химической технологии. М.: Химия, 1967 848 с.
- 14. Клименко А. П., Каневец Г Е. Расчет теплообменных аппаратов на ЭВМ. М. Л.: Энергия, 1966. 272 c.
- 15. Маньковский О. Н., Толчинский А. Р., Александров М. В. Теплообменная аппаратура химических производств. Л.: Химия, 1976. 368 с.
- 16. Лапидус А. С. Экономическая оптимизация химических производств. М.: Химия, 1986. 208 с.
- 17. Альперт Л. З. Основы проектирования химических установок. М.: Высшая школа, 1982. 304 с.
- Прейскурант № 23—03. Оптовые цены на химическое оборудование. Ч. 1: Стандартное химическое оборудование. Ч. 2: Нефтехимическая аппаратура. М.: Прейскурантгиз, 1981.

ГЛАВА З

РАСЧЕТ МАССООБМЕННЫХ ПРОЦЕССОВ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- а удельная поверхность контакта фаз;
- а_н удельная поверхность насадки;
- с концентрация распределяемого компонента в кг/м³ или кмоль/м³;
- средний размер дисперсных частиц;
- D -- коэффициент диффузии;
- Е коэффициент продольного перемешивания;
- E₀ локальная эффективность на тарелке;
- Е_м эффективность ступени по Мэрфри; F межфазная поверхность, расход исходной смеси (при ректификации);
- G массовый расход газа или экстрагента;
- *h* частиая (фазовая) высота единицы переноса:
- *H*₀ общая высота единицы переноса;
- Н высота рабочей зоны аппарата;
- *i* удельная энтальпия жидкой фазы;
- I удельная энтальпия газа (пара);
- К коэффициент массопередачи;
- L массовый расход жидкости (при абсорбции, десорбции) или экстрагируемого раствора;
- тангенс угла наклона линии равновесия; коэффициент распределения;
- М массовый поток распределяемого компонента из одной фазы в другую;
- *n* частное (фазовое) число единиц переноса;
- *n*_o общее число единиц переноса;
- N число ступеней (тарелок);
- N₁ число теоретических ступеней;

- p давление;
- Р расход дистиллята;
- Р⁰ давление насыщенного пара;
- *R* флегмовое число;
- t, Т температура соответственно в °С и в К;
 - V объемный расход;
 - w фиктивная скорость;
- ₩ расход кубового остатка;
- x, y -- концентрация распределяемого компонента, масс. или мол. доли;
 - α относительная летучесть;
 - в коэффициент массоотдачи;
 - у коэффициент активности;
 - и вязкость:
 - ρ плотность;
 - σ межфазное натяжение.

Индексы:

- д дисперсная фаза;
- н начальная величина (на входе в аппарат);
- к конечная величина (на выходе из аппарата);
- с сплошная фаза;
- x фаза, концентрация в которой обозначена x, X или cx;
- y фаза, концентрация в которой обозначена y, Y или c_y;

j, *k*, *l*, *h* — номера компонентов в многокомпонентных системах.

Массообменные процессы, широко используемые для очистки веществ и разделения смессй, весьма многообразны. Они различаются агрегатным состоянием взаимодействующих фаз, характером их движения в аппарате, наличием' параллельно протекающих процессов теплообмена. Этим обусловлено большое разнообразие применяемых на практике массообменных аппаратов. В той или иной степени различаются и методы их расчета. В данной главе рассмотрены наиболее распространенные массообменные процессы: абсорбция, десорбция и жидкостная экстракция в противоточных колоннах, непрерывная ректификация бинарных и многокомпонентных систем, периодическая адсорбция в аппаратах с неподвижным слоем сорбента.

3.1. АБСОРБЦИЯ, ЖИДКОСТНАЯ ЭКСТРАКЦИЯ, ДЕСОРБЦИЯ

Применяемые для абсорбционных и экстракционных процессов массообменные annaраты принято подразделять на две группы: с непрерывным и со ступенчатым контактом фаз. Принципиальные схемы аппаратов обоих типов показаны на рис. 3.1. К аппаратам

с непрерывным контактом фаз относятся, например, насадочные колонны, роторно-дисковые, вибрационные и пульсационные экстракторы. Основная цель технологического расчета этих аппаратов состоит в определении высоты и поперечного сечения рабочих зон. К аппаратам со *ступенчатым контактом фаз* относятся тарельчатые колонны, смесительно-отстойные экстракторы. Задачей их расчета является определение размеров и числа ступеней.

При рассмотрении методов расчета процессов абсорбции, десорбции и жидкостной экстракции ограничимся простым случаем, когда в массопереносе участвует лишь один из компонентов. Тогда каждую из взаимодействующих фаз можно считать бинарным раствором, состоящим из распределяемого комионента (участвующее в массопереносе вещество)

		На входе в анпарат			На выходе из аппарата				
Единицы измерения концентраций рас-	В аппа-	исходная смесь			экстра-	очищенная смесь			экстра-
пределяемого компо- нента или расходов фаз	рате	при аб- сорб- ции	при экст- рак- ции	аб- сор- бент	гент или десорби- рующий газ	при аб- сорб- ции	прн экстрак- ции или десорбции	аб- сор- бент	гент нли десорби- рующнй газ
масс. илн мол. долн кг/м ³ или кмоль/м ³ кг/кг ин. комп. или кмоль/кмоль ин. комп.	y, x c_y, c_x Y, X	$egin{array}{l} y_{0} \ c_{y,0} \ Y_{0} \ Y_{0} \end{array}$	$\frac{X_{\rm H}}{C_{X,\rm H}}$ $\frac{C_{X,\rm H}}{X_{\rm H}}$	$\frac{x_u}{c_{x,u}}$	ун _{Су.н} Үп	Ук С _{У.К} Үк	х _к С _{х.к} Хк	х _к с _{х. к} Хк	Ук С _{У. н} Үк
кг/с или кмоль/с м ³ /с кг ин. комп/с или кмоль ин. комп./с	$\begin{array}{l} G, \ L \\ V_y, \ V_x \\ G_{\rm int}, \ L_{\rm int} \end{array}$	$egin{array}{c} G_{\mathfrak{H}} \ V_{g,\mathfrak{H}} \ G_{\mathfrak{H}\mathfrak{H}} \end{array}$	Lи V _{x.и} Lии	Ln V _{х. п} L ин	G n V y. п G ин	G⊾ V _{у.к} G _{ин}	Lн V _{x. к} Lни	L _к V _{x.к} L _{нн}	Gк V _{У.К} Gни

Таблица 3.1. Обозначения для составов и расходов фаз

и инертного компонента (остальные компоненты данной фазы), для характеристики состава которого достаточно указать концентрацию распределяемого компонента. Обозначения, использованные при различных способах выражения концентраций и расходов фаз, приведены в табл. 3.1.

В качестве исходных данных при расчете абсорбционных и экстракционных процессов обычно заданы начальные составы разделяемой смеси и разделяющего агента (абсорбента, экстрагента или десорбирующего газа), начальный расход исходной смеси, а также конечная концентрация в ней извлекаемого компонента. Значение этой конечной концентрации должно удовлетворять следующим условиям:

при абсорбции

$$y_{\kappa} > y^{*}(x_{\mu}); \quad c_{y,\kappa} > c_{y}^{*}(c_{x,\mu}); \quad Y_{\kappa} > Y^{*}(X_{\mu});$$
 (3.1)

при десорбции и экстракции

$$> x^{\star}(y_{\mathfrak{n}}), \quad c_{x,\kappa} > c_{x}^{\star}(c_{y,\mathfrak{n}}); \quad X_{\kappa} > X^{\star}(Y_{\mathfrak{n}}). \tag{3.2}$$

Здесь и ниже $y'(), x'(), c'_y(), c'_x(), Y'()$ или X'() обозначают (в соответствующих единицах) концентрации распределяемого компонента в фазе, находящейся в равновесии с другой фазой, концентрация распределяемого компонента в которой указана в скобках.

Наиболее важный конечный результат расчета — определение расхода разделяющего агента и основных размеров массообменного аппарата. Решение этой задачи может быть получено методами оптимизации, в простейшем случае — путем сопоставления результатов расчета размеров аппарата и затрат на осуществление процесса при различных расходах абсорбента, экстрагента или десорбирующего газа.

3.1.1. Материальный баланс

Материальный баланс непрерывного процесса абсорбции, десорбции или экстракции в установившихся условиях может быть представлен следующей системой уравнений:

$$G_{u}y_{u} + L_{u}x_{u} - G_{\kappa}y_{\kappa} - L_{\kappa}x_{\kappa} = 0;$$

$$G_{u}(1 - y_{u}) - G_{\kappa}(1 - y_{\kappa}) = 0;$$

$$L_{u}(1 - x_{u}) - L_{\kappa}(1 - x_{\kappa}) = 0;$$

$$L_{u} + G_{u} - L_{\kappa} - G_{\kappa} = 0.$$

(3.3)

В этих уравнениях расходы фаз должны быть массовыми, если концентрации выражены в масс. долях; при выражении составов в мол. долях расходы должны быть мольными. Если составы фаз характеризуются объемными концентрациями (в кг/м³ или кмоль/м³), система уравнений (3.3) принимает следующий вид:

$$V_{y,n}c_{y,n} + V_{x,n}c_{x,n} - V_{y,\kappa}c_{y,\kappa} - V_{x,\kappa}c_{x,\kappa} = 0;$$

$$V_{y,n}(\rho_{y,n} - c_{y,n}) - V_{y,\kappa}(\rho_{y,\kappa} - c_{y,\kappa}) = 0;$$

$$V_{x,n}(\rho_{x,n} - c_{x,n}) - V_{x,\kappa}(\rho_{x,\kappa} - c_{x,\kappa}) = 0,$$
(3.4)

где ρ_{и.} и ρ_{и.к} — соответственно начальная и конечная плотности газовой фазы или экстрагента; ρ_{x, и} и ρ_{x, κ} — соответственно начальная и конечная плотности абсорбента, экстрагируемого раствора или жидкости, очищаемой в процессе десорбции.

Составление материальных балансов для процессов с одним распределяемым компонентом упрощается при выражении составов фаз в относительных концентрациях (в кг/кг ин. комп. или кмоль/кмоль ин. комп.) Тогда материальный баланс по распределяемому компоненту принимает вид:

$$G_{\rm BH}(Y_{\rm B}-Y_{\rm K}) - L_{\rm BH}(X_{\rm K}-X_{\rm K}) = 0, \qquad (3.5)$$

где

$$G_{\mu\mu} = G_{\mu}(1 - y_{\mu}) = G_{\kappa}(1 - y_{\kappa}) = G_{\mu}/(1 + Y_{\mu}) = G_{\kappa}/(1 + Y_{\kappa}),$$

$$L_{\mu\mu} = L_{\mu}(1 - x_{\mu}) = L_{\kappa}(1 - x_{\kappa}) = L_{\mu}/(1 + X_{\mu}) = L_{\kappa}/(1 + X_{\kappa})$$
(3.6)

Полный массовый или мольный поток распределяемого компонента из одной фазы в другую во всем аппарате для процесса абсорбции может быть найден из уравнений:

$$M = G_{u}y_{u} - G_{\kappa}y_{\kappa} = L_{\kappa}x_{\kappa} - L_{u}x_{u} = G_{u} - G_{\kappa} = L_{\kappa} - L_{u} = V_{y,u}c_{y,u} - V_{y,\kappa}c_{y,\kappa} = V_{x,\kappa}c_{x,\kappa} - V_{x,u}c_{x,u} = \rho_{y,u}V_{y,u} - \rho_{y,\kappa}V_{y,\kappa} = \rho_{x,\kappa}V_{x,\kappa} - \rho_{x,u}V_{x,u} = G_{uu}(Y_{u} - Y_{\kappa}) = L_{uu}(X_{\kappa} - X_{u})$$
(3.7)

Для десорбции или жидкостной экстракции массовый поток по уравнению (3.7) получают с отрицательным знаком.

Работу массообменного аппарата часто характеризуют степенью извлечения распределяемого компонента. Для абсорбции степень извлечения с может быть определена следующим образом:

$$s = M/(G_{u}y_{u}) = M/(V_{y_{u}}c_{y_{u}}) = M/(G_{uu}Y_{u}).$$
(3.8)

Аналогичные зависимости для десорбции или экстракции имеют вид:

$$s = M/(L_{u}x_{u}) = M/(V_{x,u}c_{x,u}) = M/(L_{uu}X_{u}).$$
(3.9)

Так как конечная концентрация в той фазе, из которой извлекается распределяемый компонент, должна удовлетворять условиям (3.1) или (3.2), то степень извлечения в общем случае ограничена. Если извлекающая фаза (абсорбент, экстрагент или десорбирующий газ) поступает в аппарат с каким-то содержанием распределяемого компонента, отличным от нуля, то степень извлечения не может превышать некоторого предельного значения s_{max}, меньшего единицы. Для абсорбции максимально возможная степень извлечения может быть найдена из уравнения

$$s_{\max} = \frac{y_{H} - y^{*}(x_{H})}{y_{H}[1 - y^{*}(x_{H})]} = 1 - \frac{Y^{*}(X_{H})}{Y_{H}}$$
(3.10)

Аналогичное уравнение для десорбции или жидкостной экстракции имеет вид:

$$s_{\max} = \frac{x_{u} - x^{*}(y_{u})}{x_{u} \left[1 - x^{*}(y_{u})\right]} = 1 - \frac{X^{*}(Y_{u})}{X_{u}}$$
(3.11)

Кроме уравнений (3.3) — (3.6), характеризующих работу всего аппарата, для любого процесса должны соблюдаться уравнения внутреннего материального баланса, описывающие работу части массообменного аппарата или отдельных его ступеней.

Для аппаратов с непрерывным контактом такие балансовые соотношения обычно составляют на основе модели идеального вытеснения; они представляют собой зависимости между средними составами взаимодействующих фаз в каком-либо сечении аппарата (рис. 3.1, *a*). Материальные балансы такого рода для распределяемого компонента называют уравнениями рабочих линий. В зависимости от способа выражения составов фаз рабочие линии могут быть описаны одним из следующих уравнений:

$$y = \frac{L}{G}x + \frac{G_{\mathsf{H}}y_{\mathsf{H}}}{G} - \frac{L_{\mathsf{K}}x_{\mathsf{H}}}{G} = \frac{L}{G}x + \frac{G_{\mathsf{K}}y_{\mathsf{K}}}{G} - \frac{L_{\mathsf{H}}x_{\mathsf{H}}}{G}; \qquad (3.12)$$

$$c_{y} = \frac{V_{x}c_{x}}{V_{y}} + \frac{V_{y,H}c_{y,H}}{V_{y}} - \frac{V_{x,K}c_{x,K}}{V_{y}} = \frac{V_{x}c_{x}}{V_{y}} + \frac{V_{y,K}c_{y,K}}{V_{y}} - \frac{V_{x,H}c_{x,H}}{V_{y}};$$
(3.13)

$$Y = \frac{L_{\text{HH}}}{G_{\text{HH}}} X + Y_{\text{H}} - \frac{L_{\text{HH}}}{G_{\text{HH}}} X_{\text{K}} = \frac{L_{\text{HH}}}{G_{\text{HH}}} X + Y_{\text{K}} - \frac{L_{\text{HH}}}{G_{\text{HH}}} X_{\text{H}}.$$
 (3.14)

При выражении составов фаз в относительных концентрациях уравнения рабочих линий линейны. При использовании других концентраций рабочие линии являются прямыми только в том случае, когда в процессе массообмена расходы фаз изменяются мало, т. е. если можно принять:

или

$$L \approx L_{\rm w} \approx L_{\rm K}, \qquad G \approx G_{\rm w} \approx G_{\rm K}$$
$$V_{\rm x} \approx V_{\rm x, u} \approx V_{\rm x, K}, \qquad V_{\rm y} \approx V_{\rm y, B} \approx V_{\rm y, K}.$$

Если расходы фаз меняются существенно, уравнения (3.12) и (3.13) должны быть дополнены балансовыми соотношениями для инертных компонентов, позволяющими находить расходы фаз внутри аппарата:

$$L(1-x) = L_{\mu}(1-x_{\mu}) = L_{\kappa}(1-x_{\kappa}),$$

$$G(1-y) = G_{\mu}(1-y_{\mu}) = G_{\kappa}(1-y_{\kappa}),$$

$$G-L = G_{\kappa} - L_{\mu} = G_{\mu} - L_{\kappa};$$

$$V_{x}(\rho_{x} - c_{x}) = V_{x,\mu}(\rho_{x,\mu} - c_{x,\mu}) = V_{x,\kappa}(\rho_{x,\kappa} - c_{x,\kappa}),$$

$$V_{y}(\rho_{y} - c_{y}) = V_{y,\mu}(\rho_{y,\kappa} - c_{y,\mu}) = V_{y,\kappa}(\rho_{y,\kappa} - c_{y,\kappa}),$$
(3.16)

где ρ_x и ρ_y — плотности взаимодействующих фаз в одном сечении аппарата.

Для противоточных аппаратов со ступенчатым контактом фаз (рис. 3.1, б) уравнения рабочих линий связывают концентрацию распределяемого компонента в фазе, выходящей из какой-либо ступени (y_n , $c_{y,n}$ или Y_n), с его концентрацией в другой фазе, поступающей на ту же ступень (x_{n+1} , $c_{x,n+1}$ или X_{n+1}). Эти уравнения могут быть представлены в следующем виде:

$$y_{n} = \frac{L_{n+1}}{G_{n}} x_{n+1} + \frac{G_{n} y_{n}}{G_{n}} - \frac{L_{\kappa} x_{\kappa}}{G_{n}} = \frac{L_{n+1}}{G_{n}} x_{n+1} + \frac{G_{\kappa} y_{\kappa}}{G_{n}} - \frac{L_{\kappa} x_{\kappa}}{G_{n}}; \qquad (3.17)$$

$$c_{y,n} = \frac{V_{x,n+1}}{V_{y,n}} c_{x,n+1} + \frac{V_{y,n}c_{y,n}}{V_{y,n}} - \frac{V_{x,n}c_{x,n}}{V_{y,n}} = \frac{V_{x,n+1}}{V_{y,n}} c_{x,n+1} + \frac{V_{y,n}c_{y,n}}{V_{y,n}} - \frac{V_{x,n}c_{x,n}}{V_{y,n}}; \quad (3.18)$$

$$Y_{n} = \frac{L_{\text{HH}}}{G_{\text{HH}}} X_{n+1} + Y_{\text{H}} - \frac{L_{\text{HH}}}{G_{\text{HH}}} X_{\text{K}} = \frac{L_{\text{HH}}}{G_{\text{HH}}} X_{n+1} + Y_{\text{K}} - \frac{L_{\text{HH}}}{G_{\text{HH}}} X_{\text{H}}, \qquad (3.19)$$

где L_{n+1} и G_n — массовые или мольные расходы; $V_{x,n+1}$ и $V_{y,n}$ — объемные расходы фаз, выходящие с соответствующих ступеней.

Уравнения (3.17) — (3.19) справедливы в отсутствие взаимного уноса фаз (структура потоков внутри ступеней может быть произвольной). Если расходы существенно меняются внутри аппарата, т. е. если L_{n+1} , G_n , $V_{x,n+1}$ и $V_{y,n}$ заметно зависят от номера ступени, то уравнения (3.17) и (3.18) нелинейны и должны быть дополнены уравнениями, аналогичными уравнениям (3.15) и (3.16):

$$L_{n+1}(1 - x_{n+1}) = L_{n}(1 - x_{n}) = L_{\kappa}(1 - x_{\kappa}),$$

$$G_{n}(1 - y_{n}) = G_{n}(1 - y_{n}) = G_{\kappa}(1 - y_{\kappa}),$$

$$G_{n} - L_{n+1} = G_{\kappa} - L_{\kappa} \approx G_{\mu} - L_{\kappa};$$

(3.20)

$$V_{x,n+1}(\rho_{x,n+1} - c_{x,n+1}) = V_{x,n}(\rho_{x,n} - c_{x,n}) = V_{x,n}(\rho_{x,n} - c_{x,n}), \qquad (3.21)$$

$$V_{y,n}(\rho_{y,n}-c_{y,n})=V_{y,n}(\rho_{y,n}-c_{y,n})=V_{y,\kappa}(\rho_{y,\kappa}-c_{y,\kappa}),$$

где $\rho_{x,n+1}$ и $\rho_{y,n}$ — плотности фаз, выходящих из соответствующей ступени.

3.1.2. Расчет числа теоретических ступеней

Расчет любого массообменного процесса обычно начинают с определения числа теоретических ступеней N_{τ} , которому должен быть эквивалентен аппарат, требующийся для его осуществления. Определение N_{τ} основывается на предположении, что процесс проводится в аппарате со ступенчатым контактом фаз, каждая из ступеней которого является теоретической. Тогда из каждой ступени должны выходить фазы, находящиеся в равновесии. Для процессов с одним распределяемым компонентом, протекающих в изотермических условиях (изменением давления внутри аппарата при расчете массообменных процессов обычно пренебрегают), условие равновесия выходящих из каждой ступени фаз может быть представлено в виде уравнений

$$y_n = y^*(x_n); \quad c_{y,n} = c_y^*(c_{x,n}); \quad Y_n = Y^*(X_n).$$
 (3.22)

Расчет числа теоретических ступеней проводят с помощью одного из уравнений (3.22), в зависимости от вида используемых концентраций, и уравнений (3.17) — (3.21), которые должны соблюдаться для всех ступеней (т. е. для каждого n). Возможная схема расчета показана на рис. 3.2. Расчет начинают с того, что из исходных данных, включающих начальные расходы и составы фаз и конечную концентрацию распределяемого компонента в той фазе, из которой его извлекают, на основе материального баланса процесса определяют конечный состав другой фазы и конечные расходы обеих фаз. Далее, последовательно, от ступени к ступени, определяют составы фаз, выходящих со всех ступеней. Концентрации в газовой фазе (при абсорбции или десорбции) или в экстрагенте (при экстракции) находят из уравнения (3.22), а состав другой фазы — из уравнений (3.17) — (3.21). Расчет продолжают до тех пор. пока концентрация y_{α} не станет меньше y_{κ} (при абсорбции) или, наоборот, не превысит ик (при десорбции и экстракции). Номер ступени, при которой это условие удовлетворяется, равен числу теоретических ступеней $N_{ au}$, при котором может быть обеспечена заданная степень извлечения распределяемого компонента. Если составы фаз выражают в кг/м³ или кмоль/м³, то необходимы данные по плотности фаз, которые требуются для определения расходов на всех ступенях из уравнений (3.21), если в процессе массообмена происходит существенное изменение объемов фаз. Алгоритм расчета, показанный на рис. 3.2, часто выполняют графически, строя ступенчатую линию между рабочей линией и линией равновесия [1].

Пример 1. Извлечение брома из водного раствора, содержащего 1 % (масс.) брома, производят экстракцией тетрахлоридом углерода. Определить, какому числу теоретических ступеней должен быть эквивалентен аппарат для извлечения 95 % брома. Расход водного раствора 15 кг/с, экстрагента 1.2 кг/с. На входе в экстрактор тетрахлорид углерода не содержит брома. Взаимной растворимостью воды и экстрагента пренебречь. Температура 25 °C.

Материальный баланс процесса. Из уравнений (3.7) и (3.9) следует:

$$M = sL_{\mu}x_{\mu} = 0.95 \cdot 15 \cdot 0.01 = 0.1425 \text{ kr/c};$$

$$L_{\kappa} = L_{u} - M = 15 - 0.1425 = 14,86 \ \kappa r/c;$$

$$G_{\kappa} = G_{u} + M = 1,2 + 0.1425 = 1,3425 \ \kappa r/c;$$

$$x_{\kappa} = (L_{u}x_{u} - M)/L_{\kappa} = (15 \cdot 0.01 - 0.1425)/14,86 = 0.000505 \ \text{масс. доли};$$

$$y_{\kappa} = (M + G_{u}y_{u})/G_{\kappa} = 0.1425/1,3425 = 0.1061 \ \text{масс. доли}.$$

Равновесие между фазами. Имеются следующие экспериментальные данные по равновесному распределению брома между водой и тетрахлоридом углерода при 25 °C [2]: Содержание брома. % (масс.):

в воде	0,244	0,472	0,566	0,661	0,774
B CCl ₄	4,31	8,55	10,87	12,43	14,51

Расчет числа теоретических ступеней. Начиная отсчет ступеней (в соответствии с рис. 3.1, б) от входа экстрагента, для первой теоретической ступени получим значения

$$x_1 = x_8 = 0,000505$$
 масс. доли; $y_1 = y'(x_1) = 0,00892$ масс. доли

найденные интерполяцией из приведенных в табличном виде равновесных данных.

Из уравиений (3.20) находим расход экстрагента, уходящего с первой ступени на вторую, и расход водного раствора, поступающего на первую ступень со второй:

$$G_1 = G_n(1 - y_n)/(1 - y_1) = 1,2/(1 - 0,00892) = 1,211 \text{ Kr/c}; \qquad L_2 = G_1 - G_n + L_{\kappa} = 1,211 - -1,2 + 14,86 = 14,87 \text{ Kr/c}.$$

Рис. 3.2. Алгоритм расчета числа теоретических ступеней для изотермических процессов Рис. 3.3. Схема расчета процесса неизотермической абсорбции

Теперь с помощью уравнения (3.17) определим содержание брома в воде, поступающей на первую ступень:

$$x_2 = \frac{G_1}{L_2} y_1 + x_{\kappa} - \frac{G_{\kappa}}{L_2} y_{\mu} = \frac{1,211}{14,86} \cdot 0,00892 + 0,000505 - 0 = 0,001232$$
 масс. доли

Аналогичным образом продолжаем расчет для второй, третьей и последующих ступеней. Результаты этих расчетов приведены ниже (концептрации в масс. долях, расходы в кг/с)

$$y_2 = 0.02176$$
, $G_2 = 1.227$; $L_3 = 14.88$, $x_3 = 0.002299$; $y_3 = 0.04061$, $G_3 = 1.251$, $L_4 = 14.90$, $x_4 = 0.003915$; $y_4 = 0.07053$, $G_4 = 1.291$, $L_5 = 14.94$, $x_5 = 0.006599$. $y_5 = 0.1241$, $y_5 = 0.1241$, $y_5 = 0.1241$, $y_5 = 0.006599$.

Как видим, концентрация брома в экстрагенте, выходящем с 5-й ступени, превышает его конечную концентрацию. Следовательно, для данного процесса требуется аппарат, эквивалентный приблизительно пяти теоретическим ступеням.

В частном случае, когда линия равновесия может быть аппроксимирована прямой и когда расходы фаз мало меняются ($L_{\mu} \approx L_{\kappa} = L$, $G_{\mu} \approx G_{\kappa} = G$, $V_{x,\mu} \approx V_{x,\kappa} = V_{x}$, $V_{y,\mu} \approx V_{y,\kappa} = V_{y}$), или когда для характеристики составов используют относительные концентрации, число теоретических ступеней может быть рассчитано аналитически:

$$N_{\tau} = \frac{\ln \frac{y_{\kappa} - mx_{\pi} - m_{0}}{y_{\mu} - mx_{\kappa} - m_{0}}}{\ln (mG/L)} = \frac{\ln \frac{c_{y,\kappa} - mc_{x,\kappa} - m_{0}}{c_{y,\mu} - mc_{x,\kappa} - m_{0}}}{\ln (mV_{y}/V_{x})} = \frac{\ln \frac{Y_{\kappa} - mX_{\mu} - m_{0}}{Y_{\mu} - mX_{\kappa} - m_{0}}}{\ln (mG_{\mu\mu}/L_{\mu\mu})},$$
(3.23)

где *т* и *m*₀ — параметры линейной аппроксимации равновесной кривой:

$$y = mx + m_0$$
 или $c_y = mc_x + m_0$ или $Y = mX + m_0$. (3.24)

Уравнение (3.23) неудобно использовать в тех случаях, когда факторы массопередачи mG/L или mV_y/V_x близки к единице. При факторе массопередачи, равном единице, число теоретических ступеней можно найти с помощью уравнений

$$N_{\tau} = \frac{y_{\mu} - y_{\kappa}}{y_{\mu} - mx_{\kappa} - m_{0}} = \frac{y_{\mu} - y_{\kappa}}{y_{\kappa} - mx_{\mu} - m_{0}} = \frac{c_{y,\mu} - c_{y,\kappa}}{c_{y,\mu} - mc_{\kappa,\kappa} - m_{0}} = \frac{c_{y,\mu} - c_{y,\kappa}}{r_{y,\mu} - mc_{\kappa,\mu} - m_{0}} = \frac{Y_{\mu} - Y_{\kappa}}{Y_{\mu} - mX_{\kappa} - m_{0}} = \frac{Y_{\mu} - Y_{\kappa}}{Y_{\kappa} - mX_{\mu} - m_{0}}.$$
(3.23a)

Пример 2. Очистку водорода от CO₂ производят абсорбцией под давлением 2 МПа водой, содержащей 0,001 % (мол.) CO₂ (см. примеры 4 и 5). Из абсорбера выходит 4,44 кмоль/с раствора, содержащего 9,14·10⁻⁵ мол. доли диоксида углерода. Выделение поглощенного CO₂ проводят десорбцией за счет дросселирования до давления 1 ат (9,81·10⁴ Па) с последующей продувкой воздухом. Считая, что дросселирование протекает в равновесных условиях, определить, до какого значения уменьшится содержание CO₂ после дросселирования и при каком расходе воздуха (содержащего 0,05% (мол.) CO₂) концентрация диоксида углерода в воде может быть снижена до 0,001 % (мол.) в аппарате, эквивалентном одной теоретической ступени. Принять, что обе стадии десорбции протекают при 25°С. Испарением воды и растворимостью воздуха пренебречь.

Концентрация СО₂ после дросселирования. Константа Генри для диоксида углерода при 25 °С равна 1,65·10⁸ Па [3]. Следовательно, при давлении I ат равновесное распределение СО₂ может быть описано (при выражении концентрации в мол. долях) в виде уравнения

$$y^{*} = 1.65 \cdot 10^{8} x / 9.81 \cdot 10^{4} = 1682 x.$$

Если пренебречь летучестью воды, то концентрация диоксида углерода в выделяющемся при дросселировании газе должна быть равна единице и, следовательно, концентрация CO₂ в воде после дросселирования составит

$$x = 1/1682 = 5,94 \cdot 10^{-4}$$
 мол. доли.

Расход воздуха на второй стадии десорбции. Поскольку концентрация СО₂ в жидкой фазе очень мала, изменением расхода жидкости в процессе десорбции можно пренебречь. Тогда материальный баланс процесса может быть представлен на основе уравнений (3.3) в следующем виде:

$$G_{\mu}y_{\mu} - G_{\kappa}y_{\kappa} = L(x_{\kappa} - x_{\mu}); \quad G_{\kappa} = G_{\mu}(1 - y_{\mu})/(1 - y_{\kappa}).$$

Подставив второе уравнение в первое и решив его относительно начального расхода газа, получим:

$$G_{\mu} = L(x_{\mu} - x_{\kappa})(1 - y_{\kappa})/(y_{\kappa} - y_{\mu}).$$

Начальная концентрация CO₂ в воде в данном случае равна $x_{\kappa} = 5.94 \cdot 10^{-4}$ мол. доли, конечная $x_{\kappa} = 10^{-5}$ мол. доли. Так как аппарат эквивалентен одной теоретической ступени, то конечные составы фаз должны находиться в равновесии и, следовательно, $y_{\kappa} = 1682x_{\kappa} = 0.01682$ мол. доли. Подставляя эти значения, найдем требуемый расход воздуха:

$$G_{\mu} = 4,44 (5,94 \cdot 10^{-4} - 10^{-5}) (1 - 0,01682) / (0,01682 - 5 \cdot 10^{-4}) = 0,156$$
 кмоль/с.

Расчет числа теоретических ступеней для неизотермических процессов является гораздо более сложной задачей, так как для каждой ступени необходимо найти температуру выходящих из нее фаз (которая должна быть для них одинаковой). Для определения температур систему уравнений материального баланса (3.3) — (3.6) и (3.12) — (3.21) необходимо дополнить уравнениями теплового баланса для всего аппарата и для одной ступени:

$$G_{\mu}I_{\mu} + L_{\mu}i_{\mu} - G_{\kappa}I_{\kappa} - L_{\kappa}i_{\kappa} = 0; \qquad (3.25)$$

$$G_{n-1}I_{n-1} + L_{n+1}i_{n+1} - G_nI_n - L_ni_n = 0, (3.26)$$

где I_{n} , I_{κ} , i_{n} , i_{κ} — начальные и конечные удельные энтальпии соответствующих фаз (см. рис. 3.1, б); I_{n} , I_{n-1} , i_{n} , i_{n+1} — энтальпия фаз на выходе из ступени, номер которой указывается индексом. В тех случаях, когда существенным является теплообмен с окружающей средой, при отводе тепла каким-либо хладоагентом (в процессах абсорбции) или подводе его (при десорбции), в уравнения (3.25) и (3.26) необходимо добавить члены, характеризующие соответствующие тепловые потоки.

При расчете неизотермических процессов кроме параметров, характеризующих входные потоки, в качестве исходных данных обычно задаются числом теоретических ступеней. Повторение расчетов при различном соотношении расходов фаз и числе теоретических ступеней позволяет найти условия, при которых могут быть получены определенные конечные составы. Возможная схема расчета для неизотермической абсорбции показана на рис. 3.3. В соответствии с этой схемой сначала задаются составом и температурой газа на выходе из абсорбера. Затем из материального и теплового балансов для всего процесса определяют конечные расходы фаз, температуру и состав выходящей из абсорбера жидкости. После этого проводят последовательный расчет расходов, составов и температур для всех ступеней. Полученные в результате расчета значения температуры и концентрации в газе на последней ступени сопоставляют с величинами $y_{\rm K}$ и $t_{\rm r,K}$, которыми задавались в начале расчета. При значительном расхождении расчет повторяют. В схеме расчета, приведенной на рис. 3.3, использован метод простых итераций: за новые значения конечной концентрации и температуры газа принимают значения, полученные в предыдущей итерации.

Пример 3. Абсорбцию паров *н*-гексана из смеси с метаном предполагается проводить парафинистым поглотительным маслом, содержащим I % (мол.) гексана. Концентрация гексана в исходной смеси 18 % (мол.). ее расход 0,1 кмоль/с, температура 25 °C. Определить степень извлечения гексана в абсорбере, эквивалентном двум теоретическим ступеням. при расходе поглотительного масла 0,07 кмоль/с. Принять, что процесс абсорбции протекает при нормальном давлении в адиабатических условиях. Начальиая температура абсорбента 25 °C, его теплоемкость 300 кДж/(кмоль·К). Летучестью масла и растворимостью в нем метана пренебречь.

Равновесие между фазами. Растворы *н*-гексана в парафинистом масле можно считать идеальпыми, иодчиняющимися закону Рауля. Зависимость давлення насыщенного пара *н*-гексана от температуры характеризуется следующим интерполяционным уравнением [5]

$$\ln P^0 = \frac{15,8366 - \frac{2697,55}{(T - 48,78)}}{$$

где P⁰ — давление насыщенного пара; мм рт. ст.; T — температура, K.

Следовательно, равновесное распределение гексана между поглотительным маслом и метаном при выражении его концентраций в мол. долях можно описать завнеимостью

$$y^* = \frac{P^0}{p} x = \frac{x}{760} \exp\left(15,8366 - \frac{2697,55}{7-48,78}\right)$$
$$y^* = 9930x \exp\left(-\frac{2697,55}{224,37+t}\right)$$

или

Мольные энтальпии газа и жидкости. Для некоторого упрощения расчетов пренебрежем влиянием температуры на теплоемкость компонентов и теплоту испарения гексана и используем в расчетах значения этих параметров при 30 °C.

При этой температуре теплоемкость газообразного метана равна 2,24 кДж/(кг·К), жидкого гексана 2,27 кДж/(кг·К), теплота испарения гексана 362,5 кДж/кг [6] Так как молекулярные массы метана и гексана равны соответственно 16,04 и 86,18, то их мольные теплоемкости равны 2,24 · 16,04 = 35,9 кДж/(кмоль·К) и 2,27 · 86,18 = 196 кДж/(кмоль·К). Мольная теплота испарения гексана равна 362,5 · 86,18 = 31200 кДж/моль. С помощью этих данных, принимая за стандартное состояние для гексана и абсорбента их состояние в жидком виде при 0°С, а для метана — его состояние в газообразном виде при 0°С, можно рассчитать мольные энтальпии жидкости и газа (*i* и *i*) по следующим уравнениям:

$$i = [196x + 300(1-x)]t;$$

$$I = [196y + 35,9(1-y)]t + 31200y.$$

В соответствии с этими уравнениями начальные энтальпии абсорбента и исходного газа равны:

$$i_{\text{H}} = [196 \cdot 0.01 + 300(1 - 0.01)] 25 = 7470 \ \text{к} \mbox{Д} \mbox{к} \mbox{кмоль};$$

 $I_{\text{H}} = [196 \cdot 0.18 + 35,9(1 - 0.18)] 25 + 31200 \cdot 0.18 = 7230 \ \text{к} \mbox{Д} \mbox{} \mbox{к} \mbox{к} \mbox{кмоль}.$

Материальный и тепловой балансы процессов. Температура газа, выходящего из противоточного абсорбера, обычно на несколько градусов выше начальной температуры абсорбента. Примем в качестве первого приближения конечную температуру газа равной 27°С, а степень извлечения гексана — 95%. Тогда из уравненни (3.8), (3.7) и (3.3) находим:

$$M = s G_{\rm H} y_{\rm H} = 0.95 \cdot 0.1 \cdot 0.18 = 0.0171 \ \text{кмоль/c};$$

$$G_{\rm K} = G_{\rm H} - M = 0.1 - 0.0171 = 0.0829 \ \text{кмоль/c};$$

$$L_{\rm K} = L_{\rm H} + M = 0.07 + 0.0171 = 0.0871 \ \text{кмоль/c};$$

$$x_{\rm K} = \frac{L_{\rm K} - L_{\rm H} \ (1 - x_{\rm H})}{L_{\rm H}} = \frac{0.0871 - 0.07 \ (1 - 0.01)}{0.0871} = 0.2044 \ \text{мол. доли};$$

$$y_{\rm K} = \frac{G_{\rm K} - G_{\rm H} \ (1 - y_{\rm H})}{G} = \frac{0.0829 - 0.1 \ (1 - 0.18)}{0.0829} = 0.01086 \ \text{мол. доли}.$$

Уравнение (3.25) позволяет определить конечные энтальпию и температуру жидкости:

$$I_{\kappa} = [196y_{\kappa} + 35.9(1 - y_{\kappa})] I_{\kappa} + 31200y_{\kappa} = [196 \cdot 0.01086 + 35.9(1 - 0.01086)] 27 + 31200 \cdot 0.01086 = 1360 кДж/кмоль;$$

$$i_{\kappa} = \frac{G_{\kappa}I_{\kappa} + L_{\kappa}i_{\pi} - G_{\kappa}I_{\kappa}}{L_{\kappa}} = \frac{0.1 \cdot 7230 + 0.07 \cdot 7470 - 0.0829 \cdot 1360}{0.0871} = 13010 \text{ K} \text{Д} \text{ж}/\text{кмоль};$$

$$t_{\mathbf{x},\mathbf{x}} = \frac{i_{\mathbf{x}}}{196x_{\mathbf{x}} + 300 (1 - x_{\mathbf{x}})} = \frac{13\,010}{196 \cdot 0.2046 + 300 (1 - 0.2046)} = 46.7 \,^{\circ}\text{C}.$$

Расчет концентраций, расходов и температур для всех ступеней. Начинаем с первой ступени (n=1). Из предыдущих расчетов имеем:

$$x_1 = x_{\kappa} = 0,2046$$
 мол. доли; $t_1 = t_{\kappa,\kappa} = 46,7$ °C;
 $I_0 = I_{\mu} = 7230$ кДж/кмоль; $G_0 = G_{\mu} = 0,1$ кмоль/с;
 $L_1 = L_{\kappa} = 0,0871$ кмоль/с; $i_1 = i_{\kappa} = 13010$ кДж/кмоль

Полученное выше уравнение равновесия позволяет определить концентрацию гексана в газе, уходящем с первой ступени:

$$y_1 = y^* (x_1, t_1) = 9930x_1 \exp\left(-\frac{2697,55}{224,37+t_1}\right) = 9930 \cdot 0.2046 \exp\left(-\frac{2697,55}{224,37+46,7}\right) = = 0.0968$$
мол. долн.

Расход газа, уходящего с первой ступени, а также расход и состав жидкости, поступающей на первую ступень со второй, находим с помощью уравнений (3.20):

 $G_1 = G_n (1 - y_n) / (1 - y_1) = 0,1 (1 - 0,18) / (1 - 0,0968) = 0,0908$ кмоль/с; $L_2 = G_1 - G_n + L_\kappa = 0,0908 - 0,1 + 0,0871 = 0,0779$ кмоль/с; $x_2 = 1 - L_n (1 - x_n) / L_2 = 1 - 0,07 (1 - 0,01) / 0,0779 = 0,110$ мол. доли.

Из теплового баланса для первой ступени можно определить температуру поступающей на нее жидкости:

 $I_1 = [196y_1 + 35,9(1 - y_1)] t_1 + 31200y_1 = [196 \cdot 0,0968 + 35,9(1 - 0,0968)] 46,7 +$ $+ 31200 \cdot 0,0968 = 5420 кДж/моль;$

$$i_{2} = \frac{G_{1}I + L_{1}i_{1} - G_{0}I_{0}}{L_{2}} = \frac{0.0908 \cdot 5420 + 0.0871 \cdot 13\ 010 - 0.1 \cdot 7230}{0.0779} = 11\ 600\ \text{кДж/кмоль};$$
$$i_{2} = \frac{i_{2}}{196x_{2} + 300\ (1 - x_{2})} = \frac{11\ 600}{196 \cdot 0.110 + 300\ (1 - 0.110)} = 40.2\ ^{\circ}\text{C}.$$

В соответствии с алгоритмом, показанным на рис. 3.3 для последней (в данном случае второй) ступени, достаточно определить состав выходящего из нее газа:

$$y_2 = y^* (x_2, t_2) = 9930 \cdot 0,110 \exp\left(-\frac{2697,55}{224,37+40,2}\right) = 0,0408$$
 мол. доли.

Как видим, полученные значения конечной концентрации и температуры ($y_2 = 0.0408$ мол. доли, $t_2 = 40,2$ °C) значительно отличаются от тех, которыми задавались в начале расчета ($y_{\kappa} = 0.01086$ мол. доли, $t_{r,\kappa} = 27$ °C). Повторяя расчет и используя в качестве исходных данных конечные концентрации и температуры газа, найденные в предыдущем приближении, после нескольких итераций получим окончательные результаты, приведенные ниже (расчет был закончен, когда концентрация в газе совпала с точностью до 0,0001 мол. доли, а температура — с точностью до 0,05 °C:

s = 0,885; у_к = 0,0245 мол. доли;
t_к = 35.1 °C; L₁ = 0,0859 кмоль/с;
x₁ = 0,194 мол. доли; i₁ = 12400 кДж/кмоль;
t₁ = 44,3 °C; y₁ = 0,0838 мол. доли;
G₁ = 0,0895 кмоль/с; x₂ = 0,0813 мол. доли;
I₁ = 4800 кДж/кмоль; i₂ = 10200 кДж/кмоль;
t₂ = 35,05 °C; y₂ = 0,0246 мол. доли.

Следовательно, при проведении данного процесса в аппарате, эквивалентном двум теоретическим ступеням, степень извлечения гексана составит 88,5 %; при этом поглотительное масло нагреется в процессе абсорбции до 44,3 °C, а газ — до 35,1 °C.

3.1.3. Расход абсорбента, экстрагента, десорбирующего газа

В тех случаях, когда целью процесса является получение раствора с заданной концентрацией извлекаемого из исходной смеси вещества, расход экстрагента или абсорбента определяется материальным балансом. Если же основная цель заключается в разделении или очистке исходной смеси, и конечная концентрация в абсорбенте, экстрагенте или десорбирующем газе не фиксирована какими-либо внешними условиями (например, возможностями стадии регенерации), то процесс может осуществляться при различных расходах разделяющего агента. Этот расход, одиако, не может быть меньше некоторого минимального значения, обусловленного тем, что конечная концентрация в абсорбенте, экстрагенте или десорбирующем газе не может превышать некоторых предельных значений. Если использовать обозначения, приведенные в табл. 3.1, эти предельные концентрации для противоточных аппаратов должны удовлетворять следующим условиям:

при абсорбции

$$x_{\kappa} < x^{*}(y_{\kappa}); \quad c_{x,\kappa} < c_{x}^{*}(c_{y,\mu}); \quad X_{\kappa} < X^{*}(Y_{\mu});$$
(3.27)

при экстракции и десорбции

$$y_{\kappa} < y^{*}(x_{n}); \qquad \gamma_{\nu,\kappa} < c^{*}_{\nu}(c_{\nu,n}); \qquad Y_{\kappa} < Y^{*}(X_{n}), \qquad (3.28)$$

Максимально возможные концентрации, определяемые неравенствами (3.27) и (3.28), позволяют по уравнениям материального баланса найти минимальный расход абсорбента, экстрагента или десорбирующего газа. Эти минимальные расходы определяют область поиска оптимальных расходов методами оптимизации на основе какойлибо целевой функции, например по минимуму затрат на проведение всего процесса с учетом вспомогательных стадий (например, стадии регенерации абсорбента или экстрагента).

Для ориентировочного выбора оптимального расхода абсорбента можно использовать правило, в соответствии с которым произведение тангенса угла наклона линии равновесия (по отношению к положительному направлению оси, на которой отложен состав жидкой фазы) на отношение расхода газа к расходу жидкости на «бедном» конце колонны (т. е. там, где концентрации в обеих фазах минимальны) должно быть близко к 0,7 [7]. Для десорбции это значение должно быть около 1,4. Такое же значение можно принять в качестве ориентировочного оптимума и для экстракции.

Пример 4. Определить минимальный расход воды для процесса абсорбции CO₂ из смеси с водородом под давлением 2 МПа при степени извлечения 90 %. Расход исходной смеси, содержащей 1 % (мол.) CO₂, равен 0,9 м³/с (в пересчете на нормальные условия). Принять, что абсорбция протекает при 25 °C. Вода, поступающая на абсорбцию, содержит 0,001 % (мол.) диоксида углерода. Растворимостью водорода в воде пренебречь.

Равновесие между фазами. Так как константа Генри для СО₂ при 25 °С равна 1,65 10° Па (см. пример 2), то при выражении концентраций в мол. долях равновесие можно описать уравнением

$$y' = 1,65 \cdot 10^8 x / (2 \cdot 10^6) = 82,5x.$$

Максимально возможная концентрация СО₂ в воде. В соответствии с неравенством (3.27), теоретически максимальная концентрация диоксида углерода в воде, которая может быть получена в данных условиях, равна:

$$x_{\text{к max}} = x^* (y_{\text{H}}) = y_{\text{H}}/82,5 = 0.01/82,5 = 1.21 \cdot 10^{-4}$$
 мол. доли.

Минимальный расход воды. Как следует из уравнения (3.8), при заданной степени извлечения количество поглощенного водой СО₂ составит:

$$M = sG_{y_0} = sV_{y,y_0}/22, 4 = 0,9 \cdot 0,9 \cdot 0,01/22, 4 = 3,616 \cdot 10^{-4}$$
 кмоль/с.

Подставив выражение для M из уравнения (3.7) в уравнение (3.3), при $x_{\kappa} = x_{\kappa \max}$ получим:

$$L_{\text{Hmin}} = M(1 - x_{\text{кmax}}) / (x_{\text{кmax}} - x_{\text{s}}) = 3,616 \cdot 10^{-4} (1 - 1,21 \cdot 10^{-4}) / (1,21 \cdot 10^{-4} - 10^{-5}) = 3,257 \text{ кмоль/с.}$$

3.1.4. Выбор диаметра противоточных колонн

Площадь поперечного сечения противоточных аппаратов прежде всего должна быть такой, чтобы скорости фаз не превышали значений, при которых происходит нарушение противоточного движения — захлебывание аппарата. Методы расчета предельных

4 Под ред. Ю. И. Дытнерского

скоростей, скоростей захлебывания различаются для аппаратов, в которых контактируют газ с жидкостью, и для аппаратов, в которых взаимодействуют две жидкие фазы. В абсорбционных или десорбционных аппаратах предельная производительность обычно характеризуется минимальной фиктивной скоростью газа, выше которой при определенном соотношении расходов фаз наблюдается нарушение противотока. В экстракционных колоннах режим захлебывания определяется по предельному значению суммарной фиктивной скорости обеих фаз. Примеры расчета предельных нагрузок приведены в гл. 5-7 Предельные скорости фаз позволяют найти минимально допустимые при заданной производительности площади поперечного сечения аппаратов, и, следовательно, минимально требуемые диаметры для колони круглого сечения. Диаметр колонн, больший минимального, следует выбирать с учетом требований действующих стандартов таким, чтобы колонна работала при скоростях фаз, близких к оптимальным. Так, для тарельчатых колонн диапазон эффективной работы тарелок обычно характеризуется величиной F-фактора, равного произведению фиктивной скорости газовой фазы на квадратный корень из плотности газа $w_{\mu}\sqrt{\rho_{\mu}}$. Для колпачковых тарелок, например, рекомендуется [8], чтобы значение F-фактора находилось в пределах $0.48 < w_u \sqrt{\rho_u} < 2.8$ (при выражении скорости, отнесенной к полному сечению колонны, в м/с, плотности — в кг/м³).

При выборе диаметра колонны следует также учитывать возможность изменения нагрузок. В вакуумных колоннах наиболее важным фактором, определяющим площадь поперечного сечения, является допустимое значение гидравлического сопротивления. В большинстве случаев задача определения диаметра колонны не имеет однозначного решения. В зависимости от размеров внутренних устройств и режима работы аппарата могут изменяться диаметры колонн для проведения того или иного процесса. Так, на диаметр колонны влияет выбор размера насадки, расстояния между тарелками в тарельчатых колоннах, размера и частоты вращения ротора в роторнодисковых экстракторах, частоты и амплитуды вибраций в вибрационных колоннах. Поэтому задача определения диаметра аппарата является комплексной оптимизационной задачей, в процессе решения которой ищут не только оптимальный диаметр, но и по возможности наилучший вариант внутреннего устройства и режима работы.

3.1.5. Расчет высоты аппаратов с непрерывным контактом фаз

Известны два основных метода расчета высоты рабочей зоны аппаратов с непрерывным контактом фаз. Первый основан на определении числа теоретических ступеней, необходимого для осуществления процесса. В соответствии с этим методом рабочую высоту аппарата определяют по уравнению

$$H = N_{\rm r}({\rm B}\Im{\rm TC}), \qquad (3.29)$$

где ВЭТС — высота, эквивалентная теоретической ступени, определяемая по опытным данным или из эмпирических уравнений; например, для газожидкостных насадочных колонн применимо уравнение [9]

$$B \Im TC = 70 \left(\frac{\rho_y w_y}{d_u \mu_x} \right)^{-0.5}$$
(3.30)

где d_н — размер насадки, μ_x — вязкость жидкой фазы.

Более точен второй метод, базирующийся на применении основного уравнения массопередачи [1] Однако для применения этого метода требуется значительно большее число разнообразных данных. Высоту аппарата в этом случае обычно определяют из уравнения

$$H = H_{oy} n_{oy} = H_{ox} n_{ox}. \tag{3.31}$$

Входящие в это уравнение общие числа единиц переноса *n*_{оу} или *n*_{ох}, как правило, рассчитывают на основе модели идеального вытеснения, а общие высоты единиц

переноса H_{oy} или H_{ox} — либо на основе модели идеального вытеснения, либо с поправками, учитывающими степень продольного перемешивания, чаще всего на основе диффузионной модели. В первом случае использующиеся для определения высот единиц переноса данные должны быть получены при исследовании аппаратов близких размеров также на основе модели идеального вытеснения, а во втором — необходимы данные, характеризующие продольное перемешивание.

Уравнение (3.31) является достаточно строгим лишь при малых концентрациях распределяемого компонента. В этом случае

$$n_{oy} = \int_{y_{x}}^{y_{y}} \frac{dy}{y - y^{*}(x)}; \qquad n_{ox} = \int_{x_{y}}^{x_{x}} \frac{dx}{x^{*}(y) - x}.$$
(3.32)

Эти выражения в одинаковой степени применимы к абсорбции, десорбции и экстракции. Второй индекс у чисел и высот единиц переноса указывает фазу, по которой их рассчитывают. Следует проводить расчет этих величин по той фазе, в которой сосредоточено большее сопротивление массопереносу. В частном случае, если равновесная зависимость линейна, а расходы фаз можно считать постоянными, вычисление интегралов приводит к следующим выражениям:

$$n_{oy} = \frac{1}{mG/L - 1} \ln \frac{y_{\kappa} - mx_{\kappa} - m_{0}}{y_{\kappa} - mx_{\kappa} - m_{0}}, \quad \frac{mG}{L} \neq 1;$$

$$n_{oy} = \frac{y_{\kappa} - y_{\kappa}}{y_{\kappa} - mx_{\kappa} - m_{0}} = \frac{y_{\kappa} - y_{\kappa}}{y_{\mu} - mx_{\kappa} - m_{0}}, \quad \frac{mG}{L} = 1;$$

$$n_{ox} = mGn_{oy}/L,$$
(3.33)

где *т* и *m*₀ — параметры уравнения равновесия (3.24).

Расчет общих высот единиц переноса зависит от того, какие данные имеются для характеристики скоростей массопереноса в проектируемом аппарате. В тех случаях, когда можно использовать данные или эмпирические уравнения для частных (фазовых) высот единиц переноса h_y или h_x , общие высоты единиц переноса рассчитывают по уравнениям

$$H_{oy} = h_y + m G h_x / L;$$

$$H_{ox} = h_x + L h_y / m G.$$
(3.34)

Пример применения такой методики определения высот единиц переноса приведен в гл. 6.

Если же возможно рассчитать отдельно коэффициенты массоотдачи и удельную поверхность контакта фаз, то величины $H_{\alpha y}$ или $H_{\sigma x}$ можно определить из выражений

$$H_{oy} = G/(K_y aS); \quad H_{ox} = L/(K_x aS),$$
 (3.35)

в которых коэффициенты массопередачи K_y или K_x определяют по правилу аддитнвности диффузионных сопротивлений:

$$1/K_y = 1/\beta_y + m/\beta_x; \quad 1/K_x = 1/\beta_x + 1/m\beta_y.$$
 (3.36)

Следует отметить, что уравнения (3.32) — (3.35) представлены в виде, когда составы фаз выражены в мольных или массовых долях. Эти уравнения используют и при выражении составов в других единицах. Например, часто применяют объемные концентрации в кг/м³ или кмоль/м³. В этом случае мольные или массовые расходы в уравнениях (3.33), (3.34) и (3.35) должны быть заменены объемными расходами фаз. Коэффициенты массоотдачи, как правило, рассчитывают в м/с, что подразумевает использование объемных концентраций. Пересчет к другим способам выражения составов может быть сделан с помощью соотношений, приведенных в табл. 3.2. Эти соотношения являются приближенными; они тем точнее, чем меньше концентрация

Таблица 3.2. Соотношения между коэффициентами массоотдачи при различных единицах измерения движущей силы и потока распределяемого компонента

Единицы измерения	Единнцы измерения потока распределяемого компонента							
движущей силы	кг/с	кмоль/с						
кг/м ³	β, <u>кг</u> м ² ·с (кг/м ³) или м/с	<u>β</u> , <u>кмоль</u> <u>M</u> , <u>м³·с (кг/м³)</u>						
кмоль/м ³	β <i>M</i> , <u>кг</u> <u>м²·с (кмоль/м³)</u>	β, м/с						
масс. доля	βρ, <u>кг</u> м ² ·с·масс. доля	<u>βρ</u> , <u>кмоль</u> <u>M</u> , <u>м²·с·масс. доля</u>						
мол. доля	$\frac{\beta p M}{M_{cp}}$, кг	<u>β</u> ρ , <u>кмоль</u> <u>M</u> _{ср} , <u>м²·с·мол.</u> доля						
кг Кг нн. комп.	β (ρс), м ² ·с (кг/кг ин. комп.)	<u>β (ρ— c)</u> , <u>кмоль</u> <u>M</u> ² ·с (кг/кг ин. комп.)						
кмоль кмоль ин. комп.	$\frac{\beta (\rho - c) M}{M_{HR}}, \frac{\kappa r}{M^2 \cdot c (кмоль/кмоль ин. комп.)}$	$\frac{\beta(\rho-c)}{M_{_{HH}}}$, $\frac{_{KMOЛb}}{_{M^2} \cdot c}$ (кмоль/кмоль ин. комп.)						
Па (парциальное давление)	<u>βρ</u> <i>M</i> , кг <i>рM</i> _{ср} , <u>м²⋅с⋅Па</u> или с/м	$\frac{\beta \rho}{\rho M_{cp}}$, <u>кмоль</u>						

Примечание. *М*, *М*_{ии} и *M*_{ср} — молекулярные массы соответственно распределяемого компонента, инертного компонента и средняя для среды, в которой протекает массолеренос; *ρ* — плотность этой среды; *с* — концентрация распределяемого компонента в ней, кг/м³; *ρ* — давление.

распределяемого компонента. Вообще применение уравнений (3.32) — (3.35) к процессам с высокими концентрациями распределяемого компонента некорректно, в частности из-за зависимости коэффициентов массоотдачи от концентрации. Учет влияния концентрации на коэффициенты массопереноса приводит к более сложным выражениям для общих чисел и высот единиц переноса [7] В общем случае рабочую высоту колонны следует находить из уравнения

$$H \approx \int_{y_{x}}^{y_{x}} \frac{G \, dy}{K_{y}aS \, (1-y) \, [y-y^{*} \, (x)]} = \int_{x_{u}}^{x_{x}} \frac{L \, dx}{K_{x}aS \, (1-x) \, [x^{*} \, (y)-x]}$$
(3.37)

При вычислении интегралов могут быть учтены и изменение расходов фаз, и зависимость коэффициентов массопереноса от концентраций.

Методика расчета удельной межфазной поверхности зависит от гидродинамической обстановки в проектируемом аппарате. Если одна из фаз находится в виде капель или пузырей, удельную (т. е. приходящуюся на единицу объема аппарата) поверхность контакта фаз рассчитывают по уравнению

$$a = 6\Phi/d, \tag{3.38}$$

где *d* — средний поверхностно-объемный диаметр дисперсных частиц; Ф — объемная доля дисперсной фазы в рабочем объеме аппарата.

При диспергировании газа величину Ф обычно называют газосодержанием, а при диспергировании жидкости — удерживающей способностью аппарата.

Насадочные колонны для массообменных процессов между газом и жидкостью чаще всего работают в пленочном режиме. Максимальная межфазная поверхность в этом случае равна поверхности элементов насадки, однако в действительности она обычно меньше по следующим причинам. Во-первых, часть поверхности насадки может быть не смочена жидкостью. Во-вторых, часть жидкой фазы внутри насадки пребывает в аппарате длительное время и вследствие этого находится в равновесии с газом. Межфазную поверхность, образованную этой застойной жидкостью, называют статической; в процессах абсорбции, десорбции, ректификации она неактивна. Эффективная удельная поверхность контакта фаз равна разности между смоченной и статической поверхностью насадки $(a_{cm} - a_{cr})$.

Приведенные выше уравнения для высот и чисел единиц переноса получены на основе модели идеального вытеснения. Насадочные абсорбционные колонны обычно рассчитывают на основе этой модели. При этом несовершенство структуры потоков в какой-то степени учитывается эффективной величиной межфазной поверхности. Для других аппаратов, в частности для механических экстракционных колонн, применение модели идеального вытеснения при расчете их высоты приводит к неправдоподобно низким величинам. Применение более сложных моделей для расчета рабочей высоты колонн чаще всего основано на приближенных методиках; одна из них заключается в том, что уравнение (3.31) записывается в виде

$$H = H'_{0y} n_{0y} = H'_{0x} n_{0x}, \tag{3.39}$$

где H'_{oy} и H'_{ox} — так называемые «кажущиеся» высоты единиц переноса, или высоты единиц переноса, рассчитанные с учетом продольного перемешивания. Числа единиц переноса при использовании уравнения (3.39) определяют на основе модели идеального вытеснения. Если продольное перемешивание оценивается с помощью диффузионной модели, то по методу Рода «кажущиеся» высоты единиц переноса можно рассчитать из следующих уравнений [10]

$$H'_{ox} = H_{ox} + \frac{E_x}{\omega_x f_x} + \left(\frac{V_x}{m V_y}\right) \left(\frac{E_y}{\omega_y f_y}\right);$$

$$H'_{oy} = \frac{m V_y}{V_x} H'_{ox},$$
(3.40)

где E_x и E_y — коэффициенты продольного перемешивания в соответствующих фазах; H_{ox} — высота единицы переноса для режима идеального вытеснения, определяемая уравнением (3.36).

Коэффициенты fx и fg рассчитывают по соотношениям

$$f_{y} = \left\{ 1 - \frac{\left[1 - \exp\left(-\operatorname{Pe}_{y}\right)\right]}{\operatorname{Pe}_{y}} \right\}^{-1} + \left(1 - \frac{mV_{y}}{V_{x}}\right) \frac{E_{y}}{w_{y}H'_{oy}}; \qquad (3.41)$$

$$f_{x} = \left\{ 1 - \frac{\left\{1 - \exp\left(-\operatorname{Pe}_{x}\right)\right\}}{\operatorname{Pe}_{x}} \right\}^{-1} - \left(1 - \frac{mV_{y}}{V_{x}}\right) \frac{E_{x}}{w_{x}H'_{oy}},$$

где $Pe_y = \omega_y H/E_y$ и $Pe_x = \omega_x H/E_x$ — критерни Пекле для продольного перемешивания в соответствующих фазах.

Определение высоты колонн с помощью уравнений (3.39) — (3.41) проводят методом последовательных приближений. Пример расчета приведен в гл. 7. Часто используют также метод расчета «кажущихся» высот единиц переноса, разработанный Слейчером [10].

Пример 5. Определить высоту слоя насадки из колец Рашига $50 \times 50 \times 5$ мм для процесса абсорбции, рассмотренного в примере 4, при расходе воды, в 1,36 раза превышающем минимальный. Диаметр колонны 1,6 м (поперечное сечение 2,01 м²).

ассмотренного в примере 4, при расходе воды, в 1,00 раза превышающем минимальный. Диаметр колонны 1,6 м (поперечное сечение 2,01 м²). Материальный баланс процесса. Минимальный расход поглотителя для данного процесса равен 3,26 кмоль/с (пример 4). Следовательно, реальный расход составит -1,36.3,26 = 4,44 кмоль/с. Начальный расход газа равен 0,9/22,4 = 0,0402 кмоль/с. Так как колнчество поглощенной углекислоты должно быть равно 3,62.10⁻⁴ кмоль/с, то конечный расход газа должен быть не меньше 0,0402 – 0,000362 = 0,0398 кмоль/с. В процентном отношении расход воды изменится еще меньше. Поэтому пренебрежем в данном случае изменением расходов фаз. Для расхода газа примем его среднее значение, равное 0,04 кмоль/с. Конечные составы фаз найдем с помощью уравнений (3.7), записанных для случая постоянных расходов:

$$y_n = y_n - M/G = 0.01 - 3.616 \cdot 10^{-4}/0.04 = 0.00096$$
 мол. доли;

$$x_{\text{H}} = x_{\text{H}} + M/L = 0,00001 + 3,616 \cdot 10^{-4}/4,44 = 9,144 \cdot 10^{-5}$$
 мол. доли

Общее число единиц переноса. При выражении составов в мольных долях равновесие в рассматриваемой системе описывается уравнением y' = 82,5x (см. пример 4). Следовательно, общее число единиц переноса можно рассчитать по уравнению (3.33), в котором $m = 82,5, m_0 = 0$. Так как сопротивление массопереносу в данном случае сосредоточено в жидкости, расчет будем вести по жидкой фазе:

$$L/(mG) = 4.44/(82.5 \cdot 0.04) = 1.345;$$

$$n_{0.2} = \frac{1}{\left(1 - \frac{L}{mG}\right)} \ln \frac{y_{\kappa} - mx_{\mu} - m_{0}}{y_{\mu} - mx_{\kappa} - m_{0}} = \frac{1}{(1 - 1,345)} \ln \frac{0,00096 - 82,5 \cdot 0,00001}{0,01 - 82,5 \cdot 0,00009144} = 8,41.$$

Корреляция для расчета эффективной поверхности и коэффициентов массоотдачи. Для определения общей высоты единицы переноса используем методику, в которой эффективную поверхность контакта фаз и коэффициенты массоотдачи в насадочных колоннах определяют по уравнениям [11]:

$$a = a_{\kappa} \left\{ 1 - \exp\left[-1.45 \left(\frac{\rho_x \omega_x}{a_{\kappa} \mu_x} \right)^{0.1} \left(\frac{\omega_x^2 a_{\kappa}}{g} \right)^{-0.05} \left(\frac{\rho_x \omega_x^2}{\sigma a_{\kappa}} \right)^{0.2} \left(\frac{\sigma_{\kappa}}{\sigma} \right)^{0.75} \right] \right\};$$
(3.42)

$$\beta_{x} \left(\frac{\rho_{x}}{\mu_{x}g}\right)^{1/3} = 0,0051 \left(\frac{\rho_{x}w_{x}}{a\mu_{x}}\right)^{2/3} \left(\frac{\mu_{x}}{\rho_{x}D_{x}}\right)^{-1/2} (a_{y}d_{y})^{0.4}; \qquad (3.43)$$

$$\frac{\beta_y}{a_u D_y} = K \left(\frac{\rho_y \omega_y}{a_u \mu_y}\right)^{0.7} \left(\frac{\mu_y}{\rho_y D_y}\right)^{1/3} (a_u d_u)^{-2.0}$$
(3.44)

В этих уравнениях величина σ_{κ} зависит от материала насадки. Если поверхностное натяжение σ выражается в мН/м, то для керамической насадки $\sigma_{\kappa} = 61$, для стальной — 75, для графитовой — 56, для насадки из полиэтилена $\sigma_{\kappa} = 33$. Коэффициент K равен 5,23 для насадки, размер которой больше 15 мм; для более мелкой насадки K = 2.

Физические свойства фаз. Ввиду очень малых концентраций диоксида углерода в воде свойства жидкой фазы можно приравнять к свойствам воды при 25 °C; $\rho_x = 997$ кг/м³, $\mu_x = 0.891$ мПа/с; $\sigma = 72$ мН/м [4]. Вязкость смесей диоксида углерода с водородом при содержании CO₂ около 1% (мол.) близка к вязкости чистого водорода и при данных условиях может быть принята постоянной и равной $\mu_y = 0.9 \cdot 10^{-5}$ Па·с [6]. Плотность же газовой фазы в данном процессе абсорбции должна ощутимо меняться ввиду большого различия в молекулярных массах компонентов. Начальная и конечная молекулярные массы газа равны соответственно $M_{y,s} = 44.01 \cdot 0.01 + 2.016 \cdot 0.99 = 2.436$; конечная $M_{y,s} = 44.01 \cdot 0.00096 + 2.016 \cdot 0.99904 = 2.056$. Следовательно, если считать применимыми законы идеальных газов, то начальная и конечная плотности газа составят:

$$\rho_{y,u} = pM_{y,u}/(RT) = 2 \cdot 10^6 \cdot 2,436/(8314 \cdot 298) = 1,97 \text{ kr/m}^3;$$

$$\rho_{y,u} = pM_{y,u}/(RT) = 2 \cdot 10^6 \cdot 2,056/(8314 \cdot 298) = 1,66 \text{ kr/m}^3$$

Для коэффициентов диффузии в смесях диоксида углерода с водородом имеются экспериментальные данные при температуре 25 °С и нормальном давлении $D_y = 0.646 \cdot 10^{-4} \text{ m}^2/\text{c}$ [6]. Так как при умеренных давлениях коэффициенты диффузии в газах обратно пропорциональны давлению [5], то для давления 2 МПа можно принять $D_y = 0.646 \cdot 10^{-4} \cdot 0.1013/2 = 0.327 \cdot 10^{-5} \text{ m}^2/\text{c}$. Коэффициент диффузии в разбавленном растворе CO₂ в воде при 20 °С равен 1.77 · 10⁻⁹ м²/c. Влияние температуры на коэффициенты диффузии в жидкостях может быть учтено с помощью приближенного правила [5]:

$$D_x \mu_x / T = \text{const}$$

Так как вязкость воды при 20 °C равна 1 мПа·с, то в данном случае const = 1,77·10⁻⁹ X, $\times 10^{-3}/293 = 0,604 \cdot 10^{-14}$ Следовательно, при 25 °C $D_x = 0,604 \cdot 10^{-14} \cdot 298/(0,891 \cdot 10^{-3}) = 2,02 \cdot 10^{-9}$ м²/с.

Общая высота единицы переноса. Ввиду очень малых концентраций СО₂ в воде молекулярную массу жидкой фазы можно принять равной молекулярной массе воды. Следовательно, массовый расход воды равен L = 4,44 · 18,02 = 80 кг/с. Фиктивная массовая скорость жидкости в аппарате диаметром 1,6 м составит $\rho_x \omega_x \approx 80/2,01 = 39,8$ кг/(м²·с), а фиктивная скорость жидкости $\omega_x = 39,8/997 = 0,0399$ м/с. Удельная поверхность насадки для колец Рашига диаметром 50 мм равна 90 м²/м³ [4]

Подставляя эти значения в уравнение (3.42), находим эффективную удельную поверхность контакта фаз:

$$a = 90 \left\{ 1 - \exp\left[-1,45 \left(\frac{39,8}{90 \cdot 0,891 \cdot 10^{-3}}\right)^{0.1} \times \left(\frac{0,0399 \cdot 90}{9,81}\right)^{-0.05} \times \left(\frac{997 \cdot 0,0399^2}{0,072 \cdot 90}\right)^{0.2} \times \left(\frac{61}{72}\right)^{0.75} \right] \right\} = 76 \text{ m}^2/\text{m}^3.$$

Коэффициенты массоотдачи находим с помощью уравнений (3.43) и (3.44):

$$\beta_{x} \left(\frac{\rho_{x}}{\mu_{x}g}\right)^{1/3} = 0.0051 \left(\frac{39.8}{76 \cdot 0.891 \cdot 10^{-3}}\right)^{2/3} \times \left(\frac{0.891 \cdot 10^{-3}}{997 \cdot 2.02 \cdot 10^{-9}}\right)^{-1/2} (90 \cdot 0.05)^{0.4} = 0.031.$$

$$\beta_{x} = 0.031 \left(\frac{\mu_{x}g}{\rho_{x}}\right)^{1/3} = 0.031 \left(\frac{0.891 \cdot 10^{-3} \cdot 9.81}{997}\right)^{1/3} = 6.4 \cdot 10^{-4} \text{ m/c};$$

$$\frac{\beta_{y}}{a_{y}D_{y}} = 5.23 \left(\frac{0.0409}{90 \cdot 0.9 \cdot 10^{-5}}\right)^{0.7} \left(\frac{0.9 \cdot 10^{-5}}{1.66 \cdot 0.327 \cdot 10^{-5}}\right)^{1/3} (90 \cdot 0.05)^{-2} = 4.76;$$

$$\beta_{y} = 4.76a_{y}D_{y} = 4.76 \cdot 90 \cdot 0.327 \cdot 10^{-5} = 1.4 \cdot 10^{-3} \text{ m/c}.$$

При расчете коэффициента массоотдачи в газовой фазе использовали меньшее из значений массовой скорости газа — значение ее на выходе из колонны:

$$\rho_y w_y = \rho_{y,\kappa} G M_{y,\kappa} / S = 1,66 \cdot 0,04 \cdot 2,056 / 2,01 = 0,0409 \text{ kg} / (\text{m}^2 \cdot \text{c})$$

Так как в данном случае равновесные составы выражены в мольных долях, пересчитаем коэффициенты массоотдачи в кмоль/(м²·с·мол. доли). В соответствии с табл. 3.2 получим:

$$\beta_x = 6.4 \cdot 10^{-4} \cdot 997/18,02 = 0,035$$
 кмоль/ (м² · с · мол. доли);
 $\beta_y = 1.4 \cdot 10^{-3} \cdot 1.66/2,056 = 1.1 \cdot 10^{-3}$ кмоль/ (м² · с · мол. доли)

Вычислим коэффициент массопередачи и общую высоту единицы переноса:

$$K_{x} = \left(\frac{1}{\beta_{x}} + \frac{1}{m\beta_{y}}\right)^{-1} = \left(\frac{1}{0.035} + \frac{1}{82.5 \cdot 0.0011}\right)^{-1} = 0.025 \text{ кмоль/(м2 · с · мол. долн);}$$
$$H_{0x} = L/(K_{x}aS) = 4.44/(0.025 \cdot 76 \cdot 2.01) = 1.2 \text{ м.}$$

Высота слоя насадки. Требуемая высота слоя насадки для данного процесса равна:

$$H = H_{0x}n_{0x} = 1,2 \cdot 8,4 \approx 10$$
 M.

3.1.6. Расчет числа ступеней в аппаратах со ступенчатым контактом фаз

Существует два основных метода расчета необходимого числа реальных ступеней или тарелок. Первый основан на оценке средней эффективности (среднего коэффициента полезного действия) ступени η. В соответствии с этим методом число реальных ступеней находят из уравнения

$$N = N_{\tau} / \eta. \tag{3.45}$$

Для применения этого метода необходимо знать среднее значение к.п.д. ступени. В случае абсорбции или десорбции в колоннах с колпачковыми тарелками для оценки величины у можно использовать графическую корреляцию, приведенную на рис. 3.4 [11]. Абсцисса на этом рисунке определяется выражением

$$\xi = 0.062 \rho_x p / (\mu_x \text{He}M_x),$$

где ρ_x и μ_x — соответственно плотность (в кг/м³) и вязкость (в сП) жидкой фазы; p и Не — давление и константа Генри (в Па); M_x — молекулярная масса жидкости.

Более точным считают метод расчета числа ступеней, базирующийся на применении основного уравнения массопередачи, позволяющий отдельно оценивать эффективность каждой ступени. Обычно эффективность ступеней характеризуют с помощью коэффициента полезного действия (или эффективности) по Мэрфри. Если эту эффективность выражать по газовой фазе или фазе экстрагента, то для *n*-й ступени аппарата (см. обозначения на рис. 3.1, б) она определяется уравнениями

$$E_{\mathsf{M}_{y}} = \frac{y_{n-1} - y_{n}}{y_{n-1} - y^{*}(x_{n})} = \frac{c_{y,n-1} - c_{y,n}}{c_{y,n-1} - c_{y}^{*}(c_{x,n})} = \frac{Y_{n-1} - Y_{n}}{Y_{n-1} - Y^{*}(X_{n})}$$
(3.46)

При выражении эффективности по Мэрфри по жидкой фазе (для процессов абсорбции или десорбции) или по фазе экстрагируемого раствора (для жидкостной экстракции)

$$E_{Mx} = \frac{x_{n+1} - x_n}{x_{n+1} - x^* (y_n)} = \frac{c_{x,n+1} - c_{x,n}}{c_{x,n+1} - c_x^* (c_{y,n})} = \frac{X_{n+1} - X_n}{X_{n+1} - X^* (Y_n)}.$$
(3.47)

Выраженные по-разному эффективности при линейном равновесии и постоянных расходах фаз связаны простым соотношением

$$E_{Mx} = \frac{E_{My}}{L(1 - E_{My})/(mG) + E_{My}}$$
(3.48)

Эффективность ступени по Мэрфри зависит от коэффициентов массопередачи и межфазной поверхности на каждой ступени. Эта зависимость может быть представлена в виде зависимости E_{My} или E_{Mx} от общих чисел единиц переноса, выраженных в следующей форме:

$$n_{oy} = K_y F/G; \quad n_{ox} = K_x F/L.$$
 (3.49)

Уравнения (3.49) определяют числа единиц переноса в более общем виде по сравнению с уравнениями (3.32) или (3.33). Последние справедливы в случае, если

Рис. 3.4. Корреляция для определения среднего к.п.д колпачковых тарелок в абсорбционных колоннах

Рис. 3.5. Алгоритм расчета числа реальных ступеней для изотермических процессов

к обеим фазам применима модель идеального вытеснения. Кроме чисел единиц переноса, на эффективность ступени влияют модель структуры потоков, используемая в расчетах, и взаимное направление движения фаз. Ниже приведены уравнения, связывающие эффективность по Мэрфри с общими числами единиц переноса, для нескольких наиболее употребительных случаев.

Модель идеального смешения для обеих фаз:

$$E_{My} = n_{0y} / (1 + n_{0y}). \tag{3.50}$$

2. Модель идеального смешения для жидкой фазы или фазы экстрагируемого раствора и модель идеального вытеснения для газовой фазы или экстрагента:

$$E_{M,y} = 1 - e^{-n_0 y}. \tag{3.51}$$

3. Модель идеального вытеснения для жидкой фазы или фазы экстрагируемого раствора при перекрестном движении фаз:

$$E_{My} = \frac{L}{mG} \left\{ \exp\left(E_0 \frac{mG}{L}\right) - 1 \right\}.$$
(3.52)

Уравнение (3.52), как и приводимые ниже уравнения (3.53) и (3.54), применяют для оценки эффективности по Мэрфри переточных тарелок. Локальная эффективность на тарелке E_0 зависит от модели структуры потоков, принятой для газовой фазы или фазы экстрагента, проходящих через перфорации тарелок. Если принимают, что в каждом сечении тарелки эта фаза идеально перемешана в вертикальном направлении, то

$$E_0 = n_{0y}/(1 + n_{0y})$$
.

Если же для газовой фазы или фазы экстрагента используют модель идеального вытеснения, то локальная эффективность равна

$$E_0 = 1 - e^{-u_0 y}.$$

4. Ячеечная модель для жидкой фазы или фазы экстрагируемого раствора при перекрестном движении фаз:

$$E_{My} = \frac{L}{mG} \left\{ \left[\left(\frac{E_0}{s} \right) \frac{mG}{L} + 1 \right]^s - 1 \right\},$$
(3.53)

где s — число ячеек идеального перемешивания (параметр ячеечной модели).

 Диффузионная модель для жидкой фазы или фазы экстрагируемого раствора при перекрестном движении фаз:

$$E_{My} = E_0 \left[\frac{1 - \exp(-\lambda)}{\lambda (1 + \lambda/\eta)} + \frac{\exp \eta - 1}{\eta (1 + \eta/\lambda)} \right].$$
(3.54)

где коэффициенты η и λ равны

$$\eta = \frac{\operatorname{Pe}_{x}}{2} \left[-\sqrt{1 + \left(\frac{4E_{0}}{\operatorname{Pe}_{x}}\right) \frac{mG}{L}} - 1 \right];$$
$$\lambda = \eta + \operatorname{Pe}_{x}.$$

Параметр диффузионной модели Pe_x, характеризующий степень продольного перемешивания на тарелке, может быть определен следующим образом:

$$\mathbf{P}\mathbf{e}_{x}=l^{2}/\left(E_{x}\tau\right),$$

где *l* — длина пути жидкости на тарелке; τ — среднее время пребывания жидкости на тарелке; *E_x* — коэффициент продольного перемешивания.

6. Модель идеального вытеснения для обеих фаз при прямоточном движении:

$$E_{My} = \frac{1 - \exp\left[-n_{oy}\left(1 + mG/L\right)\right]}{1 + \left(mG/L\right)\exp\left[-n_{oy}\left(1 + mG/L\right)\right]}$$
(3.55)

7 Модель идеального вытеснения для обеих фаз при противоточном движении:

$$E_{My} = (\exp[n_{oy}[mG/L-1]] - 1) / (mG/L-1).$$
(3.56)

Уравнения (3.48) — (3.56) являются строгими при постоянстве расходов фаз и линейности равновесия. В пределах одной ступени, как правило, изменение расходов фаз и наклона линии равновесия невелико.

Расчет числа реальных ступеней с учетом эффективности каждой ступени по Мэрфри, как и расчет теоретических ступеней, основывается на последовательном определении составов фаз, уходящих со всех ступеней. Удобнее начинать расчет с того конца аппарата, где входит фаза, по которой выражена эффективность ступени. Возможная схема расчета показана на рис. 3.5. Основное отличие алгоритма расчета числа реальных ступеней от приведенного на рис. 3.2 алгоритма расчета числа теоретических ступеней заключается в том, что для каждой ступени требуется определение ее эффективности. Для этого необходимо иметь данные, позволяющие находить общие числа единиц переноса, а в случае применения сложных моделей структуры потоков (диффузионной, ячеечной и др.) — также данные для определения параметров этих моделей. Исходными данными для расчета чисел единиц переноса обычно служат уравнения, чаще всего эмпирические, из которых можно определить коэффициенты массоотдачи и межфазную поверхность. Знание этих параметров позволяет найти частные (фазовые) числа единиц переноса, определяемые выражениями

$$n_y = \beta_y F/G, \quad n_x = \beta_x F/L. \tag{3.57}$$

Частные и общие числа единиц переноса связаны уравнениями, являющимися следствием закона аддитивности диффузионных сопротивлений:

$$\frac{1}{n_{oy}} = \frac{1}{n_y} + \frac{mG}{L} \cdot \frac{1}{n_x}; \qquad \frac{1}{n_{ox}} = \frac{1}{n_x} + \frac{L}{mG} \cdot \frac{1}{n_y}$$
(3.58)

В некоторых случаях источником данных для расчета общих чисел единиц переноса могут служить эмпирические уравнения для частных чисел (см. разд. 3.2). Если расчет начинают, как показано на рис. 3.5, с той ступени, на которую поступает газ или экстрагент, значение *m* обычно принимают равным тангенсу угла наклона линии равновесия в точке, соответствующей составу жидкости или экстрагируемого раствора на выходе из ступени, для которой определяют общее число единиц переноса. За расход жидкости или экстрагируемого раствора удобно принимать значение его на выходе из соответствующей ступени, а в качестве расхода газа или экстрагента — значение на выходе. Если расходы фаз и тангенс угла наклона линии равновесия претерпевают существенные изменения, в расчетах используют их средние для каждой ступени значения, которые можно определить, повторяя расчет несколько раз.

Схема расчета на рис. 3.5 предназначена для тех случаев, когда эффективность ступени рассчитывают по газовой фазе или фазе экстрагента. Если эффективность выражают по другой фазе, удобнее начинать расчет со ступени, на которую поступает жидкая фаза или экстрагируемый раствор. Последовательность операций расчета для такого случая показана в примере 6.

Пример 6. Определить число ступеней смесительно-отстойного экстрактора для экстракции брома тетрахлоридом углерода (см. пример 1). Принять, что каждая ступень имеет смеситель объемом $0,15~{\rm m}^3$, снабженный шестилопастной турбинной мешалкой диаметром $0,2~{\rm m}$ с частотой вращения 3 с⁻¹

Из равновесных данных, приведенных в примере 1, следует, что равновесие в системе тетрахлорид углерода — бром — вода сильно сдвинуто в сторону органической фазы. Поскольку коэффициенты диффузии для растворов брома в воде и в тетрахлориде углерода, как показывает расчет по уравнению Уилки и Чанга [5], близки по порядку величин, можно полагать, что сопротивление массопереносу сосредоточено в водной фазе. Поэтому эффективность ступени целесообразно выражать по водной фазе и, следовательно, удобнее начинать расчет со ступени, на которую поступает водный раствор.

Из материального баланса процесса, составленного в примере 1, следует: $L_n = 15 \text{ кг/с}$, $G_{\kappa} = 1,3425 \text{ кг/с}$, $x_n = 0,01 \text{ масс. доли}$, $y_{\kappa} = 0,1061 \text{ масс. доли}$, $x_n = 0,01 \text{ масс. доли}$. Начиная нумерацию ступеней от входа экстрагируемого раствора, можно считать $y_1 = 0,1061 \text{ масс. доли}$, $x_o = 0,01 \text{ масс. доли}$ (если пользоваться обозначениями, приведенными на рис. 3.1, б, но нумеровать ступени в обратном порядке). Исходя из этих величин, рассчитаем состав экстрагируемого раствора на выходе первой и последующих ступеней. Очевидно, расчет должен окончиться на той ступени, с которой выходит водный раствор, содержащий бром в количестве, равном или меньшем его конечной концентрации в экстрагируемом растворе, определенной из материального баланса ($x_{\kappa} = 0,000505 \text{ масс. доли}$).

Физические свойства фаз. Плотности воды, брома и тетрахлорида углерода при 25 °С равны соответственно 997, 3100 и 1584 кг/м³ Исходя из этих значений плотности растворов брома в воде и в тетрахлориде углерода можно найти, пользуясь правилом аддитивности мольных объемов [5]. Если пренебречь взаимной растворимостью воды и ССІ₄ и рассматривать фазы как бинарные растворы, это правило приводит к следующему уравнению:

$$\rho = 1/(x_1/\rho_1 + x_2/\rho_2), \qquad (3.59)$$

где x₁ и x₂ — массовые доли компонентов; ρ_1 и ρ_2 — их плотности.

Ввиду отсутствия соответствующих данных вязкость разбавленных растворов брома в воде примем равной вязкости воды (0,891 мПа с при 25 °С [4]), а межфазное натяжение — равным межфазному натяжению между водой и чистым тетрахлоридом углерода (0,046 мН/м [12]). Коэффициент диффузии в разбавленном растворе брома в воде при 12 °С равен 0,9 · 10⁻⁹ м²/с [13]. Приведя эту величину к температуре 25 °С, получим $D_x = 1,3 \cdot 10^{-9}$ м²/с.

Коэффициент массопередачи. Ввиду того, что в данном случае сопротивление массопереносу должно быть сосредоточено в водной фазе, примем коэффициент массопередачи равным коэффициенту массоотдачи в сплошной фазе, полагая, что диспергироваться должен экстрагент ввиду очень малого его расхода (объемный расход водного раствора примерно в 20 раз больше расхода экстрагента). Коэффициент массоотдачи в сплошной фазе, полагая, что диспергироваться должен экстрагент ввиду очень малого его расхода (объемный расход водного раствора примерно в 20 раз больше расхода экстрагента). Коэффициент массоотдачи в сплошной фазе в аппаратах с мешалкой можно рассчитать по эмпирическому уравнению [14]:

$$\beta_c = 0.016nD_{\rm M}({\rm Pr}_c)$$

где n — частота вращения мешалки; D_м — диаметр мешалки; Рг_с — диффузионный критерий Прандтля для сплошной среды.

Критерий Прандтля равен:

$$Pr'_{s} = \mu_{x}/\rho_{x}D_{x} = 0.891 \cdot 10^{-3}/(997 \cdot 1.3 \cdot 10^{-9}) = 687$$

Следовательно, коэффициент массоотдачи в сплошной фазе составит:

$$\beta_{\rm c} = 0.016 \cdot 3 \cdot 0.2 \cdot 687^{-0.5} = 3.66 \cdot 10^{-4} \, {\rm m/c}.$$

Таким образом, пренебрегая диффузионным сопротивлением в фазе экстрагента, коэффициент массопередачи, рассчитанный по водной фазе, можно принять равным K_x=4.88 10⁻⁴ м/с.

Средний поверхностно-объемный диаметр капель и удельная поверхность контакта фаз. Для массообменных аппаратов, в которых одна из фаз находится в диспергированном состоянии, т. е. в виде капель, пузырей или твердых частиц, удельную, отнесенную к единице рабочего объема аппарата, поверхность контакта фаз рассчитывают по уравнению (3.38).

При достаточной интенсивности перемешивания объемная доля дисперсной фазы в экстракторах с мешалкой определяется соотношением объемных расходов фаз и может быть рассчитана по уравнению

$$\Phi = V_{\rm a} / (V_{\rm a} + V_{\rm c}), \tag{3.60}$$

где V_a и V_c — объемные расходы соответственно дисперсной и сплошной фаз.

Для расчета среднего поверхностно-объемного диаметра капель, образующихся при перемешивании несмешивающихся жидкостей, предложен ряд эмпирических уравнений [15]. Воспользуемся одним из них:

$$d = 0.053 D_{\mu} \left(\rho_{\rm c} n^2 D_{\mu}^3 / \sigma \right)^{-0.6}, \tag{3.61}$$

где D_м — диаметр мешалки; n — частота вращения; о — межфазное натяжение.

Эффективность ступени по Мэрфри. Массопередачу в аппаратах с мешалкой обычно рассчитывают на основе модели идеального смешения (для обеих фаз). Эффективность по Мэрфри, рассчитанная по фазе экстрагента, в этом случае определяется уравнением (3.50). Подставив его в уравнение (3.48), получим выражение для эффективности ступени, выраженной

по фазе экстрагируемого раствора:

$$E_{Mx} = n_{0x}/(1+n_{0x})$$

Рассчитаем величину $E_{M,x}$ для первой ступени. На нее поступает водный раствор с концентрацией брома $x_0 = 0.01$ масс. доли, расход которого составляет $L_0 = L_n = 15$ кг/с. Плотность этого раствора в соответствии с уравнением (3.59) равна

$$\rho_{x0} = [0,01/3100 + (1-0,01)/997]^{-1} = 1004 \text{ kr/m}^3.$$

Следовательно, объемный расход поступающего на первую ступень исходного раствора равен $V_{x0} = L_0/\rho_{x0} = 15/1004 = 0,01494 \text{ m}^3/\text{c}.$

Из первой ступени должен выходить экстракт с конечной концентрацией брома $y_{\kappa} = y_1 = = 0,1061$ масс. доли в количестве 1,3425 кг/с. Плотность экстракта

$$\rho_{\mu 1} = [0,1061/3100 + (1-0,1061/1584)]^{-1} = 1671 \text{ kr/m}^3.$$

Таким образом, объемный расход выходящего из первой ступени раствора брома в тетрахлориде углерода должен быть равен

$$V_{y,1} = G_1/\rho_{y,1} = 1,3425/1671 = 0,0008034 \text{ m}^3/\text{c}.$$

Принимая для первой ступени расход водного раствора (сплошная фаза) равным его расходу на входе в ступень, а расход экстрагента, являющегося дисперсной фазой, равным его расходу на выходе из ступени, из уравнения (3.60) получим:

$$\Phi = 0.0008034 / (0.0008034 + 0.01494) = 0.0510.$$

Аналогично примем плотность сплошной ,фазы на первой ступени равной ее плотности на входе в ступень: ρ_c = 1004 кг/м³. Подставляя это значение в уравнение (3.61), находим средний поверхностно-объемный диаметр капель:

$$d = 0.053 \cdot 0.2 [1004 \cdot 3^2(0.2)^3/0.046]^{-0.6} = 1.3 \cdot 10^{-4}$$
 M.

В соответствии с уравнением (3.38) удельная поверхность контакта фаз равна

$$a = 6.0,051/(1,3.10^{-4}) = 2350 \text{ m}^2/\text{m}^3$$

Полная поверхность массопередачи для одной ступени составит $F = av = 2350 \cdot 0, 15 = 353 \text{ м}^2$. Отсюда общее число единиц переноса, рассчитанное по водной фазе, равно

$$n_{0x} = K_x F/V_x = 3.66 \cdot 10^{-4} \cdot 353/0.01494 = 8.65.$$

Следовательно, эффективность первой ступени по Мэрфри составляет

$$E_{M_x} = n_{0x}/(1+n_{0x}) = 8.65/(1+8.65) = 0.9.$$

Расчет числа ступеней. Если отсчет ступеней вести от входа экстрагируемого раствора, то уравнение (3.47), определяющее эффективность ступени по Мэрфри, примет следующий вид:

$$E_{Mx} = (x_{n-1} - x_n) / [x_{n-1} - x'(y_n)]$$

Представив это уравнение в форме, разрешенной относительно x_n, получим выражение, с помощью которого можно найти состав экстрагируемого раствора на выходе со всех ступеней:

$$x_n = x_{n-1} + E_{M_X}[x'(y_n) - x_{n-1}].$$
(3.62)

Так, для первой ступени (n = 1), определив из равновесных данных, приведенных в примере 1, с помощью интерполяции $x^*(y_1) = x^*(0,1061) = 0,00556$ масс. доли, получим:

$$x_1 = x_0 + E_{M_X}[x'(y_1) - x_0] = 0.01 + 0.9[0.00556 - 0.01] = 0.006$$
 масс. доли.

Для определения расхода раствора, выходящего из первой ступени, а также расхода и состава экстрагента, поступающего на первую ступень, используем уравнения материального баланса (3.20), которые при принятом порядке нумерации ступеней могут быть представлены в виде

$$L_n = L_n (1 - x_n) / (1 - x_n);$$

$$G_{n+1} = L_n + G_n - L_n;$$

$$y_{n+1} = 1 - G_k (1 - y_k) / G_{n+1}.$$

(3.63)

108
С помощью этих уравнений находим:

$$L_1 = L_{II}(1 - x_8) / (1 - x_1) = 15(1 - 0.01) / (1 - 0.00591) = 14.94 \text{ кг/с};$$

$$G_2 = L_1 + G_8 - L_{II} = 14.94 + 1.3425 - 15 = 1.281 \text{ кг/с};$$

$$y_2 = 1 - G_8(1 - y_8) / G_2 = 1 - 1.3425(1 - 0.1061) / 1.281 = 0.063 \text{ масс. доли.}$$

Продолжим расчет, применяя уравнения (3.59) — (3.63) последовательно ко второй, третьей и т. д. ступеням. Результаты расчета эффективности ступеней, а также расходов и составов фаз приведены ниже:

п	E _{M x}	масс. доли	<i>L</i> ", кг/с	<i>G</i> , кг/с	y_{n+1} , масс. доли
1	0.90	0.00600	14.94	1,281	0,0630
2	0,89	0.00378	14,91	1,248	0,0382
3	0.89	0.00234	14,88	1,227	0,0216
4	0,89	0,00135	14,87	1,212	0,0098
5	0.89	0,00064	14,86	1,202	0,0014
6	0.89	0.00014			

Расчет закончен на шестой ступени, на выходе из которой концентрация брома в водном растворе оказывается ниже требуемого конечного значения (x_к = 0,00050 масс. доли). Следовательно, для осуществления данного процесса экстракции требуется смесительно-отстойный экстрактор, состоящий из 6 ступеней.

Расчет числа ступеней в аппаратах со ступенчатым контактом фаз значительно упрощается, если можно пренебречь изменением расходов фаз, если эффективности по Мэрфри для всех ступеней можно считать одинаковыми и если равновесие во всем диапазоне изменения составов фаз может быть с достаточной степенью точности аппроксимировано в виде уравнения (3.24) Тогда при выражении составов в мол. или масс. долях требуемое число ступеней определяется уравнениями:

$$N = \frac{\ln \frac{y_{\kappa} - mx_{\mu} - m_{0}}{y_{\mu} - mx_{\kappa} - m_{0}}}{\ln \left(1 - E_{My} + E_{My} \frac{mG}{L}\right)} = \frac{\ln \frac{y_{\kappa} - mx_{\mu} - m_{0}}{y_{\mu} - mx_{\kappa} - m_{0}}}{\ln \frac{1 + E_{Mx}mG/L}{1 + E_{Mx}L/(mG)}}$$
(3.64)

3.2. НЕПРЕРЫВНАЯ РЕКТИФИКАЦИЯ БИНАРНЫХ СИСТЕМ

В ректификационных колоннах исходная смесь, подаваемая в среднюю часть колонны, в результате массообмена между противоточно движущимися паровой и жидкой фазами разделяется на два продукта: дистиллят, обогащенный более летучим компонентом, и кубовый остаток с преобладающим содержанием менее летучего компонента. Принципиальные схемы осуществления этого процесса в насадочных (аппарат с непрерывным контактом фаз) и тарельчатых (стуленчатый контакт фаз) колоннах показана на рис. 3.6. При рассмотрении непрерывной ректификации будем пренебрегать разделяющим действием кипятильника и дефлегматора, т. е. кипятильник и дефлегматор будем считать аппаратами соответственно полного испарения и полной конденсации. Составы фаз будем характеризовать содержанием более летучего из компонентов в мольных долях. Обозначения расходов, составов и удельных энтальпий показаны на рис. 3.6. В аппаратах со ступенчатым контактом фаз G_n , y_n и I_n характеризуют соответственно мольный расход, состав и энтальпию пара, уходящего с n-й ступени, I_m , x_n и i_n — мольный расход, состав и энтальпию жидкости, стекающей с n-й ступени; I_m номер ступени, на которую подается исходная смесь.

Пренебрежение разделяющим действием кипятильника и дефлегматора эквивалентно допущению о том, что состав пара, поступающего в колонну из кипятильника, одинаков с составом жидкости, поступающей в кипятильник, а состав флегмы одинаков с составом пара, поступающего в дефлегматор. Для тарельчатых колонн это допущение может быть сформулировано в виде следующих уравнений:

$$y_0 = x_1 = x_W; \quad x_{N+1} = y_N = x_P. \tag{3.65}$$

Рис. 3.6. Схемы ректификационных установок: 1 — ректификационная колонна (а — с непрерывным контактом фаз; б — со ступенчатым контактом фаз); 2 — кипятильник; 3 — дефлегматор

3.2.1. Материальный и тепловой балансы

Материальный и тепловой балансы процесса непрерывной ректификации бинарных систем могут быть представлены следующей системой уравнений:

$$F = P + W; \quad Fx_F = Px_P + Wx_W; \quad Q_a = P(R+1)(I_N - i_P); \quad (3.66)$$

$$Q_{\kappa} = Q_{\lambda} + Pi_{P} + Wi_{W} - Fi_{F} \pm Q_{n}, \qquad (3.67)$$

где Q_{A} и Q_{K} — тепловые нагрузки дефлегматора и кипятильника; R — флегмовое число; F, P и W — расходы соответственно исходной смеси, дистиллята и кубового остатка; Q_{II} — суммарные потери тепла (для низкотемпературной ректификации входят в тепловой баланс со знаком минус)

Обычно при расчете бинарной ректификации заданы расход, состав и термодинамическое состояние исходной смеси, а также требуемые составы дистиллята и кубового остатка. Исходя из этих данных, можно с помощью системы уравнений (3.66), (3.67) определить расходы дистиллята и кубового остатка, а также тепловые нагрузки кипятильника и дефлегматора при выбранном значении флегмового числа.

3.2.2. Расчет числа теоретических ступеней

Для определения числа теоретических ступеней, которому должна быть эквивалентна ректификационная колонна, кроме параметров, характеризующих исходную смесь, составов дистиллята и кубового остатка, необходимо задать флегмовое число и положение ступени, на которую следует подавать питание. Выбор последней обычно проводят в процессе расчета так, чтобы общее число ступеней было минимальным. Оптимальной обычно является подача питания на ступень, с которой выходит жидкая фаза, близкая по составу к исходной смеси. Точный расчет числа теоретических ступелей основан на модели ректификационной колонны со ступенчатым контактом фаз (рис. 3.6, 6), причем каждую ступень принимают теоретической. Расчет заключается в последовательном определении составов пара и жидкости, уходящих со всех ступеней, с помощью уравнения фазового равновесия (3.22) и уравнений материального и теплового баланса для каждой ступени. Если определение составов фаз начинают с нижней ступени, то расчет продолжают до тех пор, пока содержание более летучего компонента в паре, уходящем с какой-либо ступени, не превысит его содержания в дистилляте. При определении составов фаз начиная с верхней ступени расчет завершают, когда концентрация более летучего компонента в жидкости станет равной (или меньшей) его концентрации в кубовом остатке.

Для укрепляющей части колонны (n>1) уравнения материального и теплового баланса удобнее всего использовать в следующем виде:

$$G_{n-1} - L_n = P; \qquad G_{n-1}y_{n-1} - L_n x_n = P x_p; \qquad (3.68)$$
$$G_{n-1}I_{n-1} - L_n i_n = P i_p + Q_{\mathbb{A}}.$$

Для исчерпывающей части колонны ($n \leq i$) соответствующие балансовые уравнения образуют следующую систему:

$$L_n - G_{n-1} = W \qquad L_n x_n - G_{n-1} y_{n-1} = W x_W;$$

$$L_n i_n - G_{n-1} I_{n-1} = W i_W - Q_{\kappa}.$$
(3.69)

В системах уравнений (3.68), (3.69) не учтены потери тепла. При точной записи тепловых балансов в правую часть последнего уравнения (3.68) нужно добавить член, учитывающий потери тепла в верхней части колонны (выше *n*-й ступени), а в правую часть последнего уравнения (3.69) должны войти потери тепла в нижней (ниже *n*-й ступени) части колонны.

Возможный алгоритм точного расчета числа теоретических ступеней для бинарной ректификации показан на рис. 3.7. Сначала из материального баланса находят расходы дистиллята и кубового остатка. Затем, принимая температуры дистиллята и поступающего в дефлегматор пара равными температуре кипения дистиллята, а температуру кубового остатка равной его температуре кипения, рассчитывают энтальпии дистиллята i_p , кубового остатка i_w и поступающего в дефлегматор пара I_N . Далее из теплового баланса определяют тепловые нагрузки дефлегматора и кипятильника.

Из системы уравнений (3.69) следует, что расход пара в исчерпывающей части колонны можно рассчитать по уравнению

$$G_{n-1} = Q_{\mathbf{x}} + W(i_n - i_W) / (I_{n-1} - i_n).$$
(3.70)

Принимая температуры поступающего из кипятильника пара и стекающей с нижней тарелки жидкости равными температуре кипения кубового остатка и учитывая зависимости (3.65), после расчета энтальпии I_0 можно с помощью уравнения (3.70) при n = 1 найти расход пара G_0 , поступающего на первую ступень. Расход жидкости, стекающей с нижней ступени (L_1), определяется первым уравнением системы (3.69).

После предварительных вычислений проводят последовательный расчет составов и расходов фаз для всех ступеней, начиная с первой (n=1). Для первой ступени из равновесных данных сначала определяют состав пара, уходящего с первой теоретической ступени, $y_1 = y^*(x_1)$. После расчета энтальпии этого пара решают систему уравнений (3.69) с целью определения расхода пара, уходящего с первой ступени (G_1), а также состава (x_2) и расхода (L_2) жидкости, поступающей со второй ступени на первую. Эту систему решают с учетом равновесных данных и данных для расчета энтальпии жидкости (необходимых для определения температуры жидкости t_2 , поступающей на первую ступень, и ее энтальпии). Далее расчет повторяют для второй,

Рис. 3.7 Схема точного расчета числа теоретических ступеней бинарной ректификации

Рис. 3.8. Схема расчета числа теоретических ступеней бинарной ректификации при условии постоянства мольных расходов пара и жидкости

третьей и последующих ступеней. Для ступеней укрепляющей части колонны (положение ступени питания определяют в процессе расчета) вместо системы уравнений (3.69) решают систему (3.68)

Пример 7. Рассчитать число теоретических ступеней, необходимое для разделення при нормальном давлении смеси метанол — вода, содержащей 40 % (мол.) метанола, если дистиллят должен содержать 1 % (мол.) воды, а кубовый остаток 1 % (мол.) метанола. Исходную смесь предполагается подавать на ректификацию в виде жидкости, нагретой до температуры кипения, при расходе 0,01 кмоль/с (851 кг/ч) Флегмовое число R = 1 Потерями тепла пренебречь.

Равновесие между фазами. Используем следующие данные по парожидкостному равновесию для системы метанол — вода при нормальном давлении [16]

х, мол. доли	<i>у.</i> мол. долн	<i>t</i> . °C	<i>х</i> , мол. долн	<i>у</i> . мол. доли	°C
0	0	100	0.4	0,729	75,3
0,02	0.134	96,4	0,5	0,779	73.1
0,04	0,23	93,5	0,6	0,825	71,2
0,06	0,304	91,2	0,7	0,87	69,3
0.08	0.365	89,3	0,8	0,915	67,5
0,1	0,418	87,7	0,9	0,958	66
0.15	0.517	84.4	0.95	0,979	65
0.2	0,579	81,7	1	1	64,7
0,3	0,665	78			

Расчет энтальпий. Для расчета удельных энтальпий необходимы данные по теплоемкостям, теплотам смещения и теплотам испарения. Теплоемкости водных растворов метанола с_ж в кДж/(кмоль-К) в зависимости от концентзации x и температуры равны [17]:

	с _ж при t, °C				<i>с</i> ж при <i>t</i> , °С		
х, мол. доли 	20	40	60	доли	20	40	60
0 0,2 0,4	75,3 83,1 83,2	75,3 86 87,8	75,4 89,2 92,8	0,6 0,8 1,0	83,3 84,1 84,8	88,6 89,3 89,8	94,7 96,1 97

Теплоемкости метанола (c_1) и воды (c_2) в газообразном состоянии в кДж/(кмоль·К) равны [6]:

<i>t</i> , °C	0	50	100
C 1	45,8		55,1
C_2	_	34,8	36,7

Используем данные по теплотам смешения (ΔH_{cx} , к $\Delta m/\kappa$ моль) при $t = 25 \,^{\circ}$ С в зависимости от концентрации раствора метанола x, мол. доли [17]:

х	0,00 80 9	0,016	0,0318	0,0641	0,13 58	0,3172
ΔH _{см}	56	—110,2	— 213,4	403,7	698,3	886
$\frac{x}{\Delta H_{\text{CM}}}$	0,571	0,7516	0, 8637	0,9276	0, 9622	0,99
	748,4	544,9	— 351,9	203,2		— 31,59

С помощью приведенных данных, принимая состояние компонентов в жидком виде при 25 °C за стандартное, можно определить мольные энтальпии смесей метанола и воды в жидком (i) и парообразном (I) виде по следующим уравнениям:

$$i = \Delta H_{cM} + c_{*} (t - 25);$$

$$I = y[r_1 + c_1(t - 25)] + (1 - y)[r_2 + c_2(t - 25)].$$

Теплоемкости с_ж, с₁ и с₂ должны соответствовать средней температуре между точкой начала отсчета энтальпий (25 °C) и температурой *t*, при которой рассчитывают энтальпию. Теплоты испарения метанола (r₁) и воды (r₂) при 25 °C равны соответственно 37970 и 44000 кДж/кмоль [6].

Найдем, например, мольные энтальпии исходной смеси и поступающего с верхней тарелки в дефлегматор пара. Из равновесных данных следует, что температура кипения исходной смеси 75.3 °С. Путем линейной интерполяции находим ес теплоемкость при средней температуре, за которую принимаем среднеарифметическое значение (25 + 75.3)/2 = 50.15 °C; при этой температуре $c_{\rm m} = 90.3$ кДж/(кмоль-К). Линейной интерполяцией находим также теплоту смешения для раствора, содержащего 40 % (мол.) метанола, равную — 841 кДж/кмоль. В результате получим:

Поступающий в дефлегматор пар должен иметь состав, близкий к составу дистиллята (y=0.99 мол. доли метанола), и температуру, близкую к температуре кипения дистиллята, которая в соответствии с равновесными данными равна 64,8 °C. Определив теплоемкости метанола и воды в парообразном состоянии при 44,9 °C (среднее значение температуры между 25 и 64,8 °C), равные соответственно 50 и 34,6 кДж/(кмоль·К), можем рассчитать мольную энтальпию поступающего в дефлегматор пара I_N :

$$I_N = 0.99$$
 [37970 + 50 (64,8 - 25)] + (1 - 0.99) [44000 + 34,6 (64,8 - 25)] = 40000 кДж/кмоль.

Материальный и тепловой балансы. Рассчитав аналогичным образом энтальпии дистиллята и кубового остатка, равные соответственно 3610 и 5500 кДж/кмоль, из системы уравнений (3.66), (3.67) находим:

$$P = F(x_F - x_W) / (x_P - x_W) = 0.01(0.4 - 0.01) / (0.99 - 0.01) = 0.00398 \text{ кмоль/с};$$
$$W = F - P = 0.01 - 0.00398 = 0.00602 \text{ кмоль/с};$$

$$Q_n = P(R+1)(I_N - i_P) = 0,00398(1+1)(40000 - 3610) = 290 \text{ kBr};$$

$$Q_{\mathtt{x}} = Q_{\mathtt{a}} + Pi_{P} + Wi_{W} - Fi_{F} = 290 + 0.00398 \cdot 3610 + 0.00602 \cdot 5500 - 0.01 \cdot 3700 = 300 \text{ kBt}.$$

Расчет числа теоретических ступеней. Число теоретических ступеней, необходимое для осуществления данного процесса, находим путем последовательного расчета составов фаз, их температур и расходов для всех ступеней по схеме, приведенной на рис. 3.7 С первой ступени выходит жидкость, состав которой одинаков с составом кубового остатка, а температура равна температуре кипения кубового остатка. Следовательно, $x_1 = x_W = 0,01$ мол. доли, $t_1 = t_W = 98,2$ °C, $i_1 = i_W = 5500$ кДж/кмоль. Энтальпия поступающего из кипятильника на первую ступень пара, рассчитанная при температуре и составе, одинаковых с температурой и составом кубового остатка, равна $I_0 = 46500$ кДж/кмоль. Расход пара, поступающего на первую ступень, находим с помощью уравнения (3.70), записанного для n = 1:

$$G_0 = \frac{Q_\kappa + W(i_1 - i_W)}{I_0 - i_1} = \frac{Q_\kappa}{I_0 - i_1} = \frac{300}{46500 - 5500} = 0,00732$$
 кмоль/с.

В соответствии с первым уравнением из системы уравнений (3.69) расход жидкости, стекающей с первой ступени, равен

$$L_1 = G_0 + W = 0,00732 + 0,00602 = 0,01334$$
 кмоль/с.

Далее из равновесных данных находим состав пара, уходящего с первой ступени:

 $y_1 = y^*(x_1) = y^*(0,01) = 0,067$ мол. доли.

Мольная энтальпия пара такого состава при температуре на первой ступени $t_1 = 98,2$ равна 46260 кДж/кмоль. Расход этого пара, а также расход, состав и температуру жидкости, поступающей со второй ступени на первую, находим из системы уравнений (3.69) при n = 2. Эта система быстро решается методом простых итераций. Для первого приближения примем мольный расход уходящего с первой ступени пара $G_1 = 0,00732$ кмоль/с, т. е. равным расходу поступающето на первую ступень пара. Тогда, согласно первому уравнению системы (3.69),

$$L_n = W + G_{n-1}$$

и, следовательно, расход жидкости, поступающей на первую ступень со второй, должен быть равен

$$L_2 = W + G_1 = 0.00602 + 0.00732 = 0.01334$$
 кмоль/с.

Второе уравнение из системы (3.69) позволяет определить состав этой жидкости. В соответствии с указанным уравнением

$$x_n = (W x_W + G_{n-1} y_{n-1}) / L_n$$

откуда

$$x_2 = (Wx_W + G_1y_1)/L_2 = (0,00602 \cdot 0,01 + 0,00732 \cdot 0,067)/0,01334 = 0,0413$$
 мол. доли.

Из равновесных данных следует, что температура кипения жидкости такого состава равна $t_2 = 93.4$ °C. Ее теплоемкость при средней температуре (59,2 °C) равна 78,2 кДж/(кмоль·К), теплота смешения — 269 кДж/кмоль, а энтальпия $i_2 = 5080$ кДж/кмоль. Подставив это значение энтальпии в уравнение (3.70), написанное для n = 2, проверим расход пара:

$$G_1 = \frac{Q_{\kappa} + W(i_2 - i_W)}{I_1 - i_2} = \frac{300 + 0,00602}{46260 - 5080} = 0,00722$$
 кмоль/с.

Повторяя расчет при этом значении G_1 , получим: $L_2 = 0,01324$ кмоль/с, $x_2 = 0,0411$ мол. доли, $t_2 = 93,4$ °C, $i_2 = 5080$ кДж/кмоль. Новое значение G_1 с точностью до трех значащих цифр совпадает с предыдущим. Таким образом, полученные во второй итерации значення G_1 , L_2 , x_2 , t_2 и i_2 можно считать достаточно точными. Далее находим состав пара, уходящего со второй ступени:

$$y_2 = y^*(x_2) = y^*(0.0411) = 0.234$$
 мол. доли

и после расчета мольной энтальпии этого пара ($I_2 = 45250 ext{ к}$ жмоль) вновь решаем систему уравнений (3.69) при n = 3. Результаты расчета для первых шести ступеней приведены ниже:

	nn						
параметры	1	2	3	4	5	6	
Расход пара G _n , кмоль/с Состав пара y _n , мол. доли метанола Энтальпия пара I _n , кДж/кмоль Температура I _n , °C Расход жидкости L _n , кмоль/с Состав жидкости x _n , мол. доли метанола Энтальпия жидкости i _n , кДж/кмоль	0,00722 0,067 46 260 98,2 0,01334 0,01 5500	0,00719 0,234 45 250 93,4 0,01324 0,0411 5080	0,00733 0,481 43 680 85,6 0,01321 0,132 4410	0,00746 0,638 42 590 79,2 0,01335 0,269 3980	0,00753 0,702 42 130 76,4 0,01348 0,358 3760	0,00756 0,726 41 950 75,4 0,01355 0,395 3710	

Как видно, состав жидкости, стекающей с 6-й ступени, близок к составу исходной смеси. Поэтому 6-ю ступень можно принять за ступень питания. Для последующих ступеней расходы фаз, состав жидкости и ее температуру находим, решая систему уравнений (3.68) Эту систему можно решать итерационным путем аналогично тому, как решалась система (3.69) для исчерпывающей части колонны. Сначала задаемся расходом пара G_n и находим расход жидкости по уравнению

$$L_n = G_{n-1} - P.$$

Затем определяем состав жидкости из второго уравнения системы (3.68)

$$x_n = (G_{n-1}y_{n-1} - Px_p)/L_n$$

После определения температуры кипения l_n и энтальпии i_n жидкости этого состава находим новое приближение для расхода лара по уравнению

$$G_{n-1} = [Q_n + P(i_p - i_n)] / (I_{n-1} - i_n)$$

Результаты расчета для 7-й и последующих степеней приведены ниже:

Параметры			<i>n</i>		
	77	88	15	21	22
Расход пара G _n , кмоль/с	0,00758	0,00761	0.00782	0,00795	0,00796
Состав пара у", мол. доли	0,745	0,766	0,912	0,984	0,991
метанола Энтальпия пара I _л ,	41810	41660	40580	40050	40000
Температура t_n , °С	74,6	73,7	67,6	64,9	64,8
Расход жидкости L _n , кмоль/с	0.00358	0,00360	0,00381	0,00395	0,00397
Состав жидкости х _п , мол. до-	0,432	0,474	0,794	0,962	0,978
ли метанола Энтальпия жидкости <i>i</i> _n , кДж/кмоль	3660	3610	3420	3540	3580

Как видно из результатов расчета, содержание метанола в паре, выходящем с 22-й ступени, больше требуемого его содержания в дистилляте. Поэтому при n = 22 расчет может быть завершен. Таким образом, для осуществления данного процесса ректификации требуется 22 теоретические ступени.

3.2.3. Ректификация при постоянстве мольных расходов фаз

В практике расчетов процессов ректификации широко используют допущение о постоянстве мольных расходов пара и жидкости. Это допущение соблюдается тем точнее, чем меньше меняются в ректификационной колонне мольные энтальпии фаз (при этом в большей степени сказывается изменение энтальпии пара). При использования этого допущения расходы пара и жидкости во всей укрепляющей части колонны принимают равными:

$$G = G_N = G_{N-1} = \dots = P(R+1);$$

$$L = L_{N+1} = L_N = = PR.$$
(3.71)

Расходы фаз в исчерпывающей части колонны можно находить двумя способами. Если исходить из теплового баланса кипятильника, то эти расходы должны быть равны:

$$G = G_0 = G_1 = \dots = Q_* / (I_0 - i_W); \qquad (3.72)$$
$$L = L_1 = L_2 = \dots = G + W$$

Чаще мольные расходы фаз в исчерпывающей части определяют, исходя из теплового баланса для тарелки питания. В этом случае

$$G = G_0 = G_1 = \dots = P(R+1) - \varphi F; \qquad (3.73)$$

$$L = L_1 = L_2 = \dots = PR + (1 - \varphi)F.$$

115

Коэффициент ф зависит от термодинамического состояния питания. Он определяется уравнением

$$\varphi = (i_F - i) / (I - i), \qquad (3.74)$$

где / и *i* — соответственно мольные энтальпии пара и жидкости в колонне. Обычно их принимают равными энтальпиям пара и жидкости при их составе, одинаковом с составом исходной смеси при ее температуре кипения. При подаче исходной смеси в виде жидкости, нагретой до температуры кипения, $\varphi = 0$. При подаче на ректификацию холодной жидкости $\varphi < 0$. При питании колонны насыщенным паром $\varphi = 1$.

Применение допушения о постоянстве мольных расходов значительно упрощает расчет ректификации, так как из систем уравнений (3.68), (3.69) исключаются уравнения теплового баланса, а уравнения материального баланса (уравнения рабочих линий) упрощаются до линейных зависимостей:

$$y_{n-1} = \frac{R}{R+1} x_n + \frac{x_P}{R+1} \quad (n > f);$$
(3.75)

$$y_{n-1} = \frac{R + (1-\varphi) F/P}{R+1-\varphi F/P} x_n + \frac{(1-F/P) x_W}{R+1-\varphi F/P} \qquad (n \le f).$$
(3.76)

Уравнения (3.75) и (3.76) применяют и к аппаратам с непрерывным контактом фаз (для модели идеального вытеснения), но без индексов *n* и *n* – 1.

Уравнение рабочей линии для исчерпывающей части колонны можно представить и в таком виде:

$$y_{n-1} = (1+R_1)x_n/R_1 - x_W/R_1, \qquad (3.77)$$

где R₁ — отношение мольных расходов пара и кубового остатка.

Расчет числа теоретических ступеней при допущении постоянства мольных расходов заключается в последовательном применении ко всем ступеням условия равновесия между паром и жидкостью (3.22) и уравнений рабочих линий. Возможная схема расчета приведена на рис. 3.8 (см. стр. 112).

На практике данный алгоритм часто выполняют графически, строя ступенчатую линию между кривой равновесия и рабочей линией.

Пример 8. Определить число теоретических ступеней, необходимых для осуществления процесса ректификации, описанного в примере 7, используя допущение о постоянстве мольных расходов фаз.

У равнения рабочих линий. Так как в данном случае R = 1, F/P = 0.01/0.00398 = 2.5126 и q = 0 (см. пример 7), то уравнения (3.75) и (3.76), если их представить в виде зависимости концентраций в жидкости от концентраций в паре, примут вид:

$$x_n = 2y_{n-1} - 0.99$$
 $(n > j);$
 $x_n = 0.5694y_{n-1} + 0.00431$ $(n \le j).$

Расчет числа теоретических ступеней. Так как $x_1 = x_W = 0,01$ мол. доли, то y_1 можно найти из равновесных данных, приведенных в примере 7. Интерполяцией находим $y_1 = 0,067$ мол. доли. Концентрацию более летучего компонента в жидкости, выходящей со второй ступени, находим по уравнению рабочей линии для исчерпывающей части колонны при n = 2:

$$x_2 = 0.5694y_1 + 0.00431 = 0.5694 \cdot 0.067 + 0.00431 = 0.0424$$
 мол. доли

Используя равновесные данные и уравнение рабочей линии для последующих ступеней, получим (все концентрации в мол. долях)

$$y_2 = 0.2391;$$
 $y_3 = 0.4980;$ $y_4 = 0.6546;$
 $x_3 = 0.1404;$ $x_4 = 0.2879;$ $x_5 = 0.3770.$

Так как с 5-й ступени стекает жидкость, близкая по составу к исходной смеси, примем ее за ступень пптания, и далее для определения составов жидкости будем поль-

зоваться уравнением рабочей линии для укрепляющей части колонны. Последующие расчеты дают:

$y_5 = 0.7143$	$y_{13} = 0.9279$	$x_6 = 0.4385$	$x_{13} = 0.8300$
$y_6 = 0,7483$	$y_{14} = 0.9433$	$x_{\rm c} = 0,5065$	$x_{14} = 0,8658$
$y_7 = 0.7820$	$y_{15} = 0.9565$	$x_8 = 0.5740$	$x_{15} = 0.8966$
$y_8 = 0,8130$	$y_{16} = 0.9677$	$x_9 = 0,6361$	$x_{16} = 0.9231$
$y_9 = 0.8412$	$y_{17} = 0.9771$	$x_{10} = 0,6925$	$x_{17} = 0.9454$
$y_{10} = 0.8666$	$y_{18} = 0.9849$	$x_{11} = 0,7432$	$x_{18} = 0.9641$
$y_{11} = 0,8894$	$y_{19} = 0.9915$	$x_{12} = 0,7889$	$x_{19} = 0.9799$
$y_{12} = 0.9100$	-		

Как видим, с 19-й ступени уходит пар, содержание метанола в котором превышает его содержание в дистилляте. Следовательно, при подаче исходной смеси на 5-ю ступень для осуществлення данного процесса необходим аппарат, эквивалентный 19 теоретическим ступеням.

Сопоставление с результатами точного расчета числа теоретических ступеней, выполненного в примере 7, показывает, что расхождение составляет три теоретических ступени. Такое расхождение обусловлено тем, что в данном случае энтальпии фаз претерпевают ощутимые, хотя и не очень большие, изменения. В частности, мольная энтальпия пара изменяется примерно на 16 %.

3.2.4. Определение основных размеров ректификационных колонн

К основным размерам ректификационной колонны относят ее диаметр и высоту рабочей части. При подборе диаметра должны быть удовлетворены следующие условия:

1) скорости фаз должны быть меньше скоростей, при которых наступает захлебывание колонны;

2) гидродинамические условия в колонне должны быть такими, чтобы ее массообменная эффективность была близка к оптимальной;

3) диаметры колони должны удовлетворять требованиям существующих стандартов.

В ректификационных колоннах массовые расходы и свойства фаз могут претерпевать значительные изменения по высоте. Поэтому обычно расчет диаметра для укрепляющей и исчерпывающей частей колонны проводят раздельно. Иногда верхнюю и нижнюю части ректификационной колонны приходится проектировать с разными диаметрами или с различным внутренним устройством (разный размер насадки, разное расстояние между тарелками).

Пример 9. Подобрать диаметр ректификационной колонны с колпачковыми тарелками для разделения смеси метанол — вода (см. примеры 7 и 8).

Диапазон эффективной работы барботажных тарелок обычно характеризуют величнной F-фактора, равного произведению скорости пара на квадратный корень из плотности пара. Для колпачковых тарелок при выражении скорости пара в м/с, плотности пара в кг/м³ и отнесении скорости пара к свободному сечению колонны этот диапазон составляет [8]: 0.48 < $w_u \sqrt{\rho_u} < 2.8$. Определим, при каких диаметрах колонны это условие удовлетворяется. Расход пара,

Определим, при каких диаметрах колонны это условие удовлетворяется. Расход пара, поступающего в колонну из кнпятильника, составляет 0,00732 кмоль/с (см. пример 7). Молекулярная масса этого пара, содержащего 0,01 мол. доли метанола, равна 18.16. Следовательно, массовый расход пара составит $G = 0,00732 \cdot 18,16 = 0,133$ кг/с. Определим плотность пара при температуре 98,2 °C, равной температуре на нижней тарелке, и нормальном давлении, считая применимыми законы идеальных газов:

$$\rho_{\mu} = \frac{pM}{RT} = \frac{1.013 \cdot 10^5 \cdot 18.16}{8314 (273.15 + 98.2)} = 0.596 \text{ Kr/M}^3$$

Таким образом, объемный расход пара на нижней тарелке

$$V_y = G/\rho_y = 0.133/0.596 = 0.223 \text{ m}^3/\text{c}.$$

Максимальный диаметр колонны, при котором будет соблюдаться приведенное выше условие эффективной работы тарелок, может быть определен из уравнения

$$\omega_y \sqrt{\rho_y} = 4 V_y \sqrt{\rho_y} / (\pi D_{\max}^2) = 0.48,$$

откуда следует, что

$$D_{\max} = \sqrt{4V_y \sqrt{\rho_y} / (0.48\pi)} = \sqrt{4 \cdot 0.223 \sqrt{0.596} / (0.48 \cdot 3.14)} = 0.68 \text{ M}.$$

Аналогичным образом находим минимальный для диапазона скоростей пара, соответ-

ствующих эффективной работе тарелок, диаметр колонны:

$$D_{\min} = \sqrt{4 \cdot 0.223 \sqrt{0.596}} (2.8 \cdot 3.14) = 0.28$$
 м.

Из примера 7 имеем, что на тарелке питания мольный расход пара составляет 0,00756 кмоль/с, содержание метанола в нем 0,726 мол. доли, а температура равна 74,6 °С. Повторяя расчет для условий на тарелке питания, получим: M = 28,2, G = 0,213 кг/с, $\rho_y = 0,988$ кг/м³ (пренебрегая изменением давления, обусловленным гидравлическим сопротивлением тарелок) $V_y = 0,216$ м³/с, $D_{max} = 0,75$ м, $D_{min} = 0,31$ м.

Таким образом, для исчерпывающей части колонны можно использовать стандартные колпачковые тарелки диаметром 400 и 600 мм [18]

Повторение расчета для условий в верхней части колонны показывает, что тарелки этого диаметра применимы в данном случае и для укрепляющей части колонны.

Скорость пара при захлебывании. Предельные скорости пара, при которых начинается захлебывание в тарельчатых колоннах, обычно рассчитывают по уравнению

$$w_{y,s} = C\sqrt{(\rho_x - \rho_y)/\rho_y}, \qquad (3.78)$$

где С — эмпирический коэффициент. Для тарелок с капсюльными колпачками коэффициент С можно определить из эмпирической зависимости

$$C = \left[b - a \lg \left(\frac{L}{G} - \sqrt{\frac{\rho_y}{\rho_x}} \right) \right] \left(\frac{\sigma}{0.02} \right)^{0.2}$$
(3.79)

где о — поверхностное натяжение, Н/м. Коэффициенты a и b выражаются зависимостями:

при
$$\frac{L}{G} \sqrt{\frac{\rho_y}{\rho_x}} < 0.2$$
 $a = 0.0492h + 0.0041;$
 $b = 0.0564h + 0.0207;$
при $0.2 < \frac{L}{G} \sqrt{\frac{\rho_y}{\rho_x}} < 1$ $a = 0.0816h + 0.0149;$
 $b = 0.0336h + 0.0134,$

где h — расстояние между тарелками, м. При использовании этих зависимостей для расчета коэффициента C уравнение (3.78) дает скорость пара при захлебывании (в м/с), рассчитанную по поперечному сечению сепарационного пространства.

Для условий данной задачи на нижней тарелке расход пара составляет 0,0732 кмоль/с, расход жидкости 0,01334 кмоль/с (пример 7). Их массовые расходы соответственно равны: G = 0,133 кг/с, L = 0,242 кг/с. Плотность жидкой фазы, содержащей на нижней тарелке около 1 % (мол.) метанола, рассчитанная из плотностей воды и метанола при 98,2 °C по аддитивности мольных объемов, составляет $\rho_x = 954$ кг/м³. Поверхностное натяжение этого раствора, рассчитанное по методу Тамуры [5], равно $\sigma = 0,056$ Н/м.

Исходя из этих данных, для нижней тарелки при межтарельчатом расстоянии 0,2 м получим:

$$\frac{L}{G}\sqrt{\frac{\rho_y}{\rho_x}} = \frac{0.242}{0.133}\sqrt{\frac{0.596}{954}} = 0.0455;$$

 $a = 0.0492 \cdot 0.2 + 0.0041 = 0.0139;$ $b = 0.0564 \cdot 0.2 + 0.0207 = 0.0320;$

$$C = [0,0320 - 0,0139 | g(0,0455)] (0,056/0,02)^{0.2} = 0,0622;$$

$$w_{\mu_3} = 0.0622 \sqrt{(954 - 0.596)/0.596} = 2.5 \text{ m/c}.$$

Скорости пара при захлебывании, рассчитанные аналогичным образом для других межтарельчатых расстояний при различном положении тарелок в колонне, приведены ниже (расходы, составы и температуры фаз в верхней части колонны и вблизи тарелки питания взяты из решения примера 7; плотности жидкости на верхней тарелке и тарелке питания равны 750 и 830 кг/м³, а поверхностное натяжение соответственно 19 и 38 мН/м):

Тарелка	Скорость пара при захлебывании, м/с, при расстоянии между тарелками (в м)				
	0,2	0,3	0,4	0,5	
Нижняя Питания Первая над тарелкой питания Верхняя	2,5 1,6 1,9 1,4	3,1 2,0 2,3 1,8	3,7 2,4 2,8 2,1	4,3 2,8 3,3 2,5	

Как видно, скорости пара при захлебывании в укрепляющей части колонны, несмотря на меньший расход жидкости, ниже вследствие большей плотности пара и меньшего поверхностного натяжения.

Выбор диаметров тарелок и межтарельчатых расстояний. Для выбора подходящих по условиям захлебывання расстояний между тарелками и их диаметров проведем расчет скоростей пара в колоннах диаметром 400 и 600 мм. Скорости пара, как и скорости пара при захлебывании, будем рассчитывать по площади сепарационного пространства (свободное сечение колонны за вычетом поперечного сечения переливной трубы). Для тарелок диаметром 400 и 600 мм свободное сечение колонны составляет 0,126 и 0,283 м², а сечения переливных труб равны соответственно 0,0043 и 0,012 м² [18]. Так как объемный расход пара на нижней тарелке равен 0,223 м³/с, то в колонны диаметром 400 мм скорость пара в этом сечении колонны:

$$w_{\mu} = 0.223/(0.126 - 0.0043) = 1.83 \text{ m/c}.$$

Результаты расчета скоростей пара для других тарелок приведены ниже:

Тарелка		Скорост м/с, в к диаметром	и пара, колонне 4 (в мм)	Тарелка	Скорости пара, м/с, в колонне диаметром (в мм)	
		400	600		400	600
Нижняя Питания		1,83 1,78	0, 82 0, 8 0	Первая над тарелкой питания Верхняя	1,78 1,82	0,80 0,82

Сопоставление скоростей пара со скоростями пара при захлебывании показывает, что при расстоянии между тарелками 0,4 и 0,5 м можно использовать тарелки как диаметром 600 мм, так и диаметром 400 мм. При расстоянии между тарелками 200 мм можно использовать тарелки диаметром только 600 мм, а при расстоянии между тарелками 300 мм тарелки диаметром 400 мм годятся только для исчерпывающей части колонны.

Для более надежного выбора межтарельчатого расстояния и диаметра тарелок требуется оценить еще унос капель жидкости паром, градиент уровня жидкости на тарелке; высоту столба жидкости в переливе, а также гидравлическое сопротивление тарелки [8]. Окончательный выбор оптимального варианта следует проводить методами оптимизации после определения требуемого числа тарелок (см. гл. 6)

Рабочую высоту насадочных и тарельчатых ректификационных колонн определяют теми же методами, что и для абсорбционных и экстракционных колонн (см. разд. 3.1.5). Так, число тарелок можно найти на основе данных для средней эффективности тарелок. Для оценки средней эффективности колпачковых тарелок можно использовать эмпирическую зависимость [11], ириведенную на рис. 3.9. На графике по оси абсцисс отложено произведение рассчитанной по составу исходной смеси среднемолярной вязкости компонентов в жидком состоянии [в мПа·с) на среднее значение относительной летучести:

$$\alpha_{cp} = \frac{y^*(x)(1-x)}{x[1-y^*(x)]}$$

Пример 10. Оценить среднюю эффективность тарелок для процесса ректификации, рассмотренного в примерах 7, 8 и 9.

В примере 7 были определены температуры на нижней (98,2 °C) и верхней (64,8 °C) тарелках. Следовательно, средняя температура в колонне равна (98,2 + 64,8) /2 = 81,5 °C. Из равновесных данных (см. пример 7) путем интерполяции находим равновесные составы фаз при этой температуре: x = 0,205 и y'(x) = 0,584. Относительная летучесть при этой средней температуре равна:

$$\alpha_{cp} = 0.584(1-0.205)/[0.205(1-0.584)] = 5.4.$$

Вязкости метанола и воды при температуре 81,5 °С приблизительно равны [6] соответственно 0,29 и 0,35 сП. Среднемолярная вязкость жидкости при составе, соответствующем составу исходной смеси ($x_F = 0,4$ мол. доли), получается равной:

$$\mu_{cp} = 0.29 \cdot 0.4 + 0.35(1 - 0.4) = 0.33 \text{ M}\Pi a \cdot c.$$

Так как α_{ср}µ_{ср}=5,4·0,33=1,8, то из графика на рис. 3.9 следует, что ориентировочное значение средней эффективности тарелок для данного процесса η =0,42.

Рис. 3.9. Корреляция для определения среднего к.п.д колпачковых тарелок ректификационных колонн

10

8

2

0,6

0,4

0.2

0,1

ь (9/79) 0,8

$$y_n = y_{n-1} + E_{My}[y'(x_n) - y_{n-1}], \qquad (3.80)$$

2

 $w_y/(h-h_{5.c.}), c^{-1}$

6

11

где E_{My} — эффективность по Мэрфри *n*-й (считая снизу) тарелки.

Методы расчета эффективности по Мэрфри, зависящей от числа единиц переноса, приходящихся на одну тарелку, и от принятой модели структуры потоков, описаны в разд. 3.1.6.

Пример 11. Определить эффективность по Мэрфри первой (нижней) тарелки для процесса ректификации, рассмотренного в примерах 7—10, в колоние диаметром 600 мм с колпачковыми тарелками при высоте перелива 30 мм.

Для расчета эффективности используем метод [11], в котором для жидкой фазы примеияется диффузионная модель, а коэффициент продольного перемешивания в жидкой фазе E_x рассчитывается (в м²/с) по эмпирпческому уравнению

$$E_x = (0.00378 + 0.017) \omega_y + 3.68 V_x / l_{\rm cp} + 0.18 h_{\rm n})^2, \qquad (3.81)$$

где w_y — скорость пара в м/с, рассчитанная на рабочую (активную) площадь тарелки; V_x/l_{cp} — объемный расход жидкости, отнесенный к средней инирине потока жидкости на тарелке в м²/с $(l_{cp}$ можно принять равным отношению рабочей площади тарелки к длине пути жидкости на тарелке); h_n — пысота перелива в м.

Расчет фазовых чисел сдпниц переноса в этом методе проводят по уравненням

$$n_y = (0.776 + 4.63h_0 - 0.238\omega_y \sqrt{\rho_y} + 105V_x/l_{\rm cp}) ({\rm Pr}'_y)$$
(3.82)

$$n_x = 2,03 \cdot 10^4 \sqrt{D_x} \left[0,21 \, \omega_y \sqrt{\rho_y} + 0,15 \right] \tau, \tag{3.83}$$

где ρ_y — плотность пара, кг/м³; Рг'_y — диффузнонный критерий Прандтля для паровой фазы; D_x — коэффициент диффузии для жидкой фазы, м²/с; т — среднее время пребывания жидкости на тарелке, с.

Для определения времени пребывания жидкости на тарелке необходимо знать рабочую площадь тарелки S_p и высоту запаса жидкости на тарелке h₀, которую рассчитывают по уравнению (в м):

$$h_0 = 0.042 + 0.19h_{\rm m} - 0.0135\omega_{\rm g}\sqrt{\rho_{\rm g}} + 2.4V_{\rm x}/l_{\rm ep}.$$
 (3.84)

Эффективность тарелки по Мэрфри при расчете по диффузионной модели зависит от локальной эффективности, фактора массопередачи и критерия Пекле, характеризующего продольное перемешивание в жидкой фазе [уравнение (3.54)]

Локальная эффективность. В примере 7 для первой тарелки было найдено: $V_y = 0.223 \text{ м}^3/\text{с}, \rho_y = 0.596 \text{ кг/м}^3; L = 0.242 \text{ кг/с}, \rho_x = 954 \text{ кг/м}^3, t = 98.2 ^{\circ}\text{C}.$

Так как рабочая площадь стандартной тарелки диаметром 600 мм составляет 0,187 м², а длина пути жидкости b = 0,345 м [18], то

$$l_{\rm cp} = 0,187/0,345 = 0,542;$$
 $\omega_y = V_y/S_p = 0,223/0,187 = 1,19 \text{ m/c};$
 $V_x/l_{\rm cp} = L/(\rho_x l_{\rm cp}) = 0,242/(954 \cdot 0,542) = 0,000468 \text{ m}^2/\text{c}.$

Коэффициент диффузии для паровой фазы (в м²/с) при *t* = 98,2 °С (давление будем считать нормальным) рассчитаем по уравнению [5]

$$D_y = \frac{1,013 \cdot 10^{-8} T^{1.75}}{p (v_1^{1/3} + v_2^{1/3})^2} \sqrt{\frac{1}{M_1} + \frac{1}{M_2}},$$

где M_1 и M_2 — молекулярные массы компонентов, равные в данном случае 32,04 и 18.02; υ_1 и υ_2 — диффузионные мольные объемы; p — давление, МПа.

Диффузионный мольный объем воды равен 12,7, а диффузионный мольный объем метанола можно подсчитать как сумму четырех диффузионных объемов водорода (1,98) и диффузионных объемов углерода (16,5) и кислорода (5,48): 4 · 1,98 + 16,5 + 5,48 = 29,9. Следовательно,

$$D_{y} = \frac{1,013 \cdot 10^{-8} (273,15+98,2)^{1.75}}{0,1013 (29,3^{1/3}+12,7^{1/3})^{2}} \sqrt{\frac{1}{32,04} + \frac{1}{18,02}} = 3,13 \cdot 10^{-5} \text{ m}^{2}/\text{c}$$

Принимая вязкость пара на нижней тарелке (где концентрация метанола мала) равной вязкости водяного пара (которая при температуре около 100 °C равна 0,012 мПа с), находим значение диффузионного критерия Прандтля:

$$\Pr'_{y} = \mu_{y} / (\rho_{y} D_{y}) = 0.012 \cdot 10^{-3} / (0.596 \cdot 3.13 \cdot 10^{-5}) = 0.64.$$

Подставляя это значение в уравнение (3.82), получим:

$$n_{g} = (0.776 + 4.63 \cdot 0.03 - 0.238 \cdot 1.19\sqrt{0.596} + 105 \cdot 0.000468) 0.64^{-0.5} = 0.93.$$

Коэффициент диффузии для разбавленного раствора метанола в воде (в м²/с) рассчитаем по уравнению [5]

$$D_x = 7.4 \cdot 10^{-12} \sqrt{\varphi M} T / (\mu v^{0.6}),$$

где φ — фактор ассоциации растворителя, равный для воды 2,6; M — молекулярная масса растворителя; μ — вязкость раствора, мПа·с; υ — мольный объем растворенного вещества при температуре кипения, равный для метанола [5] сумме четырех атомных объемов водорода (3,7), атомного объема углерода (14,8) и атомного объема кислорода (7,4): $4 \cdot 3,7 + 14,8 + 7,4 = 37$ см³/моль.

Принимая вязкость жидкости равной вязкости воды при 98,2 °С (0,289 мПа·с), получим:

$$D_x = 7.4 \cdot 10^{-12} \sqrt{2.6 \cdot 18,02} (273,15 + 98,2) / (0,289 \cdot 37^{0.6}) = 7.5 \cdot 10^{-9} \text{ m}^2/\text{c}.$$

Рассчитаем среднее время пребывания жидкости на тарелке с помощью уравнения (3.84):

$$h_0 = 0.042 + 0.19 \cdot 0.03 - 0.0135 \cdot 1.19\sqrt{0.596} + 2.4 \cdot 0.000468 = 0.036$$
 M;
 $\tau = S_p h_0 / V_x = 0.187 \cdot 0.036 / 0.000254 = 26.5$ c.

Подставляя эти значения в уравнение (3.83), найдем:

 $n_x = 2,03 \cdot 10^4 \sqrt{7,5 \cdot 10^{-9}} (0,21 \cdot 1,19 \sqrt{0,596} + 0,15) 26,5 = 16.$

Определим фактор массопередачи mG/L. Тангенс угла наклона линии равновесия при малых концентрациях метанола можно принять равным m=0,134/0,02=6,7 (см. равновесные данные в примере 7). Так как мольные расходы фаз равны G=0,00732 кмоль/с и L==0,01334 кмоль/с, то фактор массопередачи $mG/L=6,7\cdot0,00732/0,01334=3,68$. Подставляя это значение в уравнение (3.58), получим общее число единиц переноса для нижней тарелки:

$$n_{oy} = \left(\frac{1}{n_y} + \frac{mG}{L} \frac{1}{n_x}\right)^{-1} = \left(\frac{1}{0.93} + 3.68 \frac{1}{16}\right)^{-1} = 0.77.$$

Принимая для паровой фазы модель идеального вытеснения, находим локальную эффективность (см. разд. 3.1.6):

$$E_0 = 1 - e^{-n_0 y} = 1 - e^{-0.77} = 0.54.$$

Эффективность тарелки по Мэрфри. Коэффициент продольного переме-• шивания в жидкой фазе в соответствии с уравнением (3.81) равен:

 $E_s = (0,00378 + 0,0171 \cdot 1,19 + 3,68 \cdot 0,000468 + 0,18 \cdot 0,03)^2 = 9,8 \cdot 10^{-4} \text{ m}^2/\text{c}.$

Рассчитаем следующие величины:

критерий Пекле для продольного перемешивания

$$Pe_r = b^2/(E_r\tau) = 0.345^2/(9.8 \cdot 10^{-4} \cdot 26.5) = 4.6;$$

коэффициент у в уравнении (3.54)

$$\eta = \frac{Pe_x}{2} \left\{ \sqrt{1 + \left(\frac{4E_0}{Pe_x}\right) \frac{mG}{L}} - 1 \right\} = \frac{4.6}{2} \left\{ \sqrt{1 + \frac{4 \cdot 0.43}{4.6} 3.68} - 1 \right\} = 1.24;$$

эффективность по Мэрфри

$$E_{My} = E_0 \left\{ \frac{1 - \exp(-\lambda)}{\lambda (1 + \lambda/\eta)} + \frac{\exp\eta - 1}{\eta (1 + \eta/\lambda)} \right\} = 0.54 \left\{ \frac{1 - \exp(-5.84)}{5.84 (1 + 5.84/1.24)} + \frac{\exp(1.24) - 1}{1.24 (1 + 1.24/5.84)} \right\} = 0.88.$$

где $\lambda = \eta + Pe_x = 1,24 + 4,6 = 5,84$.

Влияние уноса жидкой фазы паром на эффективность тарелки. Методика расчета эффективности тарелок на основе уравнений (3.81) — (3.84) не позволяет учесть влияние уноса капель жидкости паром. Приближенная оценка влияния уноса в ректификационных колоннах выполняется с помощью уравнения [11]:

$$E'_{My} = E_{My} / (1 + eE_{My}), \qquad (3.85)$$

где Е[']му — эффективность по Мэрфри с учетом уноса; е — унос жидкости в долях от расхода жидкой фазы.

В колоннах с колпачковыми тарелками унос можно определить с помощью графической корреляции на рис. 3.10. На этом графике унос представлен в виде функции от отношения $w_y/(h-h_6_c)$, где w_y — скорость пара, рассчитанная на свободное сечение колонны; $h-h_6_c$ — высота сепарационного пространства над барботажным слоем на тарелке. Высоту барботажного слоя h_6_c (м) можно найти [11] по эмпирическому уравнению

 $h_{6} = 0.0432 \rho_{\mu} w_{\mu}^2 + 1.89 h_{\pi} - 0.0406.$

Для условий рассматриваемой задачи ($\rho_u = 0.596 \text{ кг/м}^3$, $\omega_u = 1.19 \text{ м/с}$, $h_n = 0.03 \text{ м}$) получим:

$$h_{6,c} = 0.0432 \cdot 0.596 \cdot 1.19^2 + 1.89 \cdot 0.03 - 0.0406 = 0.053$$
 M.

Следовательно, высота сепарационного пространства $h - h_{6,c}$ при расстоянии между тарелками 0,2 м составит: 0,2 - 0,053 = 0,147 м. Вычислив скорость пара, отнесенную к свободному сечению колонны:

$$w_y = V_y/S = 0.223/(3.14 \cdot 0.6^2/4) = 0.79 \text{ m/c},$$

получим:

$$w_y/(h-h_6 c) = 0.79/0.147 = 5.4 c^{-1}$$

122

откуда ордината на графике для уноса (см. рис. 3.10) равна приблизительно 9. Следовательно,

$$e = \left(\frac{eL}{G}\right)\sigma \frac{G}{L\sigma} = 9 \frac{0.00732}{0.01334 \cdot 56} = 0.09$$
 кмоль/кмоль жидкости.

В соответствии с уравнением (3.85) получим:

$$E'_{M} = 0.88 / (1 + 0.09 \cdot 0.88) = 0.81.$$

Унос и, следовательно, эффективность тарелки зависят от выбранного расстояния между тарелками. Следует также отметить сильное влияние на унос поверхностного натяжения. Для рассматриваемого процесса ректификации смеси метанол — вода на верхних тарелках ввиду значительно меньшего поверхностного натяжения унос должен быть гораздо больше, а эффективность тарелок заметно ниже, чем на нижних.

Пример 12. Путем расчета составов фаз методом «от тарелки к тарелке» определить число колпачковых тарелок диаметром 0,6 м, необходимых для осуществления процесса ректификации, рассмотренного в примерах 7—11, при расстоянии между тарелками 200, 300 и 400 мм.

Для решения данной задачи была составлена программа расчета на ЭВМ по алгоритму, приведенному на рис. 3.8, с учетом уравнения (3.80). Эффективность каждой тарелки по Мэрфри Е_{Ми} рассчитывали, как показано в примере 11; при этом были сделаны следующие основные допущения:

1) принимали постоянство мольных расходов фаз;

 в качестве коэффициентов диффузии использовали меньшие из значений коэффициентов, рассчитанных по уравнениям, приведенным в примере 11, при условиях на верхней и нижней тарелках;

3) температуру и плотность жидкости, поверхностное натяжение и унос принимали для каждой из частей колонны равными их средним значениям в соответствующей части.

Результаты расчетов приведены ниже:

	Расстояние между тарелками, мм				
Показатели	200	300	400		
Унос, кмоль/кмоль жидкости:					
укрепляющая колонна	1	0,45	0,15		
исчерпывающая колонна	0,13	0,04	0,01		
Диапазон изменения Е'м"	0,43—0,84	0,56—0,94	0,68—0,97		
Требуемое число тарелок	43	33	28		
Номер тарелки питания (считая снизу)	7	7	7		
Средний к. п. д. тарелки	0,45	0,57	0,68		

Для данного процесса характерна высокая эффективность нижних тарелок и заметно более низкая — тарелок укрепляющей части, главным образом ввиду значительно большего уноса. По-видимому, в данном случае целесообразно различное расстояние между тарелками в укрепляющей и исчерпывающей частях колонны, хотя окончательный выбор того или иного варианта колонны должен основываться на методах оптимизации, например на сопоставлении годовых затрат на проведение процесса (см. гл. 6).

3.2.5. Выбор флегмового числа

Одной из задач расчета ректификации является определение флегмового числа, при котором должен осуществляться процесс. Значение *R* обычно находят подбором, проводя расчет колонны при различных значениях флегмового числа и сопоставляя затраты. Исходным при выборе флегмового числа является его минимальное значение. Оно может быть определено как наименьшее значение, при котором из данной смеси могут быть получены дистиллят и кубовый остаток определенного состава в колонне конечных размеров.

Точное определение R_{min} возможно итерационными методами, например путем расчета требуемого числа теоретических ступеней с учетом изменения мольных расходов фаз при разных R и определения такого значения R, при котором число ступеней становится очень большим. На практике обычно для нахождения R_{min} ограничиваются определением предельно возможного положения рабочих линий процесса. Для этого

Рис. 3.11. К определению минимального флегмового числа:

а — по координатам точки нересечения рабочей линии с линией питания (1, 2, 3, 4 — линии питания еоответственно ири $\varphi < 0$, $\varphi = 0$, $0 < \varphi < 1$, $\varphi = 1$; 5 — рабочая линия при минимальном флегмовом числе и $\varphi = 1$); б — по тапгенсу угла наклона касательной к равновесной линии

на диаграмме *х*—*у* строят линию равновесия и так называемую «линию питания», представляющую собой геометрическое место точек пересечения рабочих линий для укрепляющей и исчерпывающей частей колонны. Линию питания строят по уравнению

$$y = (\varphi - 1) x / \varphi + x_F / \varphi.$$
 (3.86)

Если прямая, соединяющая на диаграмме x - y точку на диагонали с координатами $x = x_p$, $y = x_p$ с точкой пересечения линии питания и равновесия не пересекает линию равновесия, то минимальное флегмовое число определяется уравнением

$$R_{\min} = (x_P - y^*) / (y^* - x^*), \qquad (3.87)$$

где y^* и x^* — соответственно ордината и абсцисса точки пересечения линии питания с линией равновесия.

Этот случай показан на рис. 3.11, *а*. При подаче питания в виде жидкости, нагретой до температуры кипения, $\varphi = 0$ (см. разд. 3.2.3), уравнение линии питания $x = x_F$ и $x^* = x_F$, а $y^* = y^*(x_F)$.

Если проведенная указанным выше способом прямая пересекает линию равновесия, то R_{\min} будет меньше, чем следует из уравнения (3.87). В этом случае (рис. 3.11, *б*) следует провести касательную к линии равновесия из точки на диагонали диаграммы с координатами $x = x_p$. $y = x_p$ и определить тангенс угла наклона этой касательной tg α по отношению к положительному направлению оси абсцисс. Минимальное флегмовое число при этом может быть найдено по уравнению

$$R_{\min} = \lg \alpha / (1 - \lg \alpha)$$

Оптимальное флегмовое число, как правило, ненамного превышает R_{\min} — чаще всего не более чем на 10—30 %.

Пример 13. Определить мннимальное флегмовое число для процесса ректификации смеси метанол — вода, содержащей 40 % (мол.) метанола под атмосферным давлением, если исходная смесь подается: а) при температуре 20 °C; б) в виде жидкости, нагретой до температуры кипения; а) в виде насыщенного пара. Дистиллят должен содержать 99 % (мол.) метанола.

Если для расчета энтальнии исходной смеси при 20 °С использовать данные, приведенные в примере 7, получни $i_F = -1260$ кДж/кмоль (за начало отсчета выбрана температура 25 °С). Так как энтальния исходной смеси в жидком виде при температуре кинения (75,3 °С) равна 3700 кДж/кмоль (пример 7), а энтальния исходной смеси в состоянии насыщенного пара по тем же данным равна 43650 кДж/кмоль, то коэффициент φ при подаче питания в виде холодной (при 20 °С) жидкости может быть принят равным

$$\varphi = (-1260 - 3700) / (43650 - 3700) = -0,124$$

При подаче питания в виде жидкости, нагретой до температуры кинения, q = 0; если исходная смесь поступает в виде насыщенного пара, q = 1.

Построив линии питания для трех указанных значений у (рис. 3.11, а) и найдя точки пересечения этих линий с линией равновесия, получим координаты этих точек:

a)
$$y^* = 0.748$$
, $x^* = 0.438$; 6) $y^* = 0.729$, $x^* = 0.4$; B) $y^* = 0.4$, $x^* = 0.093$.

В данном случае для определения минимального флегмового числа можно использовать уравнение (3.87), из которого для случая а) получим:

$$R_{\min} = (x_P - y^*) / (y^* - x^*) = (0.99 - 0.748) / (0.748 - 0.438) = 0.78.$$

Для случаев б) и в) минимальные флегмовые числа будут равны соответственно 0,79 и 1,9.

3.3. МНОГОКОМПОНЕНТНАЯ РЕКТИФИКАЦИЯ

В данном разделе рассматривается процесс непрерывной ректификации смесей с произвольным числом компонентов в простых (т. е. с одним питанием, без отбора промежуточных фракций) колоннах (см. рис. 3.6). В систему уравнений, описывающих работу такой колонны, входят уравнения тепловых и материальных балансов для каждого компонента, аналогичные соответствующим уравнениям для бинарной ректификации, а также зависимости, характеризующие парожидкостное равновесие. Для количественного описания равновесия используют либо коэффициенты распределения *m*_i, либо коэффициенты относительной летучести α_i . В первом случае равновесные составы определяют по уравнениям

$$y_i^* = m_i x_i \quad (i = 1, 2, b),$$
 (3.88)

где *i* — номер компонента; *b* — число компонентов. В данной главе нумерация компонентов ведется в порядке убывания их летучести, а относительную летучесть определяют по наименее летучему из компонентов:

$$\alpha_i = m_i/m_b$$
 (i = 1, 2, b). (3.89)

Равновесные составы фаз выражают через относительные летучести компонентов следующим образом:

$$y_i^* = \alpha_i x_i / \sum_{i=1}^b \alpha_i x_i; \qquad x_i^* = (y_i / \alpha_i) / \sum_{i=1}^b y_i / \alpha_i.$$
 (3.90)

Коэффициенты распределения и относительные летучести компонентов являются функциями состава и параметров состояния. Однако в приближенных методах расчета коэффициенты относительной летучести часто принимают постоянными.

Если расчет процесса основывается на модели ректификационной колонны, состоящей из определенного числа теоретических ступеней, то при допущении постоянства мольных расходов пара и жидкости систему уравнений, характеризующую процесс многокомпонентной ректификации, можно представить в виде:

$$Fx_{F,i} = Px_{P,i} + Wx_{W,i}$$
(3.91)

$$Gy_{n-1,i} = Lx_{n,i} + Px_{P,i} \quad (n > j);$$
(3.92)

$$Lx_{n,i} = Gy_{n-1,i} + Wx_{W,i} \quad (n \le i);$$
(3.93)

$$y_{n,i} = m_{n,i} x_{n,i}$$
 $(i = 1, 2, b; n = 1, 2, N_{\tau}).$ (3.94)

Как и при рассмотрении бинарной ректификации, в данной системе уравнений пренебрегают разделяющим действием кипятильника и дефлегматора. Для тарельчатых колонн вместо уравнений (3.94) можно использовать зависимости, в которых отклонение от равновесия на каждой тарелке характеризуется коэффициентами испарения $\beta_{n,i}$ или эффективностями по Мэрфри $E_{Mu,n,i}$:

$$y_{n,i} = \beta_{n,i} m_{n,i} x_{n,i};$$

$$y_{n,i} = y_{n-1,i} + E_{\mathbf{M},y_i,n,i} (m_{n,i} x_{n,i} - y_{n-1,i})$$

В большинстве случаев достаточно обоснованные данные для оценки коэффициентов испарения или эффективностей по Мэрфри отсутствуют, и расчет многокомпонентной ректификации основывается на определении требуемого числа теоретических ступеней, т. е. сводится к решению уравнений (3.91) — (3.94) совместно с уравнениями (3.67), определяющими тепловые нагрузки дефлегматоров и килятильника.

Особенности расчета многокомпонентной ректификации. Число уравнений в системе (3.91) — (3.94) таково, что если полностью заданы параметры, характеризующие исходную смесь, и давление, при котором проводится расчет ректификации, то дополнительно может быть задано еще только четыре параметра. В этом случае данная система уравнений становится замкнутой. Эти четыре параметра, задаваемые перед началом расчета, называют независимыми переменными процесса. В отличие от бинарной ректификации, четырех параметров недостаточно для характеристики составов дистиллята и кубового остатка, получаемых в колоннах с многокомпонентным питанием. Поэтому цель решения уравнений (3.91) — (3.94) — не только получение данных, необходимых для определения размеров колонны (например, расчет числа теоретических ступеней), но и определение полных составов продуктов того или иного процесса ректификации.

Расчет многокомпонентной ректификации можно проводить приближенными или точными методами. В первом случае в исходную систему уравнений вносят достаточно грубые упрощения и дополнительные зависимости эмпирического или полуэмпирического характера. Это позволяет получить хотя и приближенное решение, но зато относительно просто и быстро. В качестве четырех независимых переменных в приближенных методах расчета обычно принимают следующие параметры: 1) флегмовое число R; 2) концентрацию одного из компонентов в дистилляте $x_{P,k}$; 3) концентрацию одного из компонентов в кубовом остатке $x_{W,i}$; 4) номер ступени j, на которую должно подаваться питание.

Такой же выбор независимых переменных используют и в бинарной ректификации, но при многокомпонентном питании этих параметров недостаточно, чтобы перед началом расчета полностью охарактеризовать требуемый состав дистиллята и кубового остатка. Однако при правильном выборе компонентов, для которых задаются концентрации в дистилляте и кубовом остатке, приближенное решение уравнений материального баланса позволяет получить близкое к действительному представление о составах продуктов процесса ректификации. Компонентом, для которого в качестве независимой переменной задается концентрация его в дистилляте (тяжелый ключевой компонент с номером k), как правило, выбирают самый летучий из компонентов, которые предполагается сконцентрировать в кубовом остатке. Величина $x_{P,k}$ характеризует допустимое количество этого компонента в дистилляте. Другим ключевым компонентом (легкий ключевой компонент с номером l) выбирают обычно наименее летучий из тех, которые должны быть собраны в дистилляте. Величина $x_{W,l}$ характеризует допустимое содержание этого компонента в кубовом остатке.

Расчет многокомпонентной ректификации часто приходится выполнять в отсутствие сколь-либо полных данных или при полном отсутствии данных по равновесию. Поэтому в процессе расчета обычно возникает необходимость определения параметров, характеризующих парожидкостное равновесие. Ограничившись случаями, когда к паровой фазе применимы законы идеальных газов, коэффициенты распределения компонентов при давлении *р* можно определить из уравнений

$$m_i = \gamma_i P_i^0 / p$$
 (i = 1, 2, b), (3.95)

где ү_і — коэффициент активности *і*-го компонента в жидкой фазе; P_i^0 — давление насыщенного пара для чистого компонента.

Для относительных летучестей (определенных по наименее летучему из компонентов) справедливы зависимости

$$\alpha_{i} = \gamma_{i} P_{i}^{0} / (\gamma_{b} P_{b}^{0}) \qquad (i = 1, 2, ..., b).$$
(3.96)

Рис. 3.13. Блок-схема расчета равновесного состава жидкости для пара заданного состава

При расчете ректификационных колонн возникает необходимость в решении двух видов задач на парожидкостное равновесие: расчет равновесного состава пара по известному составу жидкости и, наоборот, расчет состава жидкой фазы, равновесной с паром заданного состава. В обоих случаях задача сводится в основном к определению равновесной температуры (температуры кипения жидкости или конденсации пара определенного состава) Алгоритмы решения приведены на рис. 3.12 и 3.13. В задачах второго рода для неидеальных систем перед началом расчета необходимо для первого приближения задаться составом жидкой фазы или коэффициентами активности.

Расчет колонн многокомпонентной ректификации обычно начинают с приближенного составления материального баланса, определения минимального числа теоретических ступеней, необходимых для осуществления процесса и нахождения минимального флегмового числа.

Приближенный материальный баланс многокомпонентной ректификации. Для решения систем уравнений (3.91) при известном питании и двух известных концентрациях ключевых компонентов $x_{P,k}$ и $x_{W,l}$ необходимо в дополнение к ним задать (b-2) концентрации в дистилляте или кубовом остатке. Тогда система уравнений (3.91) становится замкнутой. Наиболее достоверные предположения могут быть сделаны о содержании в дистилляте менее летучих компонентов, чем тяжелый ключевой компонент, и о содержании в кубовом остатке более летучих компонентов, чем легкий ключевой. Часто при приближенном составлении материального баланса содержание этих компонентов соответственно в дистилляте и кубовом остатке принимают равным нулю.

Пример 14. Определить приближенные составы дистиллята и кубового остатка и их расходы (в долях от расхода исходной смеси) при ректификации четырехкомпонентной смеси, содержащей равные мольные количества изобутилового (2-метилпропанол-1), к-бутилового, изоамилового (3-метилбутанол-1) и н-амилового спиртов, если дистиллят должен содержать 2% (мол.) изоамилового спирта, а кубовый остаток — 2% (мол.) к-бутилового.

Нумеруя компоненты в порядке убывания летучести (т. е. в порядке возрастания температуры кипения), можно представить исходные данные в следующем виде (концентрации выражены в мол. долях):

Компонент	$x_{F,i}$	x _{P,i}	X _{W.1}
 Изобутиловый спирт 	0,25	_	
2. н-Бутиловый спирт	0,25	_	0,02
3. Изоамиловый спирт	0,25	0,02	
4. н-Амиловый спирт	0,25		

Из неходных данных видно, что в качестве дистиллята предполагается отгонять в основном изомеры бутилового спирта, а ампловые спнрты должны преобладать в кубовом остатке. Поэтому в качестве легкого ключевого компонента выбран *н*-бутиловый спирт (l=2), а в качестве тяжелого – изоамиловый (k=3) Содержание *н*-амилового спирта в дистилляте должно быть малым, так как $x_{P,3}$ для изоамилового спирта, имеющего более низкую температуру кипения, составляет всего 2 % (мол.). Примем для приближенного материального баланса $x_{P,4} = 0$. По тем же соображениям пренебрежем содержанием самого летучего из компонентов (изобутилового спирта) в кубовом остатке и примем $x_{W,1} = 0$.

Решение системы уравнений (3.91) удобнее всего начать с определения расходов дистиллята и кубового остатка. Для этого просуммируем первые два из уравнений этой системы:

$$F \sum_{i=1}^{2} x_{F,i} = P \sum_{i=1}^{2} x_{P,i} + W \sum_{i=1}^{2} x_{W,i}.$$

Так как сумма $\sum_{i=1}^{2} x_{P,i}$ должна быть равна 0,98 мол. доли, а W = F - P, то из этого уравнения следует:

ния следует:

$$\frac{P}{F} = \frac{\sum_{i=1}^{2} (x_{F,i} - x_{W,i})}{\sum_{i=1}^{2} (x_{P,i} - x_{W,i})} = \frac{0.5 - 0.02}{0.98 - 0.02} = 0.5;$$

$$\frac{W}{F} = 1 - \frac{P}{F} = 0.5.$$

Решая далее каждое из уравнений системы (3.91) в отдельности, находим $x_{P,1}, x_{P,2}, x_{W,3}$ и $x_{W,4}$. Результаты приближенного расчета материального баланса приведены ниже:

Компонент	x _{P.i}	×w,i
1. Изобутиловый спирт	0,50	0
2. н-Бутиловый спирт	0,48	0,02
3. Изоамиловый спирт	0,02	0, 48
4. н-Амиловый спирт	0	0,50

Расчет минимального числа теоретических ступеней. Минимальное (при бесконечном флегмовом числе) число теоретических ступеней, требуемое для получения заданных концентраций ключевых компонентов в продуктах ректификационного разделения, является важным параметром процесса, так как определяет теоретически минимальные размеры колонны. Приближенно величина N_{\min} может быть найдена из уравнений Фэнске [11]

$$N_{\min} = \ln \frac{x_{P,i} x_{W,i}}{x_{P,j} x_{W,i}} / \ln \frac{\alpha_{cp,i}}{\alpha_{cp,j}}.$$
(3.97)

Уравнение (3.97) применимо к бинарным системам и к любой паре компонентов, содержащихся в многокомпонентной системе. На стадии приближенных расчетов многокомпонентной ректификации достаточно достоверные данные по содержанию в дистилляте и кубовом остатке имеются только для ключевых компонентов. Поэтому расчет V_{\min} по уравнениям Фэнске проводится при i = l и j = k. Порядок расчета минино мального числа теоретических ступеней показан на рис. 3.14. Средние относительные летучести $\alpha_{ср.i}$ обычно определяют как среднегеометрические значения относительных летучестей в самом верху колонны (при составе пара, одинаковом с составом кубового остатка).

Уравнения Фэнске применяют не только для определения N_{\min} , но и для уточнения концентраций неключевых компонентов в дистилляте и кубовом остатке (т. е. тех концентраций, которыми задаются при составлении приближенного материального баланса процесса). Для этой цели уравнения (3.97) представляют в виде

$$x_{P,i} = x_{P,j} \left(\frac{x_{W,i}}{x_{W,j}}\right) \left(\frac{\alpha_{\text{cp},i}}{\alpha_{\text{cp},j}}\right)^{N_{\text{min}}} \quad \text{или} \quad x_{W,j} = x_{W,i} \left(\frac{x_{P,j}}{x_{P,i}}\right) \left(\frac{\alpha_{\text{cp},i}}{\alpha_{\text{cp},j}}\right)^{N_{\text{min}}} \tag{3.98}$$

Если вычисленные по уравнениям (3.98) концентрации значительно отличаются от значений, которыми задавались вначале, расчет минимального числа теоретических ступеней следует повторить на основе новых значений концентраций неключевых компонентов.

Пример 15. Определить Л_{тіп} для процесса, описанного в примере 14, считая, что ректификация проводится при нормальном давлении.

Расчет относительных летучестей. Так как разделяется смесь ближайших гомологов, будем считать, что жидкая фаза является идеальным раствором. Тогда коэффициенты активности могут быть приняты равными единине, и для расчета равновесия, как следует из уравнений (3.96), достаточно данных по зависимостям давления насыщенного пара от температуры $P_i^0\left(t
ight)$ для всех компонентов. Одной из форм аппроксимации этой зависнмости является уравнение Антуана:

$$P_i^0 = \exp \left[A_i - B_i / (C_i + T) \right]. \tag{3.99}$$

Исходные данные: $F_{,x_{F,i}}(i = 1, 2, ..., b), x_{p,k_i} x_{w,i}$

Параметры этого уравнення для компонентов разделяемой смеси равны [5]:

Компонент	Α,	\boldsymbol{B}_{i}	С,
1. Изобутиловый спирт	16,8712	2474,73	-100,3
2. н-Бутиловый спирт	17.2160	3137,02	94,43
3. Изоамиловый спирт	16,7127	3026,43	-104,1
4. н-Амиловый спирт	16,5270	3026,89	-105,0

Приведенные здесь значения параметров позволяют находить давление насыщенного пара по уравнению (3.99) в мм рт. ст.

Для определения средних относительных летучестей решим две задачи на парожидкостное равновесие. В первой найдем состав равновесного пара для жидкости, состав которой аналогичен составу кубового остатка, найденному из приближенного материального баланса процесса:

$$x_1 = x_{W,1} = 0;$$
 $x_2 = x_{W,2} = 0.02;$ $x_3 = x_{W,3} = 0.48;$ $x_4 = x_{W,4} = 0.5;$

Для этого в соответствии с алгоритмом, приведенным на рис. 3.12, необходимо определить темпе-

Рис. 3.14. Схема расчета минимального числа теоретических ступеней

 $(R - R_{\min})/(R+1)$

Рис. 3.15. График Джилиленда для определения числа теоретических ступеней

$$f = \sum_{i=1}^{b} P_i^0 x_i / p - 1 = 0.$$

Данное уравнение удобно решать методом Ньютона [20], находя температуру для каждой последующей итерации по уравнению

$$t_{j+1} = t_j - f/f',$$

где t_i и t_{i+1} — значения температуры кипения в двух последовательных итерациях. В качестве первого приближения для температуры кипения примем $t_1 = 135$ °C [температуру, близкую к нормальной температуре кипения *к*-амилового спирта (137,8 °C) — преобладающего компонента жидкой фазы]. Тогда для *к*-амилового спирта из уравнения (3.99) получим:

$$P_4^0 = \exp\left[16,527 - \frac{3026,89}{-105 + 135 + 273,15}\right] = 693,8$$
 мм рт. ст

Аналогичным образом для других компонентов системы находим: $P_3^0 = 861,8; P_2^0 = 1361,8$ и $P_1^0 = 1868,9$ мм рт. ст. Следовательно, $f = (1361,8 \cdot 0,02 + 861,8 \cdot 0,48 + 693,8 \cdot 0,5)/760 - 1 = = 0,03658;$

$$f' = \frac{df}{dT} = \sum_{i=1}^{p} \frac{B_i P_i^0 x_i}{\rho (C_i + T)^2} = \frac{1}{760} \left\{ \frac{3137.02 \cdot 1361.8 \cdot 0.02}{(-94.43 + 135 + 273.15)^2} + \frac{3026.43 \cdot 861.8 \cdot 0.48}{(-104.1 + 135 + 273.15)^2} + \frac{3026.89 \cdot 693.8 \cdot 0.5}{(-105 + 135 + 273.15)^2} \right\} = 0.03399.$$

Новое приближение для температуры кипения оказывается равным

$$t_2 = t_1 - f/f = 135 - 0.03658/0.03399 = 133.92$$
 °C.

Повторяя расчет, после трех итераций получим сходимость по температуре (133,91 °C) с точностью $\pm 0,01$ °C. Давления насыщенного пара компонентов при 133,91 °C равны: $P_1^0 = 1807,9$; $P_2^0 = 1315,1$; $P_3^0 = 831,4$ и $P_4^0 = 669,2$ мм рт. ст. Подставляя эти значения в уравнения (3.96), определяем коэффициенты относительной летучести (принимая коэффициенты активности равными единице). Для изобутилового спирта, например, имеем:

$$\alpha_1 = P_1^0 / P_4^0 = 1807, 9/669, 2 = 2,701.$$

Для других компонентов относительные летучести равны: $\alpha_2 = 1,965$, $\alpha_3 = 1,242$, $\alpha_4 = 1$. Эти значения соответствуют условиям в самом низу колонны. Чтобы найти относительные летучести в верхней части колонны, определим рановесный состав жидкости для пара, состав которого одинаков с составом дистиллята: $y_1 = x_{P,1} = 0,5$, $y_2 = x_{P,2} = 0.48$, $y_3 = x_{P,3} = 0,02$, $y_4 = x_{P,4} = 0$. Температура конденсации пара в соответствии с алгоритмом, приведенном на рис. 3.13, может быть найдена из уравнения (для идеальных систем):

$$f = \sum_{i=1}^{b} py_i / P_i^0 - 1 = 0.$$

Решая это уравнение методом Ньютона аналогично тому, как определялась температура кипения кубового остатка, получим $t=113,68\pm0.01$ °C. Относительные летучести компонентов при этой температуре, вычисленные по уравнению (3.96), равны: $\alpha_1=2,861, \alpha_2=2,015, \alpha_3=1,248, \alpha_4=1.$

Находим средние относительные летучести компонентов как среднегеометрические значения относительных летучестей в верхней и нижней частях колонны. Для изобутилового спирта, например, получим:

$$\alpha_{\rm cp\,1} = \sqrt{2,861 \cdot 2,701} = 2,78.$$

Для других компонентов средние относительные летучести равны: $\alpha_{cp\,2} = 1,99$, $\alpha_{cp\,3} = 1,245$, $\alpha_{cp\,4} = 1$.

Минимальное чнсло теоретических ступеней. Определим N_{min}, подставив в уравнение (3.97) концентрации в дистилляте и кубовом остатке, а также средние относительные летучести для ключевых компонентов (*н*-бутиловый и изоамиловый спирты):

$$N_{\min} = \ln \frac{0.48 \cdot 0.48}{0.02 \cdot 0.02} / \ln \frac{1.99}{1.245} = 13.6.$$

130

Пример 16. Уточнить концентрации изобутилового спирта в кубовом остатке и амилового спирта в дистилляте для процесса ректификации, рассмотренного в примерах 14 и 15.

При составлении материального баланса в примере 14 значения $x_{W,1}$ и $x_{P,4}$ были приняты равными нулю. Определим эти концентрации с помощью уравнений (3.98). Принимая i=4, j=3 в первом из уравнений (3.98), находим:

*x*_{P.4} = 0,02 (0,50/0,48) (1/1,245)^{13,6} = 0,0011 мол. доли;

второе из уравнений (3.98) при j=1 и i=2 дает:

 $x_{W,1} = 0.02 (0.50/0.48) (1.99/2.78)^{13.6} = 0.0003$ мол. доли.

Решение системы уравнений (3.91), исходя из вновь полученных концентраций неключевых компонентов, приводит к следующим результатам:

	Компонент	× P. i	× W.i
1.	Изобутиловый спирт	0,4993	0,0003
2.	н Бутиловый спирт	0,4796	0,02
3.	Изоамиловый спирт	0,02	0,4804
4.	н-Амиловый спирт	0.0011	0,4993

Расход дистиллята получается равным P/F=0,50044.

Выполненные в данном примере расчеты позволили получить приближенную оценку концентраций в дистилляте и кубовом остатке компонентов, содержащихся в них в малых количествах. Расчет минимального числа теоретических ступеней на основе новых значений концентраций приводит к той же величине N_{min} = 13,6.

Расчет минимального флегмового числа. Для приближенного определения минимального значения флегмового числа, при котором могут быть получены заданные концентрации ключевых компонентов в дистилляте и кубовом остатке, обычно используют уравнение Ундервуда [20]:

$$R_{\min} = \sum_{i=1}^{b} \alpha_{i} x_{P,i} / (\alpha_{i} - u) - 1, \qquad (3.100)$$

где *и* — корень (значение которого лежит между значениями относительных летучестей ключевых компонентов) алгебраического уравнения

$$\sum_{i=1}^{b} \alpha_{i} x_{F,i} / (\alpha_{i} - u) = \varphi.$$
(3.101)

При определении минимального флегмового числа по уравнению Ундервуда в качестве относительных летучестей компонентов используют их средние значения, полученные при определении R_{\min} (см. пример 15), а концентрации в дистилляте определяют исходя из приближенного материального баланса процесса.

Пример 17. Определить минимальное флегмовое число для процесса ректификации, рассмотренного в примерах 14, 15 и 16, если исходную смесь предполагается подавать в ректификационную колонну в виде жидкости, нагретой до температуры кипения.

При решении примера 15 были получены следующие средние значения относительных летучестей: $\alpha_1 = 2,78$; $\alpha_2 = 1,99$; $\alpha_3 = 1,245$; $\alpha_4 = 1$. Так как питание в колонну должно подаваться нагретым до температуры кипения, то $\varphi = 0$, и уравнение (3.101) примет вид:

$$\frac{2,78 \cdot 0,25}{2,78 - u} + \frac{1,99 \cdot 0,25}{1,99 - u} + \frac{1,245 \cdot 0,25}{1,245 - u} + \frac{1 \cdot 0,25}{1 - u} = 0$$
$$f = \frac{0,695}{2,78 - u} + \frac{0,4975}{1,99 - u} + \frac{0,3112}{1,245 - u} + \frac{0,25}{1 - u} = 0.$$

или

Решим это уравнение методом Ньютона. Так как требуется найти корень, значение которого находится между значениями относительных летучестей *н*-бутилового и изоамилового спиртов, являющихся ключевыми компонентами, то в качестве первого приближения для параметра и выберем $u_1 = 1,618$ (значение, лежащее посередине между α_2 и α_3). Подстановка этого значения в уравнение для *f* дает *f* = 0,6965. Вычислим производную *f*':

$$f' = \frac{df}{du} = \sum_{i=1}^{b} \frac{\alpha_i x_{F,i}}{(\alpha_i - u)^2} =$$

$$=\frac{0.695}{(2.78-1.618)^2}+\frac{0.4975}{(1.99-1.618)^2}+\frac{0.3112}{(1.245-1.618)^2}+\frac{0.25}{(1-1.618)^2}=7,002$$

Уточненное значение параметра и равно:

$$u_2 = u_1 - \frac{1}{1} = 1,618 - 0,6965/7,002 = 1,519.$$

После нескольких итераций находим, что параметр u с точностью до $\pm 0,001$ равен 1,520. Подставим это значение в уравнение (3.100), используя результаты расчета состава дистиллята, приведенные в примере 16:

$$R_{\min} = \frac{2,78 \cdot 0,4993}{2,78 - 1,52} + \frac{1,99 \cdot 0,4796}{1,99 - 1,52} + \frac{1,245 \cdot 0,02}{1,245 - 1,52} + \frac{1 \cdot 0,0011}{1 - 1,52} - 1 = 2,04.$$

3.3.1. Приближенные методы расчета многокомпонентной ректификации

В приближенных методах расчета исходными данными наряду с параметрами, характеризующими состав и состояние исходной смеси, а также фазовое равновесие, служат: концентрация легкого ключевого компонента в кубовом остатке, концентрация тяжелого ключевого компонента в дистилляте и флегмовое число. Цель расчета — определение числа теоретических ступеней, необходимых для получения заданных концентраций ключевых компонентов в продуктах разделения.

Приближенный расчет многокомпонентной ректификации по методу Джилиленда. Расчет числа теоретических ступеней по методу Джилиленда [11] основан на использовании эмпирической графической корреляции (рис. 3.15). Метод Джилиленда требует предварительного определения минимального числа теоретических ступеней и минимального флегмового числа.

Пример 18. Определить число теоретических ступеней, которому должна быть эквивалентна ректификационная колонна для процесса разделения спиртов, описанного в примере 14, если флегмовое число на 30 % больше минимального.

В примере 17 было найдено $R_{\min} = 2,04$. Следовательно, $R = 1,3R_{\min} = 1,3\cdot 2,04 = 2,65$. Отсюда получим:

$$(R - R_{\min})/(R + 1) = (2.65 - 2.04)/(2.65 + 1) = 0.167.$$

Из графика на рис. 3.15 находим, что этому значению соответствует $(N_{\tau} - N_{\min})/(N_{\tau} + 1) = = 0.47$. Таким образом, требуемое число теоретических ступеней

$$N_{\tau} = (13,6+0,47)/(1-0,47) = 27,$$

где N_{min} = 13,6 — минимальное число теоретических ступеней для данного процесса (пример 15). Один из недостатков метода Джилнленда состоит в том, что он не позволяет определять

место ввода исходной смеси в колонну. Для определения ступени, на которую следует подавать питание, можно использовать уравнение [11]:

$$\frac{N_{\text{yx}}}{N_{\text{Hc}} - 1} = \left[\frac{W}{P} \left(\frac{x_{F,k}}{x_{F,l}}\right) \left(\frac{x_{W,l}}{x_{P,k}}\right)^2\right]^{0.206}$$
(3.102)

где $N_{\rm yk}$ и $N_{\rm Hc}$ — число теоретических ступеней соответственно в укрепляющей и исчерпывающей частях колонны (ступень питания отнесена к исчерпывающей части).

Для процесса ректификации, рассмотренного в примерах 14—18, концентрации ключевых компонентов (l=2, k=3) равны: $x_{F,2}=x_{F,3}=0.25$; $x_{W,2}=0.02$, $x_{P,3}=0.02$, а отношение расходов дистиллята и кубового остатка близко к единице. Следовательно, в соответствии с уравнением (3.102), $N_{yk}/(N_{wc}-1)=1$.

Поскольку общее число теоретических ступеней равно 27 (пример 18), отсюда следует, что исчерпывающая часть должна состоять из 14 ступеней, а укрепляющая — из 13.

Приближенный расчет многокомпонентной ректификации по методу Хенгстебека [21]. Этот метод состоит в том, что многокомпонентная система сводится к бинарной, состоящей из ключевых компонентов. Относительную летучесть а в этой бинарной системе принимают обычно постоянной, равной отношению средних относительных летучестей легкого и тяжелого ключевых компонентов многокомпонентной системы. Тогда равновесие в этой бинарной системе описывается уравнением

$$y^* = \alpha x / (1 - x + \alpha x),$$
 (3.103)

где x и y — концентрация в жидкости и равновесная концентрация в паре легкого ключевого компонента.

При применении этого метода мольные расходы фаз в каждой из частей колонны принимают постоянными. Уравнения рабочих линий удобнее всего представлять (при отсчете ступеней снизу) в виде:

$$y_{n} = \frac{L}{G} x_{n+1} + \left(1 - \frac{L}{G}\right) x_{P} \qquad (n \ge i);$$

$$y_{n} = \frac{L}{G} x_{n+1} + \left(1 - \frac{L}{G}\right) x_{W} \qquad (n < i),$$
(3.104)

где x_{n+1} , x_p и x_W — концентрация легкого ключевого компонента соответственно в жидкости, выходящей из (n+1)-й ступени, в дистилляте и кубовом остатке для бинарной системы, к которой сводится многокомпонентная; y_n — концентрация легкого ключевого компонента в паре, выходящем из n-й ступени.

Расходы фаз в укрепляющей части колонны (при n $\geqslant i$) определяют по уравнениям

$$L = PR - \sum_{i=1}^{l-1} \alpha_k P x_{P,i} / (\alpha_i - \alpha_k); \qquad (3.105)$$

$$G = P(R+1) - \sum_{i=1}^{l-1} \alpha_i P x_{P,i} / (\alpha_i - \alpha_k).$$

В исчерпывающей части (*n* < *j*) пересчет расходов фаз для сведения многокомпонентной системы к эквивалентной бинарной выполняют следующим образом:

$$L = PR + F(1 - \psi) - \sum_{i=k+1}^{l} \alpha_i W x_{W,i} / (\alpha_i - \alpha_i); \qquad (3.106)$$

$$G = P(R+1) - F\psi - \sum_{i=k+1}^{l} \alpha_i W x_{W,i} / (\alpha_i - \alpha_i).$$

Определение числа теоретических ступеней по методу Хенгстебека проводят так же, как для бинарных систем. Расчет можно выполнять графически, с построением равновесной линии по уравнению (3.103) и рабочих линий по уравнениям (3.104) — (3.106), или численно с помощью алгоритма, приведенного на рис. 3.8.

Пример 19. Определить число теоретических ступеней, которому должна быть эквивалентна ректификационная колонна для процесса разделения спиртов, описанного в примере 14, при флегмовом числе 2,65.

У равнения равновесной и рабочих линий. В соответствии с исходными данными, приведенными в примере 14, концентрация каждого компонента в исходной смеси равна 0,25 мол. доли, содержание изоамилового спирта в дистилляте 0,02 мол. доли, а и-бутилового спирта в кубовом остатке 0,02 мол. доли. Приводя данную систему к бинарной, состоящей из и-бутилового и изоамилового спиртов, выразим составы исходной смеси, дистиллята и кубового остатка в такой бинарной системе через содержание наиболее летучего из компонентов (и-бутиловый спирт):

$$x_F = x_{F,2}/(x_{F,2} + x_{F,3}) = 0.25/(0.25 + 0.25) = 0.5$$
 мол. доли;
 $x_P = x_{P,2}/(x_{P,2} + x_{P,3}) = 0.48/(0.48 + 0.02) = 0.96$ мол. доли;
 $x_W = x_{W,2}/(x_{W,2} + x_{W,3}) = 0.02/(0.02 + 0.048) = 0.04$ мол. доли.

Относительные летучести н-бутилового и изоамилового спиртов, рассчитанные по н-амиловому спирту, соответственно равны в среднем $\alpha_2 = 1,99$ и $\alpha_3 = 1,245$ (пример 15). Следовательно, относительная летучесть в бинарной системе *н*-бутиловый спирт — изоамиловый спирт может быть принята равной $\alpha = \alpha_2/\alpha_3 = 1,99/1,245 = 1,598$.

В соответствии с уравнением (3.103) уравнение линии равновесия для данной системы имеет вид:

$$y^* = 1.598x/(1+0.598x)$$
.

Используя результаты приближенного расчета материального баланса в примере 14 и средние значения относительных летучестей, найденные в примере 15, определим расходы фаз в ректификационной колоние по уравнениям (3.105) и (3.106).

Для укрепляющей части колонны ввиду того, что индекс легкого ключевого компонента (и-бутиловый спирт) l=2, получим (при расходе исходной смеси 1 кмоль/с):

$$L = PR - \frac{\alpha_3 P x_{P,1}}{\alpha_1 - \alpha_3} = 0.5 \cdot 2.65 - \frac{1.245 \cdot 0.5 \cdot 0.5}{2.78 - 1.245} = 1.125 \text{ кмоль/с;}$$

$$G = P(R+1) - \frac{\alpha_1 P x_{P,1}}{\alpha_1 - \alpha_3} = 0.5 (2.65+1) - \frac{2.78 \cdot 0.5 \cdot 0.5}{2.78 - 1.245} = 1.375$$
 кмоль/с.

Для исчерпывающей части колонны (k=3, φ=0) имеем:

$$L = PR + F - \frac{\alpha_2 W x_{W,4}}{\alpha_2 - \alpha_4} = 0.5 \cdot 2.65 + 1 - \frac{1.99 \cdot 0.5 \cdot 0.5}{1.99 - 1} = 1.825$$
кмоль/с;

$$G = P(R+1) - \frac{\alpha_4 W_{X_{W,4}}}{\alpha_2 - \alpha_4} = 0,5 (2,65+1) - \frac{1 \cdot 0.5 \cdot 0.5}{1,99-1} = 1,575$$
 кмоль/с.

Таким образом, уравнение рабочей линии для укрепляющей части колонны (n ≥f) имеет вид:

$$y_n = \frac{1,125}{1,375} x_{n+1} + \left(1 - \frac{1,125}{1,375}\right) 0,96,$$

или

$$y_n = 0.818x_{n+1} + 0.174$$
.

Аналогичным образом для исчерпывающей части колонны (n < f) в соответствии с уравнением (3.104) получаем:

$$y_n = \frac{1,825}{1,575} x_{n+1} + \left(1 - \frac{1,825}{1,575}\right) 0,04,$$

или

$$y_n = 1,158x_{n+1} - 0,0063.$$

Расчет числа теоретических ступеней. Из решения данной задачи по методу Джилиленда следует, что требуемое число теоретических ступеней достаточно велико. Поэтому для большей точности проведем расчет численно, последовательно определяя составы фаз на выходе со всех ступеней, начиная с первой — нижней ступени. Концентрации более летучего компонента (и-бутиловый спирт) в паре найдем по уравнению равновесия:

$$y_n = y^*(x_n) = 1,598x_n/(1+0,598x_n)$$

Составы жидкой фазы определим с помощью полученных выше уравнений рабочих линий. Результаты расчетов приведены ниже *:

n	X n	y.	n	Xn	y n	n		y	п	X _n	y,
1	0,040	0,062	13	0,542	0,654	7	0,254	0,353	19	0,832	0,888
2	0,059	0,092	14	0,586	0,694	8	0,310	0,418	20	0,872	0,916
3	0,084	0,129	15	0,635	0,736	9	0,366	0,480	21	0,906	0,939
4	0,116	0,174	16	0,686	0,777	10	0,420	0,537	22	0,935	0,958
5	0,156	0,228	17	0,737	0,818	11	0,469	0,585	23	0,958	0,974
6	0,202	0,288	18	0,786	0,855	12	0,502	0,617			

* x_n, y_n — в мол. долях н-бутилового спирта.

Так как на 12-й ступени содержание *н*-бутилового спирта в жидкости превысило его содержание в исходной смеси, эта ступень принята за ступень питания; начиная с нее состав жидкой фазы определяли по уравнению рабочей линии для укрепляющей части колонны. Расчет был закончен на 23-й ступени, так как концентрация *н*-бутилового спирта в паре, выходящем с этой ступени, превышает требуемое его содержание в дистилляте. Таким образом, решение данной задачи по методу Хенгстебека привело к следующим результатам: требуемое число теоретических ступеней — 23, номер ступени питания — 12, считая снизу.

3.3.2. Точный расчет многокомпонентной ректификации

В точных методах расчета многокомпонентной ректификации систему исходных уравнений решают без существенных дополнительных упрощений (если не считать часто принимаемого допущения о постоянстве мольных расходов фаз). В качестве независимых переменных обычно выбирают: 1) флегмовое число R; 2) расход дистиллята P; 3) число теоретических ступеней $N_{\rm r}$; 4) положение ступени питания.

Цель расчета — определение составов дистиллята и кубового остатка. Повторяя расчет при различных значениях переменных, находят условия, при которых достигается подходящий состав продуктов разделения.

Точное решение системы уравнений (3.91) - (3.94) возможно разными методами [11]. Ниже рассмотрен один из методов расчета — «от тарелки к тарелке». По этому методу составы дистиллята и кубового остатка ищут итерационным путем. Задаваясь в качестве начального приближения концентрациями в дистилляте [либо значениями $Px_{P,i}$, либо отношениями $Px_{P,i}/(Wx_{W,i})$] для всех компонентов, находят состав кубового остатка из уравнений (3.91). Далее путем поочередного использования уравнений (3.94) и (3.93) определяют последовательно составы фаз на выходе со всех ступеней исчерпывающей части колонны (рис. 3.16). После этого, исходя из предполагаемого состава дистиллята, с помощью уравнений (3.94) и (3.92) последовательно, начиная с последней ступени, находят составы фаз, выходящих со всех ступеней укрепляющей части колонны, вплоть до ступени питания.

В результате такого расчета получают два варианта состава пара, выходящего с тарелки питания. Один состав получают при расчете «снизу», от первой ступени, второй — при расчете «сверху», от последней ступени. Из сопоставления этих составов можно судить о близости концентраций в дистилляте, используемых в данной итерации, тем концентрациям, которые являются решением системы уравнений (3.91) — (3.94). Расхождения в концентрациях фаз на тарелке питания, полученных при расчете «снизу» и «сверху», позволяют оценить поправки, которые требуется ввести в состав дистиллята для следующей итерации.

Наиболее существенной частью данного метода расчета является способ определения новых концентраций в дистилляте для каждой последующей итерации. Чаще всего для этого используют так называемый « θ -метод» [22]. Если новый состав дистиллята определяют путем сопоставления составов пара на тарелке питания, то в соответствии с этим методом концентрации в дистилляте для (j+1)-й итерации находят из уравнений

$$(x_{P,i})_{i+1} = \frac{Fx_{F,i}}{P\left\{1 + \theta - \frac{(x_{W,i})_{i} W (R+1) \overline{y}_{I,i}}{(x_{P,i})_{i} [P(R+1) \underline{y}_{I,i} + \varphi F x_{F,i}]}\right\}} \qquad (i=1, 2, b), \quad (3.107)$$

где $\underline{y}_{i,i}$ и $\overline{y}_{i,i}$ — концентрации компонентов в паре, выходящем со ступени питания, полученные соответственно при расчете «снизу» и «сверху».

Параметр в подбирают так, чтобы сумма концентраций в дистилляте равнялась единице.

Пример 20. Определить составы дистиллята и кубового остатка для процесса ректификации при нормальном давлении смеси, состав которой указан в примере 14, если колонна эквивалентна 27 теоретическим ступеням, расход дистиллята 0,5002 кмоль/кмоль исходной смеси, флегмовое число 2,65 и питание подается на 14-ю ступень в виде нагретой до температуры кипения жидкости.

Рис. 3.16. Алгоритм расчета многокомпонентной ректификации методом «от тарелки к тарелке»

Приближенный расчет процесса ректификации данной смеси по методу Джилиленда (пример 18) показал, что при флегмовом числе 2,65 для получения дистиллята с содержанием изоамилоного спирта, равным 2% (мол.), и кубового остатка, содержащего такое же количество и-бутилового спирта, необходима ректификационная колонна, эквивалентная 27 теоретическим ступеням. В данном примере требуется определить точные составы дистиллята и кубового остатка, которые будут получаться в такой колонпе нри подаче питания на 14-ю ступень. Решим эту задачу с помощью алгоритма, показанного на рис. 3.16.

В качестве первого приближения для состава дистиллята возьмем его приближенный состав, полученный в примере 16. Концентрацию изобутилового спирта примем равной 49,93 % (мол.), и-бутилового — 47,96 % (мол.), изоамилового — 2 % (мол.), и-амилового — 0.11 % (мол.) С помощью уравнений материального баланса (3.91) определим концентрации компонентов в кубовом остатке, соответствующие данному составу дистиллята. Например, для изобутилового спирта получим:

$$x_{W,1} = \frac{x_{F,1} - (P/F) x_{P,1}}{1 - P/F} = \frac{0.25 - 0.5004 \cdot 0.4993}{1 - 0.5004} = 0.0003$$
 мол. доли

.

Рис. 3.17. Схема расчета температуры кипения или температуры конденсации

Для других компонентов аналогичным образом найдем: $x_{W,2} = 0.02$, $x_{W,3} = 0.4804$, $x_{W,4} = 0.4993$ мол. доли. Расчет составов фаз в исчернываюшей части колонны. В соответствии со схемой процесса, показанной на рис. 3.6, состав жидкости, выходящей из первой ступени, должен совпадать с составом кубового остатка, а пар, выходящий с первой ступени, если рассматривать ее как теоретическую, должен находиться в равновесии с этой жидкостью. Следовательно, для определения состава пара, выходящего с первой ступени, нужно решить задачу на расчет парожидкостного равновесия, т. е. определить равновесный состав пара для жидкости известного состава при заданном давлении. В примере 15 была решена подобная задача; при этом решение уравнения для определения температуры кипения (см. рис. 3.12) было выполнено методом Ньютона. На практике расчет температур кипения или конденсации часто выполняют другим методом, с помощью итерационной процедуры, показанной на рис. 3.17 Воспользуемся ею для решения данной задачи. Как и в примере 15, положим, что разделяемая смесь спиртов образует идеальные растворы, так что коэффициенты активности для всех компонентов примем равными единице.

В качестве первого приближения для температуры кипения примем $t_1 = 135$ °C. Давления насыщенных паров для всех компонентов при этой температуре были найдены в примере 15: $P_1^0 = 1868,9, P_2^0 = 1361,8, P_3^0 = 861,8$ и $P_4^0 = 693,8$ мм рт. ст. Следовательно, относительная летучесть при температуре 135 °C для изобутилового спирта равна:

$$a_1 = P_1^0 / p = 1868, 9 / 760 = 2,694$$

Аналогично получим: $\alpha_2 = 1,963; \alpha_3 = 1,242; \alpha_4 = 1$ При условии равенства единице суммы концентраций всех компонентов в паре справедливо уравнение

$$P_{h}^{0} = P_{4}^{0} = p / \sum_{i=1}^{4} a_{i} x_{i}.$$

Следовательно, давление насыщенного пара, наименее летучего из компонентов, по которому определены относительные летучести, должно быть равно:

 $P_4^0 = 760/(2.694 \cdot 0.0003 + 1.963 \cdot 0.02 + 1.242 \cdot 0.4804 + 1.0.4993) = 669 \text{ MM pt ct.}$

Как видим, это значение отличается от давления насыщенного пара *н*-амилового спирта при температуре 135 °C. Исходя из него определим следующее приближение для температуры кипения. В соответствии с уравнением (3.99) эта температура равна:

$$t = B_4/(A_4 - \ln P_4^0) - C_4 - 273,15$$

где A₄, B₄, C₄ — параметры уравнения Антуана для амилового спирта. Подставляя их (см. пример 15), получим:

$$t = 3026.89/(16,527 - \ln 669) - (-105) - 273.15 = 133.90 \text{ °C}$$

Повторяя расчет при этой температуре, получим следующие значення относительных летучестей: $\alpha_1 = 2,701$; $\alpha_2 = 1,965$; $\alpha_3 = 1,242$; $\alpha_4 = 1$. Третья итерация в данном случае не требуется, так как следующее приближение для температуры отличается менее чем на 0,01 °C. Поэтому значения относительных летучестей при 133,9 °C можно использовать для определения равновесного состава пара. Содержание в нем изобутилового спирта (i = 1) в соответствии с уравнением (3.90) составит:

$$y_{1,1} = y^* = \frac{\alpha_1 x_1}{\frac{1}{4}} = \frac{2,701 \cdot 0,0003}{2,701 \cdot 0,0003 + 1,965 \cdot 0,02 + 1,242 \cdot 0,4804 + 1 \cdot 0,4993} = 0,0006$$
 мол. доли.

Концентрации других компонентов равны: $y_{1,2}=0.0358$; $y_{1,3}=0.5447$; $y_{1,4}=0.4558$ мол. доли. Следовательно, пар такого состава должен поступать с первой теоретической ступенн на вторую.

В соответствии с алгоритмом, приведенным на рис. 3.16, следующим этапом расчета является определение состава жидкости, поступающей со второй ступени на первую. Для этого можно использовать уравнения (3.93). Принимая в исчерпывающей части колонны мольные расходы фаз в соответствии с уравнениями (3.73) равными G = P(R+1) и L = PR + F (так как исходная смесь подается в нагретом до температуры кипения виде коэффициент $\varphi = 0$), получим:

$$x_{n+1,i} = \frac{R+1}{R+F/P} y_{n,i} + \frac{F/P-1}{R+F/P} x_{W,i}.$$

Применяя это уравнение к первой ступени (n=1), для изобутилового спирта получим:

$$x_{1,2} = \frac{2,65+1}{2,65+1/0,5004}$$
 0,0006 + $\frac{1/0,5004-1}{2,65+1/0,5004} = 0,0005$ мол. доли.

Аналогичным образом для других компонентов найдем: x_{2.2}=0,0314; x_{2.3}=0,5156; x_{2.4}==0,4523 мол. доли.

Таким же образом, поочередно решая задачу на парожидкостное равновесие и используя уравнения (3.93), определим составы фаз для всех остальных ступеней исчерпывающей части колонны. Результаты расчетов (в мол. долях) приведены ниже:

l-я ступень;	<i>t</i> = 133,90 °C	2-я ступень; <i>t</i> =	=133,37 °C
$ \begin{array}{c} x_{1,1} = 0,0003 \\ x_{1,2} = 0,0200 \\ x_{1,3} = 0,4804 \\ 0,4802 \end{array} $	$\begin{array}{c} y_{1,1} = 0,0006 \\ y_{1,2} = 0,0346 \\ y_{1,3} = 0.5253 \end{array}$	$x_{2,1} = 0,0005 x_{2,2} = 0,0315 x_{2,3} = 0,5157 x_{2,5} = 0,5157 x_{5,5} = 0,5177 x_{5,5} = $	$y_{2,1} = 0,0012$ $y_{2,2} = 0,0535$ $y_{2,3} = 0,5541$
X1.4=0,4993	$y_{1.4} = 0,4395$	$x_{2,4} = 0,4523$	$y_{2,4} = 0,3912$
о-я ступень,	<i>i</i> =102,00°C	T-A Crynerb, r-	- 102,20 C
$x_{3,1} = 0,0010$	$y_{3,1} = 0,0024$	$x_{4,1} = 0,0020$	$y_{4,1} = 0,0044$
$x_{3,2} = 0,0463$	$y_{3,2} = 0.0773$	$x_{4,2} = 0,0650$	$y_{4,2} = 0,1067$
$x_{3,3} = 0,5383$	$y_{3,3} = 0.5082$	$x_{4,3} = 0.3493$	$y_{4,3} = 0,3091$
$x_{3,4} = 0,4144$	$y_{3,4} = 0,3521$	$x_{4.4} = 0.3837$	<i>y</i> _{4,4} =0,3198
5-я ступень;	<i>t</i> = 131,64 °C	6-я ступень; <i>t</i> =	= 130,93 °C
$x_{5,1} = 0.0035$	$y_{5,1} = 0,0078$	$x_{6,1} = 0,0062$	$y_{6.1} = 0,0135$
$x_{5,2} = 0.0881$	$y_{5,2} = 0,1417$	$x_{6,2} = 0,1155$	$y_{6,2} = 0,1816$
$x_{5,3} = 0,5500$	$y_{5,3} = 0,5580$	$x_{6,3} = 0,5414$	$y_{6,3} = 0,5364$
$x_{5,4} = 0,3584$	$y_{5.4} = 0,2925$	$x_{6.4} = 0,3369$	$y_{6.4} = 0,2685$
7-я ступень;	<i>t</i> = 130,13 °C	8-я ступень; <i>1</i> =	=129,23 °C
$x_{71} = 0.0106$	$u_{71} = 0.0225$	$x_{B_1} = 0.0177$	$\mu_{8,i} = 0.0366$
$x_{7,2} = 0.1469$	$u_{7,2} = 0.2249$	$x_{8,2} = 0.1809$	$y_{h,2} = 0.2688$
$x_{7,3} = 0,5244$	$y_{7,3} = 0,5058$	$x_{0,3} = 0,5004$	$y_{0.3} = 0,4681$
$x_{7,4} = 0,3181$	$y_{7.4} = 0,2468$	$x_{8,4} = 0,3010$	$y_{8.4} = 0,2265$
9-я ступень;	<i>t</i> = 128,24 °C	10-я ступень; t	= 127,15 °C
$x_{91} = 0.0288$	$u_{91} = 0.0574$	$x_{101} = 0.0451$	$u_{101} = 0.0869$
$x_{9,2} = 0.2154$	$u_{9,2} = 0.3097$	$x_{10,2} = 0.2475$	$y_{10,2} = 0.3431$
$x_{9,3} = 0,4708$	$y_{9,3} = 0,4257$	$x_{10,3} = 0,4774$	$y_{10,3} = 0,3810$
$x_{9,4} = 0.2851$	$y_{9.4} = 0,2073$	$x_{10,4} = 0,2700$	$y_{10,4} = 0,1890$
11-я ступень;	<i>t</i> = 125,99 °C	12-я ступень; t	= 124,76 °C
$x_{111} = 0.0682$	$\mu_{113} = 0.1267$	$x_{121} = 0.0995$	$\mu_{121} = 0.1775$
$x_{11,2} = 0.2737$	$u_{112} = 0.3648$	$x_{122} = 0.2908$	$u_{122} = 0.3719$
$x_{11,3} = 0,4024$	$y_{11,3} = 0,3366$	$x_{123} = 0.3675$	$y_{123} = 0.2946$
$x_{11,4} = 0,2557$	$y_{11,4} = 0,1719$	$x_{12,4} = 0,2422$	$y_{12,4} = 0,1560$
13-я ступень;	<i>t</i> = 123,51 °C	14-я ступень; <i>t</i> =	= 122,26 °C
$x_{131} = 0.1395$	$u_{131} = 0.2388$	$x_{141} = 0.1875$	$u_{141} = 0.3082$
$x_{13,2} = 0.2963$	$u_{13,2} = 0.3631$	$x_{142} = 0.2894$	$u_{14,2} = 0.3397$
$x_{13,3} = 0.3345$	$y_{13,3} = 0.2566$	$x_{14,3} = 0.3047$	$y_{14,3} = 0.2235$
$x_{13,4} = 0.2297$	$y_{13,4} = 0,1415$	$x_{14,4} = 0.2184$	$y_{14,4} = 0,1286$
	-		

Составы фаз в укрепляющей части колонны. Теперь проводим расчет составов фаз в укрепляющей части колонны. С самой верхней, 27-й, ступени колонны должен выходить пар того же состава, что и предполагаемый дистиллят. Следовательно, $y_{27,1} = 0.4993$; $y_{27,2} = 0.4796$; $y_{27,3} = 0.02$; $y_{27,4} = 0.0011$ мол. доли. Для нахождения состава жидкости, выходящей с последней ступени, необходимо решить задачу на парожидкостное равновесие по определению равновесных концентраций в жидкости при известном составе пара. Температуру конденсации пара определим с помощью процедуры, схема которой приведена на рис. 3.17, приняв для первого приближения t = 115 °C. Вычисление давлений насышенного пара при этой температуре по уравнению Антуана (см. пример 15) дает следующие результаты: $P_1^0 = 976.8$; $P_2^0 = 689.3$; $P_3^0 = 427.6$, $P_4^0 = 342.7$ мм рт. ст. Относительные летучести, определенные по этим значениям давлений насыщенного пара, составляют: $\alpha_1 = 2.850$; $\alpha_2 = 2.011$; $\alpha_3 = 1.248$; $\alpha_4 = 1$. Для того чтобы сумма концентраций в жидкой фазе была равна единице, необходимо, чтобы для давления насыщенного пара наименее летучего из компонентов (*и*-амиловый спирт) соблюдалось условие:

$$P_b^0 = p \sum_{i=1}^b y_i / \alpha_i.$$

Подставляя концентрации компонентов в паре и полученные для температуры 115 °C относительные летучести, проверим это условие:

$$P_b^0 = P_4^0 = 760 \left(\frac{0.4993}{2.85} + \frac{0.4796}{2.011} + \frac{0.02}{1.248} + 0.0011 \right) = 327.4$$
 MM pt. ct.

Как видим, это значение заметно отличается от P_4^0 при температуре 115 °C. Зная параметры уравнения Антуана для *н*-амилового спирта, найдем, что давлению насыщенного пара 327,4 мм рт. ст. соответствует температура 113,79 °C, которую можно использовать для следующего приближения. В результате трех итераций определим температуру конденсации пара; она равна 113,72 °C. Относительные летучести компонентов при этой температуре равны: 2,861; 2,015; 1,248 и 1, а соответствующие им равновесные концентрации в жидкости, вычисленные по уравнениям (3,90) и равные концентрациям компонентов в жидкости, выходящей с 27-й ступени, составляют: $x_{27,1} = 0,4061$; $x_{27,2} = 0,5540$; $x_{27,3} = 0,0373$; $x_{27,4} = 0,0026$ мол. доли.

В соответствии с алгоритмом, приведенным на рис. 3.16, следующим этапом расчета является определение состава пара, поступающего на 27-ю ступень с предпоследней ступени, с помощью уравнений (3.92). Приняв для укрепляющей части колонны расход пара равным G = P(R+1), а расход жидкости L = PR, можно записать эти уравнения в виде:

$$y_{n-1,i} = \frac{R}{R+1} x_{n,i} + \frac{x_{P,i}}{R+1}$$

При n = 27 и i = 1 (изобутиловый спирт) получим:

$$y_{26,1} = \frac{2,65}{2,65+1}$$
 0,4061 + $\frac{0,4993}{2,65+1} = 0,4316$ мол. доли.

Концентрации других компонентов в паре, поступающем на 27-ю ступень, равны: $y_{26,2} = 0,5336$; $y_{26,3} = 0,0326$; $y_{26,4} = 0,0022$ мол. доли. Результаты расчета составов пара и жидкости для всех ступеней укрепляющей части колонны (в мол. долях) приведены ниже:

t = 113,72 °C	26-я ступень; <i>t</i>	26-я стулень; <i>t</i> = 114,63 °С			
$x_{27,1} = 0,4061 x_{27,2} = 0,5540 x_{27,3} = 0,0373 x_{27,4} = 0,0026$	$\begin{array}{c} y_{26,1} = 0.4316 \\ y_{26,2} = 0.5336 \\ y_{26,3} = 0.0326 \\ y_{26,4} = 0.0022 \end{array}$	$x_{26,1} = 0,3402 x_{26,2} = 0,5963 x_{26,3} = 0,0587 x_{26,4} = 0,0048$			
<i>t</i> =115,41 °C	24-я ступень; <i>t</i>	=116,12 °C			
$x_{25,1} = 0,2944$ $x_{25,2} = 0,6131$ $x_{25,3} = 0,0842$ $x_{25,4} = 0,0083$	$\begin{array}{c} y_{24,1} \!=\! 0.3505 \\ y_{24,2} \!=\! 0.5765 \\ y_{24,3} \!=\! 0.0666 \\ y_{24,4} \!=\! 0.0064 \end{array}$	$x_{24,1} = 0,2624 x_{24,2} = 0,6105 x_{24,3} = 0,1136 x_{24,4} = 0,0135$			
<i>t</i> =116,80 °C	22-я ступень; <i>t</i>	=117,51 °C			
$x_{23,1} = 0,2393$ $x_{23,2} = 0,5936$ $x_{23,3} = 0,1461$ $x_{23,4} = 0,0210$	$y_{22,1} = 0,3105$ $y_{22,2} = 0,5624$ $y_{22,3} = 0,1116$ $y_{22,4} = 0,0155$	$x_{22,1} = 0,2216$ $x_{22,2} = 0,5664$ $x_{22,3} = 0,1806$ $x_{22,4} = 0,0314$			
	$t = 113,72 °C$ $x_{27,1} = 0,4061$ $x_{27,2} = 0,5540$ $x_{27,3} = 0,0373$ $x_{27,4} = 0,0026$ $t = 115,41 °C$ $x_{25,1} = 0,2944$ $x_{25,2} = 0,6131$ $x_{25,3} = 0,0842$ $x_{25,4} = 0,0083$ $t = 116,80 °C$ $x_{23,1} = 0,2393$ $x_{23,2} = 0,5936$ $x_{23,3} = 0,1461$ $x_{23,4} = 0,0210$	$t = 113,72 \circ C$ $t = 26.4 \circ C = 26.$			

21-я ступень;	t = 118,25 °C	20-я ступень; /	= 119,03 °C
$y_{21,1} = 0,2977$ $y_{21,2} = 0,5426$ $y_{21,3} = 0,1366$ $y_{21,4} = 0,0231$	$x_{21,1} = 0,2072$ $x_{21,2} = 0,5322$ $x_{21,3} = 0,2152$ $x_{21,4} = 0,0454$	$y_{20,1} = 0.2872$ $y_{20,2} = 0.5278$ $y_{20,3} = 0.1618$ $y_{20,4} = 0.0332$	$x_{20,1} = 0,1947$ $x_{20,2} = 0,4941$ $x_{20,3} = 0,2477$ $x_{20,4} = 0,0635$
19-я етупень;	<i>t</i> =119,83 °C	18-я ступень; <i>t</i>	= 120,63 °C
$y_{19,1} = 0,2781$ $y_{19,2} = 0,4902$ $y_{19,3} = 0,1853$ $y_{19,4} = 0,0464$	$ x_{19.1} = 0,1836 x_{19.2} = 0,4548 x_{19.3} = 0,2757 x_{19.4} = 0,0859 $	$y_{18,1} = 0.2701$ $y_{18,2} = 0.4615$ $y_{18,3} = 0.2057$ $y_{18,4} = 0.0627$	$x_{18.1} = 0,1735$ $x_{18.2} = 0,4146$ $x_{18.3} = 0,2972$ $x_{18.4} = 0,1129$
17-я ступень;	t=121,41 °C	16-я стулень; <i>t</i>	= 122,16 °C
$y_{17,1} = 0.2628$ $y_{17,2} = 0.4336$ $y_{17,3} = 0.2213$ $y_{17,4} = 0.0823$	$\begin{array}{c} x_{17.1} = 0,1645 \\ x_{17.2} = 0,3806 \\ x_{17.3} = 0,3108 \\ x_{17.4} = 0,1440 \end{array}$	$y_{16,1} = 0.2562$ $y_{16,2} = 0.4077$ $y_{16,3} = 0.2312$ $y_{16,4} = 0.1049$	$x_{16,1} = 0,1564 x_{16,2} = 0,3487 x_{16,3} = 0,3163 x_{16,4} = 0,1786$
15-я ступень;	<i>t</i> = 122,86 °C	14-я стулень	
$y_{15,1} = 0,2504 y_{15,2} = 0,3845 y_{15,3} = 0,2351 y_{15,4} = 0,1300$	$x_{15.1} = 0,1494$ $x_{15.2} = 0,3200$ $x_{15.3} = 0,3136$ $x_{15.4} = 0,2160$	$y_{14,1} = 0,2453$ $y_{14,2} = 0,3644$ $y_{14,3} = 0,2332$ $y_{14,4} = 0,1571$	

Новое приближение для состава дистиллята. Сопоставление составов пара, уходящего с 14-й ступени (ступени питания), полученных при расчете исчерпывающей и укрепляющей частей колонны, т. е. при расчете «снизу» и «сверху», показывает значительное расхождение. Сумма абсолютных величин расхождений концентраций для всех компонентов равна 0,1258. Следовательно, состав дистиллята, положенный в основу расчета в 1-й итерации, недостаточно достоверен. Для определения лучшего ириближения для состава дистиллята используем «θ-метод». Так как коэффициент φ в данном случае равен нулю, уравнения (3.107) для новых концентраций в дистилляте могут быть представлены в виде

$$x_{P,i} = (F/P) x_{F,i} / (1 + 0\xi_i), \quad (i = 1, 2, b),$$

где

$$\xi_i = x_{W,i} W \overline{y}_{i,i} / (x_{P,i} P \underline{y}_{j,i}).$$

Величины ξ_i определяются концентрациями компонентов в паре на тарелке питания, а также в кубовом остатке и дистилляте в предыдущей итерации. Так как W/P = (F-P)/P = (F/P) - 1 = = (1/0,5004) - 1 = 0,9982, значение ξ_i для изобутилового спирта (i=1) равно:

$$\xi_1 = 0,0003 \cdot 0.9982 \cdot 0.2453 / (0,4993 \cdot 0.3082) = 0,0004$$

Для других компонентов: \$2=0,0446; \$3=25,016; \$4=553,35. Для того чтобы сумма концентраций в дистилляте была равна единице, параметр в должен быть найден из уравнения

$$i = (F/P) \sum_{i=1}^{b} x_{F,i}/(1+\theta\xi_i) - 1 = 0.$$

Численное решение этого уравнения удобно искать по методу Ньютона, так как производную функции / легко вычислить. Она равна

$$f' = \frac{df}{d\theta} = -(F/P) \sum_{i=1}^{b} \frac{x_{F,i} \xi_i}{(1+\theta \xi_i)^2}.$$

В качестве первого приближения для в примем 01 = 0. Тогда

$$j = (F/P) - I = 1,9982 - I = 0,9982;$$

$$f' = -1,9982(0,25 \cdot 0,0004 + 0,25 \cdot 0,0446 + 0,25 \cdot 25,016 + 0,25 \cdot 553,35) = -288,956$$

Следующее приближение для параметра 0 составит:

$$\theta_2 = \theta_1 - 1/1 = 0.9982/(-282.95) = 0.00345.$$

Повторяя расчет несколько раз, получим значение 0 = 0.9432, при котором функция / равна нулю с точностью до четвертого знака. Используя это значение 0, вычислим новое приближение для концентраций в дистилляте. Получим: $x_{P,1} = 0.4994$; $x_{P,2} = 0.4794$; $x_{P,3} = 0.0203$, $x_{P,4} = = 0.0009$ мол. доли.

Состав пара на тарелке питания во второй итерации. Повторяя расчет составов фаз в исчерпывающей и укрепляющей частях колонны исходя из нового состава дистиллята, для концентраций компонентов в паре, уходящем с тарелки питания, получим:

При расчете «снизу»	При расчете «сверху:
$y_{14,1} = 0,2531$	$y_{14,1} = 0,2465$
$y_{14,2} = 0,3764$	$y_{14,2} = 0,3682$
$y_{14.3} = 0,2360$	$y_{14,3} = 0.2442$
$y_{14,4} = 0,1345$	$y_{14,4} = 0,1411$

Как видим, во 2-й итерации составы пара на тарелке питания согласуются значительно лучше, чем в 1-й. Сумма абсолютных величии расхождений концентраций составляет 0,0297.

Окончательные составы дистиллята и кубового остатка. Повторяя расчет до тех пор, пока сумма расхождений концентраций компонентов в паре на тарелке питания, полученных при расчете «снизу» и «сверху», не станет меньше 0.0001 (для этого потребуется 13 итераций), получим окончательные составы дистиллята и кубового остатка (в мол. долях):

	Компонент	x _{P,i}	X W. i
1.	Изобутиловый спирт	0,4994	0,0002
2.	н-Бутиловый спирт	0,4807	0,0189
3.	Изоамиловый спирт	0,0190	0,4813
4.	н-Амиловый спирт	0,0009	0,4996

Видно, что в данном случае приближений расчет ректификации по Джилиленду дал близкие к действительным результаты.

Пример 21. Определить составы дистиллята и кубового остатка для процесса ректификации смеси бутиловых и амиловых спиртов (см. пример 20) в колоннах, эквивалентных 31, 23 и 19 теоретическим ступеням при подаче питания соответственно на 16-ю, 12-ю и 10-ю ступени. Расчет провести для флегмовых чисел R = 2,65 и 2,45 (что примерно на 20 % больше минимального).

Решение задачи выполнено аналогично тому, как в примере 20 был рассчитан процесс ректификации в колонне, эквивалентной 27 теоретическим ступеням. Результаты расчетов (в мол. долях) приведены ниже:

	R =	2,65	R = 2,45	
Компонент	x _{P,i}	x _{W, i}	x _{P,i}	×w.i
		N _T :	= 31	
1. Изобутиловый спирт	0.4995	0.0001	0.4994	0.0001
2. к.Бутиловый спирт	0.4872	0.0124	0 4825	0.0171
3. Изоамиловый спирт	0.0129	0 4874	0,0175	0.4829
4. н-Амиловый спирт	0,0004	0,5001	0,0006	0,4999
		<i>N</i> ₁ :	=27	
1. Изобутиловый спирт	_	_	0 4993	0.0003
2. н.Бутиловый спирт			0 4755	0 0241
3. Изоамиловый спирт	_		0.2400	0 4764
4. н-Амиловый спирт	_	_	0,0012	0,4992
·		Ν _τ =	=23	
1 Изобутнловый спирт	0.4990	0.0005	0.4989	0.0007
2 н-Бутиловый спирт	0 4715	0.0281	0 4659	0.0336
3. Изоамиловый спирт	0.0275	0 4729	0.0326	0.4678
4. н-Амиловый спирт	0,0020	0,4985	0,0026	0,4979
·		N_{τ}	=19	
1. Изобутиловый спирт	0 4981	0.0015	0 4978	0.0018
2. н-Бутиловый спирт	0.4585	0.0411	0 4530	0.0466
3. Изоамиловый спирт	0 0391	0 4613	0,1000	0.4564
4. н-Амиловый спирт	0,0043	0,4961	0,0052	0,4952

Из результатов расчета видно, насколько меняется четкость разделения бутиловых и амиловых спиртов при изменении размеров колонны и флегмового числа. В колонне,

эквивалентной 31 теоретической ступени, при R = 2,65 примесь бутиловых спиртов в кубовом остатке и амиловых в дистилляте ненамного больше 1 % (мол.). При эффективности колонны, соответствующей 19 теоретическим ступеням и R = 2,45, содержание бутиловых спиртов в кубовом остатке и амиловых в дистилляте приближается к 5 % (мол.). С помощью таких расчетов можно определить условия процесса, позволяющие достичь требуемой степени разделения компонентов.

Рассмотренный метод расчета многокомпонентной ректификации основан на допущении постоянства мольных расходов пара и жидкости в каждой из частей полной ректификационной колонны. Для учета изменений в расходах фаз система уравнений (3.91) — (3.94) должна быть дополнена уравнениями тепловых балансов — из (3.68) и (3.69). Расчет многокомпонентной ректификации с определением действительных расходов фаз в колонне применяют редко ввиду отсутствия в большинстве случаев данных для достаточно точного расчета энтальпий.

3.3.3. Расчет коэффициентов активности

Для растворов, состоящих не из ближайших гомологов, как правило, характерны бо́льшие или меньшие отклонения от свойств идеального раствора. Для расчета равновесия в таких системах требуется определение коэффициентов активности. Разработан ряд моделей многокомпонентного жидкого раствора, параметры которых могут быть найдены из данных по бинарному парожидкостному равновесию. Одна из таких моделей — модель Вильсона, приводящая к следующим уравнениям для коэффициентов активности [23]:

$$\ln \gamma_i = 1 - \ln \left(\sum_{j=1}^{b} x_j L_{i,j} \right) - \sum_{k=1}^{b} x_k, L_{k,i} / \sum_{j=1}^{b} x_j L_{k,j}, \quad (i = 1, 2, b).$$
(3.108)

Параметры уравнения Вильсона $L_{i,j}$ определяют из зависимости

$$L_{i,j} = \frac{v_i}{v_i} \exp\left(-\frac{\lambda_{i,j}}{RT}\right), \qquad (3.109)$$

где v_i и v_i — мольные объемы соответствующих компонентов; $\lambda_{i,i}$ — параметры, характеризующие различие в энергии взаимодействия молекул *i*-го компонента с молекулами *j*-го компонента и молекул *i*-го компонента друг с другом. Значения этих параметров обычно принимают независящими от температуры. Опубликованы данные по параметрам бинарного взаимодействия $\lambda_{i,i}$ для нескольких десятков пар различных веществ [23, 24].

Пример 22. С одной из тарелок ректификационной колонны стекает жидкость, содержащая 10 % (мол.) ацетона, 10 % (мол.) метанола и 80 % (мол.) воды. Считая тарелку теоретнческой, определить состав уходящего с нее пара. Расчет выполнить для нормального давления.

Как и для идеальных систем, расчет парожидкостного равновесия сводится в основном к определению равновесной температуры. В данном случае требуется определить температуру кипения водного раствора, содержащего ацетон и метанол. Найдем ее с помощью алгоритма, приведенного на рис. 3.17, рассчитывая коэффициенты активности по уравнениям Вильсона.

Ниже приведены исходные данные — константы A_i , B_i и C_i уравнения (3.99) для определения давления насыщенного пара компонентов [5], их молекулярные массы M_i , плотности в жидком состоянии при 60 и 70 °C, а также параметры бинарного взаимодействия $\lambda_{i,j}$, взятые из монографии [23] и пересчитанные в кДж/кмоль (при $i = j \ \lambda_{i,j} = 0$):

Компонент	x ,	Α,	\boldsymbol{B}_i	C,	
1. Ацетон	0,1	16,6513	2940,46	- 35,93	3
3. Вода	0,1	18,3036	3816,44	-34,25 -46,13	}
Компонент	М,	ρ,кг/м³,пр 60 °C 70 °C	α λ _{ι. j} . 2	кДж/кмо	ль
1. Ацетон	58,08	745 733	$\lambda_{1,2} = -$	536,60	$\lambda_{2.1} = 2088,6$
2. Метанол	32,04	756 746	$\lambda_{2,3}=662$	2,06	$\lambda_{3,2} = 2054,3$
3. Вода	18,02	983 978	$\lambda_{3.1} = 623$	55,4	$\lambda_{1.3} = 1956,8$

В качестве первого приближения для температуры кипения примем $t_1 = 75 \ ^{\circ}\text{C}$.

Расчет коэффициентов активности.

Для определения параметров L_{i,j} в уравнениях Вильсона находим мольные объемы компо-нентов в жидком состоянии при 75 °C. Для ацетона например, имеем:

$$v_1 = M_1/\rho_1 = 58,08/727 = 0,0799$$
 м³/кмоль,

где $\rho_1 = 727$ кг/м³ -- плотность ацетона при 75 °C, найденная линейной экстраполяцией данных при 60 и 70 °C.

Аналогичным образом для метанола и воды получим: $v_2 = 0.0432$, $v_3 = 0.0185$ м³/кмоль. Подставляя значения мольных объемов в уравнения (3.109), находим параметры L_i . Так, параметр L12 оказывается равным

$$L_{1,2} = \frac{v_2}{v_1} \exp\left[-\frac{\lambda_{1,2}}{RT}\right] = \frac{0.0432}{0.0799} \exp\left[-\frac{(-536.6)}{8.314(75+273.15)}\right] = 0.651.$$

Определение параметров $L_{i,i}$ при других значениях *i* и *j* дает: $L_{2,1}=0,899;$ $L_{2,3}=0,341;$ $L_{3,2} = 1,148; L_{3,1} = 0,497; L_{1,3} = 0,118.$ Уравнение (3.108) для ацетона (i = 1) принимает вид $(L_{i,i} = 1$ при i = i):

$$\ln \gamma_1 = 1 - \ln (x_1 + x_2 L_{1,2} + x_3 L_{1,3}) - \frac{x_1}{x_1 + x_2 L_{1,2} + x_3 L_{1,3}} - \frac{x_2 L_{2,1}}{x_1 L_{2,1} + x_2 + x_3 L_{2,3}} - \frac{x_3 L_{3,1}}{x_1 L_{3,1} + x_2 L_{3,2} + x_3}$$

Подставляя в это уравнение значения параметров $L_{i,i}$ и концентрации компонентов в жидкой фазе ($x_1 = x_2 = 0, 1, x_3 = 0, 8$), определим логарифм коэффициента активности ацетона:

$$\ln \gamma_1 = 1 - \ln (0, 1 + 0, 1 \cdot 0, 651 + 0, 8 \cdot 0, 118) -$$

$$-\frac{0,1}{0,1+0,1\cdot0,651+0,8\cdot0,118}-\frac{0,1\cdot0,899}{0,1\cdot0,899+0,1+0,8\cdot0,341}-\frac{0,8\cdot0,497}{0,1\cdot0,497+0,1\cdot1,148+0,8}=1,356.$$

Следовательно, у1 = ехр (1,356) = 3,88. Аналогичным образом находим коэффициенты активности метанола ($\gamma_2 = 1,42$) и воды ($\gamma_3 = 1,09$).

Относительные летучести компонентов. Подставляя константы Антуана А. B_i и C_i в уравнение (3.99), определим давление насыщенного пара при 75 °C: $P_1^0 = 1384.9$; $P_2^0 = 1133.2; P_3^0 = 289.1$ мм рт. ст. Относительная летучесть ацетона при этой температуре в соответствии с уравнением (3.96)

$$\alpha_1 = \gamma_1 P_1^0 / (\gamma_3 P_3) = 3,88 \cdot 1384,9 / (1,09 \cdot 289,1) = 17,0.$$

Для метанола уравнение (3.96) дает $\alpha_2 = 5,10$.

Новое приближение для температуры кипения. Согласно алгоритму расчета температуры кипения, приведенному на рис. 3.17, каждое последующее приближение определяют по коэффициенту распределения для наименее летучего из компонентов (в данном случае для воды), который должен удовлетворять уравнению

$$m_3 = 1 / \sum_{i=1}^3 \alpha_i x_i$$

Подставляя значения относительных летучестей и концентраций в эту зависимость, получим:

$$m_3 = 1/(17,0.0,1+5,1.0,1+0,8) = 0.332.$$

Этому значению коэффициента распределения соответствует давление насыщенного водяного пара

$$P_3^0 = pm_3/\gamma_3 = 760 \cdot 0.332/1.09 = 231$$
 MM pt. ct.

Из уравнения (3.99), написанного для воды, находим, что этому давлению насыщенного пара воды соответствует температура 69,72 °С.

Состав равновесного пара. Повторяя расчет несколько раз, после шести итераций получим температуру кипения, равную 68,16 °С. Давление насыщенного пара компонентов при этой температуре, их коэффициенты активности, относительные летучести, а также коэффициенты распределения, вычисленные по уравнениям (3.95), и равновесные концентрации в паре приведены ниже:

Компонент	<i>Р¦</i> , мм рт. ст.	۲i	α,	m _i	уі, мол. доли
 Ацетон Метанол 	1121,7 876,2	3,97 1,44	18,9 5,35	5,86 1,66	0,586 0,166
3. Вода	215,8	1,09	1	0,310	0,248

Для представления о точности, которая может быть получена при расчете парожидкостного равновесия с помощью уравнений Вильсона, сопоставим результаты решения данной задачи с опытными данными. Согласно справочным данным [16], температура кипения водного раствора, содержащего 10 % (мол.) ацетона и 10 % (мол.) метанола, при нормальном давлении равна 70 °С; в равновесии с ним находится пар, состоящий из 61 % (мол.) ацетона, 14 % (мол.) метанола и 26 % (мол.) воды.

Кроме уравнений Вильсона для расчета коэффициентов активности в многокомпонентных системах широкое распространение получил метод НРТЛ [5]. Разработаны также методы «групповых составляющих», основанные на учете вклада различных функциональных групп, входящих в молекулярную структуру соединений. Из таких методов наиболее известны методы ЮНИФАК и ЮНИКВАК [5].

3.3.4. Определение размеров ректификационных колонн при многокомпонентном питании

Диаметры ректификационных колонн для разделения многокомпонентных смесей определяют из тех же соображений, что и колонн для бинарной ректификации (см. разд. 3.2.4). Наиболее надежный способ расчета рабочей высоты колонны — использование опытных данных по эффективности тарелок или по значениям ВЭТС (для насадочных колонн), полученных для систем с близкими свойствами. При отсутствии таких данных можно использовать результаты расчета бинарной ректификации для отдельных пар компонентов, входящих в состав многокомпонентной системы. В частности, для оценки среднего коэффициента полезного действия ступени можно использовать график (см. рис. 3.9) для ключевых компонентов. Считают [11], что эффективность ступени выше для компонентов, обладающих большей летучестью. Применение данных по бинарной ректификации к многокомпонентной является более надежным в тех случаях, когда существенная доля сопротивления массопереносу сосредоточена в жидкой фазе.

3.4. АДСОРБЦИЯ В АППАРАТАХ С НЕПОДВИЖНЫМ СЛОЕМ Твердой фазы

Наиболее распространенный массообменный процесс, осуществляемый в аппаратах с неподвижным слоем твердой фазы, — адсорбция. Такого рода процессы являются нестационарными и периодическими. При этом концентрации в твердом материале и в газе (или в жидкости), находящихся внутри аппарата, меняются во времени. Процесс длится до тех пор, пока конечная концентрация в среде, проходящей через слой твердой фазы (сорбента), не превысит некоторого предельного значения (концентрация проскока), после чего сорбент подвергают регенерации (обычно десорбцией).

Рассмотрим методы расчета сравнительно простых случаев массообменных процессов с неподвижным слоем твердой фазы, когда в массопереносе участвует лишь один компонент, концентрация которого в исходной смеси невелика (и следовательно, можно пренебречь изменением расхода газа или жидкости) и когда процесс протекает в приблизительно изотермических условиях; кроме того, ограничимся системами, для которых изотермы адсорбции не имеют точек перегиба.

3.4.1. Материальный баланс

Если пренебречь поперечной неравномерностью, то концентрации внутри аппарата будут зависеть от двух переменных: времени т и продольной координаты *z*, отсчитываемой обычно от входа разделяемой смеси в слой сорбента. Дифференциальное уравнение материального баланса, описывающее эту зависимость в отсутствие продольного перемешивания, имеет следующий вид:

$$\epsilon \frac{\partial c}{\partial \tau} + \rho_{\text{uec}} \frac{\partial X}{\partial \tau} + \omega \frac{\partial c}{\partial z} = 0, \qquad (3.110)$$
где є — порозность слоя; $\rho_{\text{нас}}$ — насыпная плотность сорбента; ω — фиктивная скорость движущейся через слой среды; c — концентрация адсорбирусмого вещества в ней, кг/м³; X — концентрация извлекаемого вещества в сорбенте, кг/кг чистого сорбента.

Уравнение (3.110) совместно с уравнениями, описывающими скорость массопереноса и равновесные соотношения (изотерма адсорбции), позволяет в принципе рассчитать зависимость концентраций в слое сорбента от продольной координаты и времени.

Общий материальный баланс процесса по адсорбируемому веществу для всего периода адсорбции (или десорбции) выражается следующей зависимостью:

$$wc_{u}0 - w \int_{0}^{0} c_{z=H} d\tau = \rho_{\text{Hac}} \int_{0}^{H} (X_{\tau=0} - X_{u}) dz + \epsilon \int_{0}^{H} (c_{\tau=0} - c_{\tau=0}) dz, \qquad (3.111)$$

где с_н и Х_н — начальные концентрации соответственно в проходящей через слой среде и в сорбенте; 0 — длительность стадий адсорбции или десорбции; *H* — высота слоя сорбента.

Левая часть уравнения (3.111) представляет собой приходящуюся на единицу площади поперечного сечения разность между количествами сорбируемого вещества, вошедшего с постулающей в аппарат средой и вышедшего вместе с ней из аппарата в течение рассматриваемой операции. Первый интеграл правой части определяет прирост количества сорбируемого компонента в сорбенте (для десорбции он отрицателен), второй — в газовой или жидкой фазе, находящейся внутри слоя (в расчете на единицу поперечного сечения).

Во многих случаях уравнение (3.111) может быть упрощено. Так, для адсорбции обычно существенны только первые члены правой и левой частей уравнения, а для десорбции — второй член левой части уравнения и первый член правой.

3.4.2. Массопередача с участием пористой твердой фазы

За поверхность массопередачи в процессах с твердой фазой принимают внешнюю поверхность частиц сорбента. Удельную поверхность контакта фаз рассчитывают по уравнению

$$a = 6 (1 - \epsilon)/d, \qquad (3.112)$$

где *d* — эквивалентный диаметр частиц сорбента.

Скорость массопередачи определяется скоростью массопереноса к внешней поверхности частиц, характеризуемой внешним коэффициентом массоотдачи β_{μ} и скоростью массопереноса к внутренней поверхности сорбента при адсорбции или в обратном направлении — при десорбции. Скорость внутреннего массопереноса зависит от скоростей диффузии в порах сорбента, на его внутренней поверхности, в самой твердой фазе (для ионообменных смол), а иногда и от скорости химического взаимодействия с сорбентом. Количественно скорость внутреннего массопереноса оценивают либо коэффициентом диффузии в порах D_{n} , либо эффективным коэффициентом диффузии в твердой фазе D_{τ} , когда сорбент рассматривают как квазитвердое вещество. Для упрощения расчетов скорость внутреннего массопереноса часто приближенно характеризуют коэффициентами массоотдачи в порах β_{n} нли в твердом материале β_{τ} . Коэффициенты массоотдачи для массообменных процессов с пористой твердой фазой определяются следующими уравнениями [8]:

$$\left(\frac{\rho_{\text{HBC}}}{a}\right)\frac{dX}{d\tau} = \beta_y \left(c - c_i\right) = \beta_n \left(c_i - c^*\left(X\right)\right) = \beta_\tau \left[\frac{c_w}{X^* \left(c_w\right)}\right] \left[X^* \left(c_i\right) - X\right], \quad (3.113)$$

где сі — концентрация у внешней поверхности сорбента.

Коэффициенты массопередачи в порах или в твердом материале связаны с соответствующими коэффициентами диффузии соотношениями [7, 8]

$$\beta_n = 10 D_n/d;$$

$$\beta_{\tau} = \frac{10D_{\tau}}{d(1-\varepsilon)} \left[\frac{\rho_{\text{Mac}} X^* (c_{\text{H}})}{c_{\text{H}}} \right]$$
(3.114)

При оценке внутреннего сопротивления массопереносу с помощью коэффициентов массоотдачи суммарная скорость массопередачи может характеризоваться коэффициентами массопередачи K_y или K_x , выраженными соответственно по внешней фазе или по фазе сорбента. Эти коэффициенты определяются уравнениями

$$\left(\frac{\rho_{\text{nac}}}{a}\right)\frac{dX}{d\tau} = K_{y}[c-c^{*}(X)] = K_{x}\frac{c_{y}}{X^{*}(c_{y})}[X^{*}(c)-X].$$
(3.115)

Если внутреннее сопротивление массопереносу определяется диффузией в порах или характеризуется коэффициентом массоотдачи β_n, то из уравнений (3.113) и (3.115) следует:

$$K_y = (1/\beta_y + 1/\beta_n)^{-1}$$
(3.116)

Уравнение (3.116) справедливо для изотерм адсорбции любого вида.

Если же внутреннее сопротивление зависит как от диффузии в порах, так и от диффузии в сорбенте или на его внутренней поверхности, то строгая связь между коэффициентами массоотдачи и массопередачи существует лишь для линейной изотермы адсорбции и выражается уравнением [8]:

$$K_y = K_x = [1/\beta_y + 1/(\beta_n + \beta_r)]^{-1}$$
(3.117)

В уравнениях (3.113) — (3.117) все коэффициенты массоотдачи и массопередачи выражены в м/с. В расчетных уравнениях коэффициенты массоотдачи и массопередачи, как и для других массообменных процессов, часто встречаются в виде объемных коэффициентов массоотдачи или массопередачи: β_ua, K_ua и т. д.

Обзор расчетных уравнений для коэффициентов массоотдачи в среде, движущейся через слой зернистого материала, приведен в монографии [8]. В частности, для газовой среды можно использовать уравнение [25]:

$$\beta_y = 0.355 \frac{\omega}{\varepsilon} \left(\frac{\omega \rho_y d}{\mu_y}\right)^{-0.359} \left(\frac{\mu_y}{\rho_y D_y}\right)^{-0.667}$$
(3.118)

где ρ_y , μ_y и D_y — соответственно плотность, вязкость и коэффициент диффузии для внешней среды.

Скорость внутреннего массопереноса лучше всего оценивать на основе опытных данных. В тех случаях, когда сопротивление в сорбенте определяется диффузией в порах и имеются данные по размерам пор, коэффициент диффузии в порах может быть рассчитан по уравнению [8]

$$D_{\rm p} = \frac{\varepsilon_{\rm y} D_{\rm y}}{2} \left[1 - \exp\left(-\frac{4r}{3D_{\rm y}} \sqrt{\frac{8RT}{M}}\right) \right]. \tag{3.119}$$

где ε_ч — пористость частиц сорбента (доля объема пор от объема частицы); *г* — средний радиус пор; *M* — молекулярная масса сорбируемого вещества.

Пример 23. Найти объемный коэффициент массопередачи для процесса очистки водорода от примеси метана адсорбцией активным углем при давлении І МПа и температуре 25 °C. Сорбент характеризуется следующими свойствами: размер частиц 3 мм, средний радиус пор 30·10⁻¹⁰ м, насыпная плотность ρ_{илс} = 450 кг/м³, плотность частиц ρ₄ = 750 кг/м³, плотность угля ρ_τ = 2000 кг/м³ Фиктивная скорость газа в адсообере 0,16 м/с; средняя плотность и вязкость газа равны соответственно 0,826 кг/м³ и 0,9·10⁻⁵ Па·с.

Принять, что внутреннее сопротивление массопереносу лимитируется диффузией в порах.

Свойства газовой фазы и сорбента. Коэффициент диффузии в системе метан — водород при 25 °C и нормальном давлении равен 0,726 см²/с [6]. Считая коэффициент диффузии обратно пропорциональным давлению, для P=10⁶ Па находим:

$$D_y = 0.726 \cdot 1.013 \cdot 10^5 / 10^6 = 0.0735 \text{ cm}^2/\text{c}.$$

Порозность слоя и пористость частиц связаны с параметрами, характеризующими плотность сорбента, следующим образом:

$$\varepsilon = 1 - \rho_{\text{Hac}} / \rho_{\text{H}}; \qquad \varepsilon_{\text{H}} = 1 - \rho_{\text{H}} / \rho_{\text{T}}.$$

Следовательно, в данном случае

$$\varepsilon = 1 - 450/750 = 0.4; \quad \varepsilon_4 = 1 - 750/2000 = 0.625;$$

 $a = 6 (1 - \varepsilon)/d = 6 (1 - 0.4)/3 \cdot 10^{-3} = 1200 \text{ m}^2/\text{m}^3.$

Коэффициент диффузии в порах определяем по уравнению (3.119):

$$D_{n} = \frac{e_{v}D_{y}}{2} \left[1 - \exp\left(-\frac{4r}{3D_{y}}\sqrt{\frac{8RT}{M_{CH_{4}}}}\right) \right] =$$
$$= \frac{0.625 \cdot 0.0735}{2} \left[1 - \exp\left(-\frac{4 \cdot 30 \cdot 10^{-10}}{3 \cdot 0.0735 \cdot 10^{-4}}\sqrt{\frac{8 \cdot 8314}{16.04}}\right) \right] = 0.0104 \text{ cm}^{2}/c$$

где M_{CH} = 16,04 — молекулярная масса метана.

Коэффициент массопередачи. По уравнению (3.118) найдем коэффициент массоотдачи в газовой фазе:

$$\beta_y = 0.355 \frac{\omega}{\varepsilon} \left(\frac{\omega \rho_y d}{\mu_y}\right)^{-0.359} \left(\frac{\mu_y}{\rho_y D_y}\right)^{-0.667} =$$

= 0.355 $\frac{16}{0.4} \left(\frac{0.16 \cdot 0.826 \cdot 3 \cdot 10^{-3}}{0.9 \cdot 10^{-5}}\right)^{-0.359} \left(\frac{0.9 \cdot 10^{-5}}{0.826 \cdot 0.0735 \cdot 10^{-4}}\right)^{-0.667} = 2.81 \text{ cm/c}.$

Коэффициент массоотдачи для пор по уравнению (3.114) равен:

$$\beta_n = 10D_n/d = 10.0,0104/0,3 = 0,347 \text{ cm/c}.$$

Следовательно, коэффициент массопередачи по газовой фазе

$$K_y = (1/\beta_y + 1/\beta_y)^{-1} = (1/2.81 + 1/0.347)^{-1} = 0.309 \text{ cm/c}.$$

Объемный коэффициент массопередачи $K_{ya} = 0.309 \cdot 1200 \cdot 10^{-2} = 3.71$ с⁻¹

3.4.3. Расчет адсорберов

Обычно исходными параметрами для технологического расчета адсорберов служат расход и состав исходной смеси; свойства сорбента; условия, при которых должны протекать стадии адсорбции и регенерации; предельно допустимая концентрация в очищенном газе (концентрация проскока). Цель расчета — определение основных размеров адсорбера (диаметра и высоты слоя сорбента), продолжительности стадий адсорбции и регенерации, числа адсорберов, при котором может быть обеспечена циклично-непрерывная работа всей установки.

Диаметр адсорбера. Поперечное сечение адсорбера и, следовательно, его диаметр при проектировании аппарата цилиндрической формы определяются выбором фиктивной скорости газа или жидкости. Верхним пределом скорости является скорость начала псевдоожижения частиц сорбента. С увеличением скорости растет коэффициент массопередачи (до некоторого предела, определяемого скоростью, при которой внутреннее сопротивление становится лимитирующим) и увеличивается гидравлическое сопротивление. Оптимальная скорость движения среды в адсорбере обычно гораздо ниже скорости начала псевдоожижения. Выбор ее основывается на технико-экономических соображениях: проводят расчет процесса при нескольких значениях фиктивной ско-

Рис. 3.18. Определение высоты слоя сорбента по профилю концентрации во внешней среде при $\tau = \theta$

Рис. 3.19. Определение продолжительности стадии адсорбции по выходной кривой

рости (см. пример 26) и выбирают то значение, при котором полные затраты на работу установки минимальны.

Высота слоя сорбента. Для определения рабочей высоты адсорбера надо задаться длительностью стадии адсорбции 0 и рассчитать профиль концентрации в газе (или жидкости) при $\tau = 0$. При заданной концентрации проскока c_{np} необходимую высоту слоя легко определнть графически (рис. 3.18). Повторяя расчет при разных 0, выбирают оптимальный вариант.

Продолжительность стадий процесса. Определение длительности стадии адсорбции при заданных высоте слоя и концентрации проскока также можно проводить графически после расчета выходной кривой — зависимости конечной (при z = H) концентрации очищаемой среды от времени (рис. 3.19). Аналогично можно найти и продолжительность стадии десорбции, исходя из заданной конечной концентрации десорбирующего газа c_1 или максимально допустимой остаточной концентрации X_1 в сорбенте (рис. 3.20).

Учет продольного перемешивания. Уравнение (3.110), лежащее в основе расчета профилей концентраций и выходных кривых, справедливо для течения разделяемой среды через слой сорбента в режиме идеального вытеснения при отсутствии продольной

диффузии. Отклонения от этого режима (обусловленные неравномерным распределением скоростей, существованием обратных потоков, наличием продольной диффузии) при расчете адсорбентов можно учитывать введением поправки в коэффициент массопередачи. Поправку вводят в виде дополнительного диффузионного сопротивления 1/βирод. Коэффициент массопередачи с учетом продольного перемещивания K' определяют из уравнения

$$K'_y = (1/K_y + 1/\beta_{npol})$$
 (3.120)

Рис. 3.20. Определение продолжительности десорбции: 1 выходная кривая; 2 зависимость концентрации в сорбенте от времени при z = H Учет продольного перемешивания с помощью уравнения (3.120) в достаточной мере обоснован при лииейной изотерме адсорбции, но на практике его применяют и при других формах кривых равновесия. Для определения поправки на продольное перемешивание можно использовать следующее эмпирическое уравнение [26]

$$\beta_{npo_A} = 0.0567 \frac{w}{1 - \epsilon} \left(\frac{\rho_y w d}{\mu_y}\right)^{0.22}$$
(3.121)

3.4.4. Расчет профилей концентраций и выходных кривых

Для расчета массообменных аппаратов с неподвижным слоем сорбента необходимо определять профили концентраций (зависимости с от z и X от z при данном т) и выходные кривые (зависимости с от т при данном z). В общем случае их определение требует численного решения системы, состоящей из уравнения материального баланса (3.110), уравнения изотермы адсорбции и уравнений, описывающих скорость массопереноса.

Ниже рассмотрен ряд обобщенных решений этой системы уравнений для нескольких частных случаев.

Бесконечная скорость массопереноса. Допушение о бесконечно большой скорости массопереноса эквивалентно предположению о равновесии между фазами во всех точках аппарата. При этом условии уравнение (3.110) имеет простое решение, результат которого зависит от вида кривой равновесия. Для адсорбции в случае выпуклой (по отношению к оси, на которой отложен состав газа) равновесной линии и для десорбции в случае вогнутой кривой равновесия это решение имеет вид:

$$c = c^* (X_n), \quad X = X_n \text{ при } z > z_1;$$

 $c = c_n, \quad X = X^* (c_n) \text{ при } z < z_1,$
(3.122)

где

$$z_{1} = \frac{\omega \tau [c_{1} - c^{*} (X_{1})]}{\varepsilon [c_{1} - c^{*} (X_{1})] + \rho_{HBC} [X^{*} (c_{1}) - X_{1}]}.$$

При адсорбции в случае вогнутой изотермы и десорбции в случае выпуклой изотермы распределение концентраций описывается следующими уравнениями:

$$c = c_{\mathfrak{h}}, \quad X = X^* (c_n)$$
ири $z \leqslant z_1;$
 $c = c^* (X_n), \quad X = X_n$ при $z \geqslant z_2,$
(3.123)

где

$$z_{1} = \frac{\omega\tau}{\varepsilon + \rho_{\text{Hac}} (dX^{*}/dc)_{c=c_{\mu}}}; \qquad z_{2} = \frac{\omega\tau}{\varepsilon + \rho_{\text{Hac}} (dX^{*}/dc)_{c=c^{*}}(X_{\mu})}$$

В области z₁ < z < z₂ концентрации фаз определяются соотношениями:

$$z\left(\varepsilon + \rho_{\text{sac}} \frac{dX^*}{dc}\right) = \omega\tau; \qquad X = X^* (c). \qquad (3.124)$$

Примеры профилей концентраций в газе при адсорбции и десорбции, соответствующие уравнениям (3.122) — (3.124), показаны на рис. 3.21 и 3.22.

Уравнения (3.122) — (3.124) позволяют найти предельные параметры процесса: минимальную толщину слоя сорбента при заданной продолжительности стадии адсорбции, или минимальную длительность стадии десорбции для слоя определенной толщины, или максимальную продолжительность работы слоя сорбента заданной высоты до момента проскока и т. п.

Пример 24. Водород очищают от примеси метана, содержащейся в количестве 0,0309 мол. доли, адсорбцией активным углем при давлении 1 МПа и температуре 25 °C. Насыпная плотность сорбента 450 кг/м³, порозность слоя 0,4.

Изотерма адсорбции описывается уравнением

$$X^* = 0.375c/(1+8c)$$

Определить минимальную толщину слоя сорбента при фиктивной скорости газа в адсорбере 9 см/с и длительности стадии адсорбции 1800 с. Начальную концентрацию СН₄ в сорбенте принять равной нулю.

Толіцина слоя сорбента минимальна при максимальной (бесконечной) скорости массопереноса. Следовательно, для решения данной задачи нужно найти высоту слоя угля, при которой проскок мстана в этих условиях начнется через 1800 с.

Рис. 3.23. Изотерма адсорбции метана активным углем при 25 °С (к примерам 24—30): 1 — кривая, соответствующая уравнению X=0.375 с/(1+8 с); 2 — аппроксимация изотермы при малых концентрациях линейной зависимостью X=0.35 с

Концентрация метана в исходной смеси равна:

$$c_{\rm H} = \frac{y_{\rm H} \rho M_{\rm CH_4}}{RT} = \frac{0.0309 \cdot 10^6 \cdot 16.04}{8314 (25 + 273)} = 0.2 \text{ kr/m}^3$$

Найдем концентрацию метана в сорбенте, равновесную с начальным составом газа:

$$X^*(c_n) = (0.375 \cdot 0.2) / (1 + 8 \cdot 0.2) = 0.02885$$
 кг/кг угля.

Кривая равновесия (в данном случае — изотерма Лэнгмюра) выпукла по отношению к оси, на которой отложен состав газа (рис. 3.23). Поэтому профили концентраций при бесконечной скорости массопереноса должны соответствовать уравнению (3.122). Так как $c^*(X_n) = 0$, то

$$z_{1} = \frac{\omega \tau c_{u}}{\varepsilon c_{u} + \rho_{usc} X^{*}(c_{u})} = \frac{0.09 \cdot 1800 \cdot 0.2}{0.4 \cdot 0.2 + 450 \cdot 0.02885} = 2.48 \text{ M}.$$

Следовательно, концентрация метана в газе, находящемся внутри слоя, равна нулю при z > 2,48 м. Толщина слоя сорбента для данного процесса должна быть не менее 2,48 м.

Пример 25. Определить минимальную продолжительность практически полной десорбции метана из слоя угля толщиной 2,48 м, содержащего в начальный момент 0,02885 кг метана/кг угля при 25 °С, если десорбирующий газ не содержит метана и движется в адсорбере с фиктивной скоростью 9 см/с. Найти зависимость конечной концентрации десорбирующего газа от времени. Рассчитать, при какой минимальной скорости газа десорбция может быть осуществлена, как и адсорбция, за 1800 с.

Так как изотерма адсорбции является выпуклой, то при десорбции в условиях бесконечной скорости массопереноса распределение концентраций в различные моменты времени должно описываться уравнениями (3.123) — (3.124). В соответствии с первым из уравнений (3.123) конечная концентрация десорбирующего газа станет равной начальной (т. е. нулевой и, следовательно, десорбция будет закончена) при

$$z \leqslant \frac{w\tau}{\varepsilon + \rho_{\text{Hac}} (dX^*/dc)_{c=0}}$$

Значит, при z = H = 2,48 м десорбция будет закончена за время

$$\tau \ge \frac{H \left[\varepsilon + \rho_{\text{wac}} \left(\frac{dX}{dc} \right)_{c=0} \right]}{\omega} = \frac{2.48 \left(0.4 + 450 \cdot 0.375 \right)}{0.09} = 4660 \text{ c}$$

где $(dX^*/dc)_{c=0} = 0.375 \text{ м}^3/\text{кг}$ (см. уравнение изотермы адсорбции в условиях примера 24). Таким образом, для полной десорбции слоя в данных условиях требуется не менее 4660 с.

Рис. 3.24. Зависимость конечной концентрации от времени (к примеру 25)

Для определения зависимости концентрации выходящего газа от времени зададимся рядом значений c, найдем производные dX^*/dc для каждого значения c и вычислим с помощью уравнения (3.124) время, при котором конечная концентрация (при z = H) равна c. Пусть, например, c = 0,1 кг/м³ Тогда

$$\left(\frac{dX^*}{dc}\right)_{c=0} = \left[\frac{0.375}{(1+8c)^2}\right]_{c=0.1} = \frac{0.375}{(1+8\cdot0.1)^2} = 0.1157 \text{ m}^3/\text{kr}$$

Из уравнения (3.124) получим:

$$\tau = H \left(\varepsilon + \rho_{\text{uac}} \frac{dX^*}{d\tau} \right) / w = 2.48 \ (0.4 + 450 \cdot 0.1157) / 0.09 = 1446 \ \text{c.}$$

Следовательно, черсэ 1446 с после начала десорбции конечная концентрация десорбирующего газа равна 0,1 кг/м³. Результаты расчета при других значениях с приведены ниже:

кг/м ³	$\frac{dX^*}{dc} = M^3/\kappa r$		кг/м ³	$\frac{dX^*}{dc}$ M ³ /Kr	
0,200	0,0555	699	0,100	0,1157	1446
0,196	0,0559	704	0,060	0,1712	2130
0,190	0,0590	743	0,020	0,2787	3466
0,180	0,0630	792	0,010	0,3215	3997
0,140	0,0834	1045	0	0,375	4660

Полученная зависимость концентрации метана в выходящем газе от времени показана на рис. 3.24. Эта зависимость позволяет найти конечную концентрацию в газе и максимальную остаточную концентрацию в сорбенте при различном времени десорбции. Так, при $\tau = 1800$ с получим $c/c^*(X_{\rm H}) = 0.38$. Следовательно, $c_{\rm K} = 0.38 \cdot 0.2 = 0.076$ кг/м³; концентрация в сорбенте (максимальная, на задней по ходу десорбирующего газа кромке слоя) составит:

$$X = 0.375 \cdot 0.076 / (1 + 8 \cdot 0.076) = 0.0177$$
 кг/кг угля.

Минимальная скорость газа, при которой можно рассчитывать на практически полную десорбцию слоя при т = 1800 с, в соответствии с уравнением (3.123) равна:

$$w = H \left[\epsilon + \rho_{\text{Hac}} \left(\frac{dX^*}{dc} \right)_{c=0} \right/ \tau = 2,48 \ (0,4 + 450 \cdot 0,375) / 1800 = 0,233 \text{ m/c}.$$

Линейная изотерма адсорбции. Если скорость массопереноса характеризовать уравнением (3.115), то строгое решение для распределения концентраций в слое существует лишь для линейной равновесной зависимости. Для адсорбции при X₁=0 оно

$$c/c_{u} = J(n_{oy}, n_{oy}T);$$

$$X/X^{*}(c_{u}) = 1 - J(n_{ou}T, n_{oy}),$$
(3.125)

где $J - функция двух переменных - <math>\alpha$, γ ; $n_{oy} = K'_{\mu}az/\omega$ - общее число единиц переноса для слоя сорбента высотой z, рассчитанное с учетом продольного перемешивания; параметр $T = wc_{\mu} (\tau - ze/w) / [\rho_{\mu ac} X^* (c_{\mu}) z]$ можно рассматривать как безразмерное время.

Значения функции $I(\alpha, \gamma)$ приведены в табл. 3.3. При $\alpha\gamma > 36$ функцию J можно приближенно вычислять с помощью таблиц интеграла вероятности по уравнению [7]:

$$J(\alpha, \gamma) = \left[1 - \operatorname{erf}\left(\sqrt{\alpha} - \sqrt{\gamma}\right)\right]/2 + \frac{\exp\left[-\left(\sqrt{\alpha} - \sqrt{\gamma}\right)^{2}\right]}{2\sqrt{\pi}\left[\left(\alpha\gamma\right)^{1/4} + \sqrt{\gamma}\right]}.$$
(3.126)

При αγ> 3600 эту функцию можно определять с помощью более простой зависимости:

$$J(\alpha, \gamma) = [1 - \operatorname{erf}(\sqrt{\alpha} - \sqrt{\gamma})]/2.$$
(3.127)

Таблицы интеграла вероятностей $erf(x) = (2/\sqrt{\pi}) \int_{0}^{x} e^{-y^{2}} dy$ имеются в справоч-

никах [27].

Аналогичное решение для десорбции (при си=0) выражается уравнениями

$$c/c^* (X_y) = 1 - J (u_{ay}, n_{ay}T); X/X_y = J (n_{ay}T, n_{ay}).$$
(3.128)

Переменная Т для десорбции равна:

$$T = \omega c^* (X_{\rm H}) (\tau - z \varepsilon \omega) / (\rho_{\rm Hac} X_{\rm H} z).$$

Пример 26. Подобрать размеры адсорбера для очистки водорода от метана при давлении 1 МПа и температуре 25 °С, если расход исходной смеси равен 542 кг/ч, а начальная концентрация метана $y_{H} = 0,00309$ мол. доли. Максимально допустимое содержание метана в очищенном водороде $0.05y_{H}$. Продолжительность цикла адсорбции принять равной 1800 с. Считать, что в начале адсорбции сорбент не содержит метана. (Свойства активного угля приведены в примере 23.)

При начальной концентрации метана у_н=0,00309 мол. доли:

$$c_{\mu} = 0.00309 \cdot 10^{\circ} \cdot 16.04 / [8314 (273 + 25)] = 0.02 \text{ kr/m}^3$$

При столь малых концентрациях (см. рис. 3.23) изотерму адсорбции можно аппроксимировать линейной зависимостью X*=0,35с и, следовательно, использовать для расчета уравнения (3.125). С войства газовой фазы. Считая применимыми законы идеальных газов, нахо-

своиства газовои фазы. Считая применимыми законы идеальных газов, находим плотности исходной смеси и чистого водорода при условиях в адсорбере:

$$\rho_{\rm H} = \frac{pM}{RT} = \frac{10^6 \cdot 2,059}{8314 \ (273 + 25)} = 0,8306 \ {\rm kr/m^3},$$

где $M = 2,016 (1 - 0.00309) + 16,04 \cdot 0.00309 = 2,059 - средняя молекулярная масса исходной смеси.$ $Для водорода <math>\rho_{\rm H_2} = 0.822$ кг/м³ Следовательно, объемный расход исходной смеси равен:

$$V_{\rm H} = 542/(3600 \cdot 0.8306) = 0.1813 \text{ m}^3/\text{c}.$$

Так как в течение цикла адсорбции из аппарата большую часть времени должен выходить практически чистый водород, конечный расход можно принять равным

$$V_{\rm H} = V_{\rm H} (1 - y_{\rm H}) = 0,1813 (1 - 0,00309) = 0,1807 \,{\rm m}^3/{\rm c}.$$

Для расчета используем средние значения объемного расхода и плотности газа:

$$V = (0,1813 + 0,1807)/2 = 0,181 \text{ m}^3/\text{c};$$

$$\rho_y = (0.8306 + 0.822)/2 = 0.8263 \text{ kr/m}^3$$

Вяэкость метановодородных смесей при малых концентрациях метана равна 0,9·10⁻⁵ Па·с [6]. Коэффициент диффузии рассчитан ири решении примера 23 и равен 0,0735 см²/с.

y/a 0.75 0,1 0,25 0,4 0.5 0.6 0.9901 0.9901 0.9901 0.9901 0.9901 0,01 0.9901 0.9805 0,02 0,9802 0.9803 0.9804 0.9804 0.9804 0,9530 0.9526 0.05 0.9515 0,9518 0.9522 0.9524 0.9071 0,9084 0,9093 0,9101 0,9114 0,10 0.9057 0.8267 0.8314 0,8417 0.20 0.8220 0.8344 0,8374 0,6880 0,7056 0,50 0,6214 0,6427 0.6628 0.6756 0.5010 0,5301 0,5578 0.5965 0,4038 0.4543 1 0.3425 0,4078 0,4487 0,4874 0,5415 1,5 0.2724 γ/α α 0,75 0,25 0,4 0,5 0,6 0.15 2 3 0,2162 0,2690 0,3456 0,3943 0,4409 0.5064 0,4597 0,2633 0,3209 0,3777 0.1235 0,1778 4 0,1234 0.2085 0,2700 0,3331 0,4269 0,0745 5 0,0463 0,0878 0,1686 0,2313 0,2982 0,4011 γ/α α 0,25 0,4 0,5 0,6 0,75 0.9 0.1380 0.2003 0.2695 0.3796 0,4891 6 0.06358 0.2242 0,4699 0,0341 0,0948 0.1535 0,3446 0,1894 0,4547 10 0,0188 0,0665 0,1198 0,3163 0,0288 0,1292 0,2627 0,4259 0,0045 0,0674 15 20 1100.0 0.0130 0,0393 0,0909 0,2230 0,4040 γ/α α 0,5 0,6 0,7 0,8 0.9 0,4 30 0.0028 0.0472 0,1161 0.2268 0,3703 0.0142 0,3440 0.0254 0,0808 0,1881 40 0.0006 0.0053 0.0572 0.1580 0,3221 0.0140 50 0.002 0.0021 0,3032 0,0078 0,0410 0,1339 60 0,0000 0,0008 80 0,0000 0,0001 0,0025 0,0215 0,0979 0,2714 0,0008 100 0,0000 0.0000 0,0116 0,0727 0,2453 γ/α α 0,95 0.7 0.75 0.8 0.85 0.9 0.0361 0.0931 0,3412 150 0.0026 0.0110 0,1951 0.3152 0,0040 0,0185 0,0624 0,1585 2000,0006 0,0006 300 0,0000 0,0052 0,0293 0,1082 0,2744 400 0.0000 0.0001 0,0015 0,0143 0,0759 0,2425 γ/α α 0.88 0.9 0.92 0.94 0.96 0,98 500 0.0261 0.0541 0.1011 0.1717 0.2667 0,3814 0,0390 0,0808 0,3693 0,0166 0,1490 0,2466 600 0,1139 800 0,0069 0,0207 0,0526 0,2132 0,3485 1000 0,0029 0,0112 0,0348 0,0883 0,1861 0,3306

Продолжение табл. 3.3

			γ/α			
1	1,3	1,6	2	3	5	10
0,9901 0,9806 0,9536 0,9135 0,8487 0,7329 0,6543 0,6215	0,9902 0,9807 0,9542 0,9159 0,8567 0,7624 0,7136 0,7018	0,9902 0,9808 0,9549 0,9183 0,8643 0,7886 0,7634 0,7670	0,9902 0,9810 0,9558 0,9213 0,8737 0,8193 0,8174 0,8341	0,9903 0,9813 0,9579 0,9285 0,8946 0,8782 0,9061 0,9323	0,9905 0,9821 0,9618 0,9408 0,9267 0,9451 0,9766 0,9902	0,9910 0,9838 0,9701 0,9632 0,9704 0,9928 0,9994 0,9999
			γ/a			
1	1,3	1,6	2	3	4	5
0,6035 0,5833 0,5717 0,5639	0,7000 0,7052 0,7140 0,7236	0,7764 0,7980 0,8183 0,8364	0,8519 0,8828 0,9069 0,9256	0,9512 0,9744 0,9863 0,9926	0,9853 0,9952 0,9984 0,9995	0,9958 0,9992 0,9998 0,9999
			γ/α			
1	1,25	١,5	1,75	2	2,25	2,5
0,5582 0,5503 0,5449 0,5366 0,5316	0,7078 0,7229 0,7371 0,7683 0,7943	0,8187 0,8444 0,8658 0,9055 0,9323	0,8934 0,9194 0,9384 0,9677 0,9826	0,9403 0,9610 0,9742 0,9905 0,9964	0,9679 0,9822 0,9900 0,9975 0,9994	0,9833 0,9923 0,9964 0,9994 0,9999
			γ/α			
<u> </u>	1,1	1,2	1,3	1,4	1,5	1,6
0,5258 0,5223 0,5200 0,5182 0,5158 0,5141	0,6705 0,6884 0,7044 0,7188 0,7441 0,7657	0,7885 0,8178 0,8419 0,8620 0,8934 0,9168	0,8742 0,9043 0,9263 0,9428 0,9649 0,9781	0,9304 0,9545 0,9698 0,9798 0,9907 0,9956	0,9640 0,9803 0,9891 0,9938 0,9980 0,9993	0,9825 0,9922 0,9965 0,9984 0,9996 0,9999
			γ/α			
1	1,05	1,1	1,15	1,2	1,25	1,3
0,5115 0,5100 0,5081 0,5071	0,6759 0,6980 0,7340 0,7630	0,8088 0,8415 0,8879 0,9189	0,9000 0,9295 0,9635 0,9806	0,9536 0,9734 0,9907 0,9967	0,9809 0,9906 0,9981 0,9996	0,9930 0,9976 0,9997 0,9999
			γ/α			
1	1,02	i,04	1,06	1,08	1,1 ,	1,12
0,5063 0,5058 0,5050 0,5045	0,6295 0,6402 0,6593 0,6758	0,7395 0,7581 0,7895 0,8151	0,8291 0,8504 0,8839 0,9088	0,8955 0,9151 0,9431 0,9613	0,9405 0,9559 0,9753 0,9859	0,9685 0,9790 0,9905 0,9956

Фиктивная скорость газа. Для определения оптимальных размеров адсорбера рассчитаем высоту слоя сорбента при диаметрах аппарата 1.2: 1.6 и 2.4 м. Π ля D = 1.2 м фиктивная скорость газа составит:

$$w = 4V/\pi D^2 = 4 \cdot 0.181/(3.14 \cdot 1.2^2) = 0.16 \text{ m/c}.$$

Для *D* = 1,6 и 2,4 м фиктивные скорости газа равны соответственно 0,09 и 0,04 м/с.

Коэффициенты массопередачи. При $\omega = 16$ см/с коэффициент массопередачи рассчитан в примере 23 (К_и = 0,309 см/с). Найдем поправку для учета продольного перемешивания по уравнению (3.121):

$$\beta_{upos} = 0.0567 \frac{\omega}{1-\varepsilon} \left(\frac{\rho_y \omega d}{\mu_y}\right)^{0.22} = 0.0561 \frac{16}{1-0.4} \left(\frac{0.8263 \cdot 0.16 \cdot 0.003}{0.9 \cdot 10^{-5}}\right)^{0.22} = 3.48 \text{ cm/c}.$$

Следовательно, коэффициент массопередачи с учетом продольного перемешивания равен:

$$K'_{y} = \left(\frac{1}{K_{y}} + \frac{1}{\beta_{npon}}\right)^{-1} = \left(\frac{1}{0,309} + \frac{1}{3,48}\right)^{-1} = 0.284 \text{ cm/c}$$

Аналогичным образом можно рассчитать коэффициенты массопередачи при других скоростях газа. Результаты расчета приведены ниже (в см/с):

<i>D</i> ,м	w	β	βx	Bapoa	K"	K'4
1,2	16	2,81	0,347	3,48	0,309	0,284
1,6	9	1,94	0,347	1,72	0,294	0,251
2,4	4	1,15	0,347	0,641	0,267	0,188

Профили концентраций в газе. Расчет профилей концентраций т = 1800 с проводим следующим образом. Зададимся значениями

$$\gamma/\alpha = n_{oy}T/n_{oy} = T = \omega c_{u} \left(\tau - z \varepsilon/\omega\right) / \left[\rho_{uuc} X^{*} \left(c_{u}\right) z\right]$$

и определим z (расстояние от входа газа):

$$z = \left[\frac{\omega \tau c_{\pi}}{\rho_{\pi \alpha} X^{*} (c_{\pi})}\right] \left[T + \frac{\varepsilon c_{\pi}}{\rho_{\pi \alpha} X^{*} (c_{\pi})}\right]^{-1}$$

Затем рассчитаем общее число единиц переноса при данном значении $z: n_{ay} = K'_y az/w$. Найдя с помощью табл. 3.3 значение функции $J(\alpha, \gamma)$ при $\alpha = n_{ay}$ и $\gamma = n_{ay} T$, по уравнению (3.125) определим концентрацию в газе при z, соответствующем выбранному T Выполнив расчет для ряда значений T (удобно задаваться значениями T, равными у/ α , приведенными в табл. 3.3). получим зависимость концентрации метана в газе от высоты слоя сорбента.

Пусть w = 16 см/с. Зададимся, например. T = 1. Тогда при $X^*(c_u) = 0.35 \cdot 0.02 = 0.007$ кг/кг угля получим:

$$z = \frac{16 \cdot 1800 \cdot 0.02}{450 \cdot 0.007 \left[1 + 0.4 \cdot 0.02/(450 \cdot 0.007)\right]} = 182 \text{ cm}.$$

Следовательно.

 $n_{0,\mu} = 0.284 \cdot 1200 \cdot 10^{-2} \cdot 182/16 = 38.8.$

В табл. 3.3 найдем значение функции $J(n_{oy}, n_{oy}T)$: при $T = 1, n_{oy} = 30$ она равна 0,5258; при $T = 1, n_{oy} = 40$ она равна 0,5223. Путем линейной интерполяции находим функцию $J(n_{oy}, n_{oy}T)$; при T = 1 и n₂₀ = 38,8 она равна 0.5227. Следовательно, при z = 182 см в соответствии с уравнением (3.125) получим: c = 0,5227 c₁ = 0,5227 · 0,02 = 0,0104 кг/м³ Таким же образом можно найти состав газа при других значениях T и z. Результаты расчета профиля концептраций в газе при $\omega = 16$ см/с приведены ниже:

Т	z, cm ($\tau = 1800$	c)		<i>c / c</i> _n	T	z, cM ($\tau = 1800 c$)		с/сн
0,4	454		96,8	0,0000	1,0	182	38,8	0,5227
0,5	364		77,5	0,0002	1,1	166	35.3	0,6800
0,6	303		64,6	0,0066	1,2	152	32,4	0,7955
0,7	260		55,4	0,0484	1,5	122	25,9	0,9510
0.8	228		48,5	0,1625	2,0	91,3	19,4	0.9957
0, 9	203		43,2	0,3370	2,5	73.1	15,6	0,9995

Таким же образом можно рассчитать профили концентраций при скоростях газа 9 и 4 см/с; они показаны на рис. 3.25.

156

Рис. 3.25. Профили концентрации в газе при т = 1800 с (к примеру 26): $1 - \omega = 4 \text{ см/с}; 2 - \omega = 9 \text{ см/с}; 3 - \omega = 16 \text{ см/с}$

Рис. 3.26. Профиль концентрации в сорбенте при т = 1800 с (1) и выходная кривая при H = 2,6 м (2) (к примеру 27)

Высота слоя сорбента. По условию, концентрация проскока составляет 0,05 с_и. Проведя на графике безразмерных профилей концентраций горизонтальную линию с ординатой 0,05 и найдя точки ее пересечения с профилями концентраций, находим необходимую высоту слоя сорбента при различных скоростях газа (v — объем слоя):

<i>D</i> , м	<i>ш.</i> см/с	Н, м	υ, м ³
1,2	16	2,6	2,94
1,6	9	1,5	3,02
2,4	4	0,72	3,26

В данном случае адсорбцию проводят под давлением. Энергетические затраты на преодоление гидравлического сопротивления слоя должны быть несущественными по сравнению с затратами на сжатие газа. Поэтому оптимальные размеры адсорбера можно определить, исходя из минимального объема сорбента, т. е. при w = 16 см/с. Отметим, что для определения высоты слоя сорбента достаточно найти распределение концентраций по длине слоя в узкой области вблизи концентрации проскока.

Пример 27. Составить материальный баланс по метану для стадии адсорбции рассмотренного в предыдущем примере процесса, приняв D = 1,2 м, H = 2,6 м.

Профиль концентраций в сорбенте и выходная кривая. Для составления материального баланса [уравнение (3.111)] кроме профиля концентраций в газе нужно иметь профиль концентрации в сорбенте при $\tau = \theta$ и выходную кривую (зависимость конечного состава газа от времени). При H = z = 2,6 м число единиц переноса $n_{og} = K'_y az/w = 0.284 \cdot 1200 \cdot 10^{-2}2,6/0,16 = 55,38$. Задаваясь рядом значений параметра *T*, найдем соответствующие им значения т по уравнению

$$\tau = z \left[T \rho_{\text{Hac}} X^* (c_{\text{H}}) + \varepsilon c_{\text{H}} \right] / \omega c_{\text{H}}.$$

Затем с помощью табл. 3.3 определим значения функции $J(\alpha, \gamma) = J(n_{oy}, n_{oy}T)$ и по уравнению (3.125) вычислим конечную концентрацию в газе при различных т. Ниже приведены результаты расчетов:

Т	τ, C	с/сн	Ť	τ, c	c/c"
0,4 0,5 0,6	1030 1286 1542	0,0001 0,0014 0,0107	0,7 0,8	1798 2054	0, 048 5 0,1 45 0

Построенная по этим данным выходная кривая показана на рис. 3.26.

Для нахождения профиля концентраций в сорбенте удобнее всего задаваться значениями 1/T; затем, определив соответствующие им значения z и $n_{\alpha y}T$ и найдя значения $J(\alpha, \gamma) = J(n_{\alpha y}T, n_{\alpha y})$, по уравнению (3.125) вычислить концентрацию в сорбенте. Результаты расчетов приведены ниже:

1/T	Т	<i>z</i> , см	n _{oy} T	J (n _{ay} T, n _{ay})	X;(X*(с _н))
0.4	2,5000	73,1	38,91	0,0008	0,9992
0.5	2,0000	91,3	38,90	0,0063	0,9937
0.6	1,6670	110	38,89	0,0278	0,9722
0,7	1,4290	128	38,88	0,0848	0,9152
0.8	1.2500	146	38.87	0,1925	0,8075
0,9	1,1110	164	38,86	0,3470	0,6530
1.0	1,0000	182	38,85	0,5227	0,4773
1,1	0.9091	201	38,84	0,6863	0,3137
1,2	0,8333	219	38,83	0,8144	0,1856
1,3	0,7692	237	38,82	0,9007	0,0993
1.4	0.7143	255	38.81	0,9516	0,0484
1,5	0,6667	273	38,80	0,9783	0,0217
1.6	0.6250	291	38.79	0,9910	0.0090

Полученный профиль концентрации показан на рис. 3.26.

Материальный баланс. Вычисление входящих в уравнение (3.111) интегралов, равных площадям под соответствующими кривыми на рис. 3.25 и 3.26, дает:

$$\int_{0}^{\theta} \left(\frac{c}{c_{\rm H}}\right) d\tau = 9,14 \text{ c}; \qquad \int_{0}^{H} \left[\frac{X}{X^{*}(c_{\rm H})}\right] dz = 1,82 \text{ M}; \qquad \int_{0}^{H} \left(\frac{c}{c_{\rm H}}\right) dz = 1,86 \text{ M}.$$

Поскольку поперечное сечение аппарата $S = \pi D^2/4 = 3,14 \cdot 1,2^2/4 = 1,311$ м², то количество метана, уносимого из аппарата очищенным газом, составит:

$$wSc_{H}\int_{0}^{\theta}\left(\frac{c}{c_{H}}\right)d\tau = 0.16 \cdot 1.311 \cdot 0.02 \cdot 9.14 = 0.033$$
 Kr

Количество метана, поглощенного углем, равно:

$$\rho_{\text{HBC}}SX^* (c_n) \int_0^H \left[\frac{X}{X^* (c_n)}\right] dz = 450 \cdot 1,311 \cdot 0,007 \cdot 1,82 = 6,47 \text{ kg}.$$

Количество метана, оставшегося внутри аппарата в газовой фазе после завершения стадии адсорбции, составит

$$\varepsilon Sc_{\mu} \int_{0}^{H} \left(\frac{c}{c_{\mu}}\right) dz = 0.4 \cdot 1.311 \cdot 0.02 \cdot 1.86 = 0.017 \text{ kr}.$$

Таким образом, количество поступившего в аппарат метана должно быть равно 6,47+0,017+ +0,033=6,52 кг. Это значение можно найти и другим способом:

 $wSc_n 0 = 0, 16 \cdot 1, 131 \cdot 0, 02 \cdot 1800 = 6,52$ Kg.

Из материального баланса следует, что средний расход газа на выходе из адсорбера составит: 542 — (6,47 + 0,017) 2 = 529 кг/ч.

Пример 28. В процессе адсорбции, рассмотренном в примерах 26 и 27, регенерацию сорбента предполагается проводить при давлении 0,1 МПа и температуре 25 °С за счет рециркуляции части очищенного водорода. Определить расход водорода на регенерацию угля при продолжительности десорбции 1800 с, если максимальное содержание метана в сорбенте после регенерации должно составлять 0,00035 кг/кг угля. Считать, что при давлении 0,1 МПа применимо то же уравнение изотермы адсорбции.

Эквивалентная толщина насыщенного сорбента. После завершения стадии адсорбции концентрация в сорбенте обычно распределена неравномерно. Так, для рассматриваемого процесса (см. рис. 3.26) лишь слой угля толщиной около 1 м насыщен метаном; в остальной части слоя концентрация метана меньше предельной. Существующие же решения для расчета процессов адсорбции, в частности уравнения (3.125) и (3.128) для линейной изотермы адсорбции, справедливы при однородном начальном заполнении сорбента. Для приближенного использования уравнений (3.128) будем рассчитывать процесс регенерации, приняв, что все поглощенное на стадии адсорбции вещество равномерно распределено в слое толщиной *H*, при концентрации насыщения. Величнну *H*, можно рассчитать на основе материального баланса по уравнению

$$H_{s} = \int_{0}^{H} \left[\frac{X_{\tau=0}}{X^{*}(c_{H})} \right] dz \approx \omega c_{H} \theta / \left[\rho_{Hac} X^{*}(c_{H}) \right]$$

Как и для адсорбции, проведем сравнительный расчет десорбции в аппаратах диаметром 1,2; 1,6 и 2,4 м. Эквивалентная высота слоя сорбента определяется площадью под безразмерным конечным профилем концентрации в сорбенте. Для абсорбера диаметром 1,2 м эта площадь, найденная в примере 27, равна 1,82 м. Для D=1,6 м эквивалентная толщина слоя составит

$$H_{9} = \frac{wc_{H}\theta}{\rho_{Hac}X^{*}(c_{H})} = \frac{0.09 \cdot 0.02 \cdot 1800}{450 \cdot 0.007} = 1.03 \text{ M}.$$

Таким же образом для D = 2,4 м найдем $H_3 = 0,457$ м.

Используемый при решении данной задачи приближенный метод допускает, что перед началом десорбции часть слоя высотой H_s имеет начальную концентрацию метана $X_n = X^*$ (c_n) = =0,007 кг/кг угля, а остальная часть слоя не содержит метана. Определим требуемую для десорбции скорость газа, при которой максимальная концентрация в сорбенте в месте выхода газа через 1800 с составит 0,00035 кг/кг угля, т. е. 0,05 X_n .

Скорость газа при десорбции. Из уравнения (3.128) следует: для того чтобы найти скорость газа, при которой в конце десорбции ($\tau = 1800$ с) максимальная (т. е. при $z = H_s$) концентрацня в сорбенте составит 0,05 X_{H} , надо подобрать значение w, которому соответствуют такие n_{oy} и T, что $J(n_{oy}T, n_{oy})$ равно 0,05. Проще всего это сделать графически. Сначала найдем зависимость n_{oy} от значений 1/T, для которых $J(n_{oy}T, n_{oy}) = 0,05$. Для этого зададимся рядом значений $n_{oy}T$ и путем линейной интерполяции найдем в табл. За значения 1/T, при которых $J(n_{oy}T, n_{oy}) = 0,05.3$ ная их, определим значения T и n_{oy} . Результаты расчетов приведены ниже:

n _{o y} T	1/T	Т	n _{oy}	$n_{oy}T$	1/T	T	n _{oy}
80	0,7373	1,356	59,0	40	0,6444	1,552	25,8
60	0,7097	1,409	42,6	30	0,6040	1,655	18,1
50	0,6833	1,463	34,2				

Построив зависимость n_{oy} от значений 1/T, при которых максимальная концентрация в сорбенте после завершения десорбции равна $0,05X_{*}$ (рис. 3.27), найдем действительную зависимость мсжду параметром T и общим числом единиц переноса. Пусть D=1,2 м, 1/T=0.75, T=1.333. Тогда из определения параметра T для десорбции следует:

$$\omega = \frac{H_{s} \left[T \rho_{Hac} X_{u} + \varepsilon c^{*} \left(X_{u} \right) \right]}{\tau c^{*} \left(X_{u} \right)} = \frac{1.82 \left(1.333 \cdot 450 \cdot 0.007 + 0.4 \cdot 0.02 \right)}{1800 \cdot 0.02} = 0.213 \text{ M/c}.$$

Найдем коэффициент массопередачи при этой скорости газа. Десорбция проводится при давлении, в 10 раз меньшем давления адсорбции. Поэтому плотность газа при десорбции можно считать в десять раз меньшей, а коэффициент диффузии — в десять раз большим, чем при адсорбции. Следовательно, имеем: $\rho_y = 0.08263 \text{ кг/m}^3$, $D_y = 0.735 \text{ см}^2/\text{с}$. Расчет внутреннего коэффициента массоотдачи по уравнениям (3.119) и (3.114) дает: $\beta_x = \beta_n = 0.749 \text{ см/с}$. Определив из уравнений (3.118) и (3.120) внешний коэффициент массоотдачи ($\beta_y = 7.73 \text{ см/с}$) и поправку для учета продольного перемешивания ($\beta_{npoa} = 2.98 \text{ см/с}$), найдем коэффициент массопередачи при скорости газа 0.213 м/с: $K'_y = 0.556 \text{ см/с}$. Следовательно, при 1/T = 0.75 общее число единиц переноса для всего слоя равно:

$$n_{o\mu} = K'_{\mu} a H_{\mu} / \omega = 0.556 \cdot 1200 \cdot 10^{-2} \cdot 182/21.3 = 57$$

Ниже приведены результаты расчетов noy при других значениях 1/Т и D:

<i>D</i> , м	И		n _{оу} при 1,	/Т, равном	
	П, М	0,6	0,65	0,7	0,75
1,2	1,82		51,3	53,6	57,0
1,6	1,02	—	42,9	44,4	46,7
2,4	0,457	27,4	28.2	29,0	_

Наносим зависимость n_{oy} от 1/T для каждого диаметра аппарата на график, приведенный на рис. 3.27. Точки пересечения этих зависимостей с кривой, для которой $J(n_{oy}T, n_{oy}) = 0.05$, определяют значения T и соответствующие им скорости:

D , м	1/T	Т	<i>w</i> ,см/с
1,2	0,73	1,37	21,9
1,6	0,713	1,40	12,64
2,4	0,656	1,52	6,09

Рис. 3.27 Расчет скорости газа для процесса десорбции (к примеру 28): I - 3 – зависимость n_{uv} от 1/T (I - D = 1,2 м; 2 - D = 1.6 м; 3 - D = 2,4 м); $4 - X/X_u = 0.05$

Рис. 3.28. Профили концентрации в газе (к примерам 29, 30): 1 по уравнению (3.133); 2 -- по уравнению (3.144)

Расход водорода на десорбцию. Массовый расход газа после адсорбции в среднем равен 529 кг/ч (пример 27). Так как плотность газа на стадии десорбции в 10 раз меньше, то при одной и той же скорости газа массовый расход будет в 10 раз меньше. Следовательно, расход водорода на десорбцию для аппарата диаметром 1.2 м составит: 529.0.1.21.9/16 = 72.4 кг/ч (где 21.9 и 16 см/с — скорости газа на стадиях десорбции и адсорбции). В аппаратах диаметром 1.6 и 2.4 м для десорбции потребуется соответственно 74.3 и 80.5 кг/ч водорода. Таким образом, расчет стадии десорбции подтверждает преимущество использования аппарата диаметром 1.2 м (ввиду большего коэффициента массопередачи).

В примерах 26—28 рассчитана адсорбционная установка, состоящая из двух адсорберов и работающая при длительности стадий адсорбции и десорбции 0,5 ч. Расчет следует повторить при другой продолжительности циклов адсорбции и десорбции и выбрать оптимальный вариант.

Постоянный фактор разделения. Фактором разделения *г* для адсорбции называют [8] отношение

$$r = \frac{(c/c_{\rm u}) [1 - X/X^* (c_{\rm u})]}{(1 - c/c_{\rm u}) X/X^* (c_{\rm u})}.$$
(3.129)

Для многих адсорбционных систем равновесные зависимости между составами фаз можно представить в виде

$$\frac{X}{X^*(c_n)} = \frac{c/c_n}{c/c_n + r(1 - c/c_n)}.$$
(3.130)

К таким системам относятся, в частности, системы, в которых равновесие описывается уравнением изотермы Лэнгмюра:

$$X = fc/(1+bc). \tag{3.131}$$

Для этих систем фактор разделения равен:

$$r = 1/(1 + bc_{\rm w}). \tag{3.132}$$

При *г* == const зависимость концентраций от длины в слое сорбента и от времени выражается для адсорбции следующими уравнениями [7, 8]

$$\frac{c}{c_{w}} = \frac{J(n_{oy}r, n_{oy}T)}{J(n_{oy}r, n_{oy}T) + \varphi \left[1 - J(n_{oy}, n_{oy}Tr)\right]};$$
(3.133)

$$\frac{X}{X^*(c_{\rm H})} = \frac{1 - J(n_{\rm oy}T, n_{\rm oy}r)}{J(n_{\rm oy}r, n_{\rm oy}T) + \varphi[1 - J(n_{\rm oy}, n_{\rm oy}Tr)]}$$

где $\varphi = \exp \{n_{oy}(1-r)(1-T)\}.$

В этих уравнениях параметр T определяется так же, как в уравнении (3.125), а в число единиц переноса n_{oy} вместо коэффициента массопередачи нужно подставить так называемый кинетический коэффициент K, приближенно равный [28]:

$$K = 2K'_{y}/(r+1)$$
 при 0,2< $r < 1$;
 $K = K'_{y}/\sqrt{r}$ при $r \ge 1$.
(3.134)

Для десорбции уравнения (3.129) — (3.133) имеют следующий вид:

$$r = \frac{\left[1 - c/c^{*}(X_{n})\right] X/X_{n}}{\left(1 - X/X_{n}\right) c/c^{*}(X_{n})};$$
(3.135)

$$\frac{X}{X_{\rm H}} = \frac{rc/c^* (X_{\rm H})}{1 + (r-1) c/c^* (X_{\rm H})}; \qquad (3.136)$$

$$r = 1 + bc^*(X_n); (3.137)$$

$$\frac{c}{c^{*}(X_{H})} = \frac{1 - J(n_{oy}r, n_{oy}T)}{1 - J(n_{oy}r, n_{oy}T) + \varphi J(n_{oy}, n_{oy}Tr)};$$

$$\frac{X}{X_{H}} = \frac{J(n_{oy}T, n_{oy}r)}{1 - J(n_{oy}r, n_{oy}T) + \varphi J(n_{oy}, n_{oy}Tr)}$$
(3.138)

Пример 29. Определить толщину слоя сорбента для очистки водорода от метана адсорбцией при давлении 1 МПа н температуре 25 °C, если начальная концентрация метана $y_{\mu} = 0.0309$ мол. доли (0,2 кг/м³ при условиях в адсорбере). Фиктивную скорость газа принять равной 9 см/с, продолжительность адсорбции 1800 с. концентрацию проскока 0,05 у... Свойства активированного угля и уравнение изотермы адсорбции даны в примерах 23 и 24. При концентрациях метана до 0,2 кг/м³ изотерма адсорбции сильно отличается от прямой

При концентрациях метана до 0,2 кг/м³ изотерма адсорбции сильно отличается от прямой линии (см. рис. 3.23), поэтому уравнения для линейной изотермы адсорбции неприменимы. Но равновесие в данном случае описывается изотермой Лэнгмюра и, следовательно, для расчета адсорбции можно использовать уравнение (3.133). Так как уравнение изотермы адсорбции имеет вид

$$X^* = 0.375c/(1+8c),$$

то равновесная концентрация в угле при начальной концентрации метана $c_{\mu} = 0.2$ кг/м³ составит X^* (c_{μ}) = 0.02885 кг/кг угля (см. пример 24), а фактор разделения

$$r = 1/(1 + bc_{H}) = 1/(1 + 8 \cdot 0.2) = 0.3846$$

Коэффициент массопередачи для данного сорбента при скорости газа 9 см/с рассчитан в примере 26 (незначительное увеличение плотности газа при большей концентрации метана малосущественно): $K'_{\mu} = 0.251$ см/с. Следовательно, в соответствии с уравнением (3.134), кинетический коэффициент K равен:

$$K = 2K'_y/(r+1) = 2 \cdot 0.251/(0.3846+1) = 0.362$$
 cm/c.

Профиль концентрации в газе. Для расчета профиля концентраций в газе при $\tau = 1800$ с будем задаваться расстоянием от входа газа z и последовательно рассчитывать все параметры, входящие в уравнение (3.133). Из этого уравнения определим концентрацию метана в газе при заданном расстоянии z. Пусть, например, z = 250 см. Тогда

$$n_{oy} = \frac{Kaz}{w} = \frac{0.362 \cdot 1200 \cdot 10^{-2} \cdot 250}{9} = 120.7;$$

$$T = \frac{wc_{\text{H}}}{\rho_{\text{HBC}} X^* (c_{\text{H}}) z} = \frac{9 \cdot 0.2 (1800 - 0.4 \cdot 250/9)}{450 \cdot 0.02885 \cdot 250} = 0.9921;$$

$$n_{oy} r = 120.7 \cdot 0.3846 = 46.42; \quad n_{oy} T = 120.7 \cdot 0.9921 = 119.7.$$

6 Под ред. Ю. И. Дытнерского

При таких больших значениях аргументов функцию $J(\alpha, \gamma) = J(46,42; 119,7)$ можно найти по уравнению (3.127):

$$J(\alpha, \gamma) = \frac{1}{2} \left\{ 1 - \text{erf} \left(\sqrt{\alpha} - \sqrt{\gamma} \right) \right\} = \frac{1}{2} \left\{ 1 - \text{erf} \left(\sqrt{46, 42} - \sqrt{119, 7} \right) \right\} =$$
$$= \frac{1}{2} \left\{ 1 - \text{erf} \left(-4, 128 \right) \right\} = \frac{1}{2} \left[1 + \text{erf} \left(4, 128 \right) \right]$$

Поскольку величина erf (4,128) близка к единице [27], то и функция $J(n_{oy}r, n_{oy}T)$ также равна 1. Далее рассчитаем $n_{oy}Tr = 120,7\cdot0,9921\cdot0,3846 = 46,05$ и оценим по уравнению (3.127) функцию

$$I(n_{oy}, n_{oy}Tr) = \frac{1}{2} \left[1 - \text{erf} \left(\sqrt{120.7} - \sqrt{46.05} \right) \right] \approx 0.$$

Ввиду близости этой функции к нулю уравнение (3.133) упрощается и принимает вид:

$$\frac{c}{c_{\text{H}}} = \frac{1}{1 + \exp[n_{oy}(1-r)(1-T)]} = \frac{1}{1 + \exp[120.7(1-0.3846)(1-0.9921)]} = 0.3577.$$

Результаты расчета безразмерного отношения с/с, при других значениях г приведены ниже:

<i>z</i> , см	n _{oy}	Т	с/сн	2, CM	n _{oy}	Т	с/с"
230	111,0	1,0789	0,9955	255	123,1	0,9726	0,1111
235	113,4	1,0558	0.9801	260	125.5	0.9537	0.0273
240	115,8	1,0337	0,9171	265	127,9	0,9356	0,0062
245	118,2	1.0125	0,7128	270	130.3	0.9182	0.0014
250	120,7	0,9921	0.3577				

Профиль концентрации в газе при т=1800 с для рассматриваемого процесса показан на рис. 3.28, из которого видио, что необходимая высота слоя угля должна быть равна 2,57 м.

Постоянная скорость движения фронта. Широко распространен приближенный метод расчета, основанный на предположении постоянства скорости перемещения со временем всех точек профиля концентрации (фронта адсорбции или десорбции). Метод применим к адсорбции при выпуклой кривой равновесия и к десорбции при вогнутой равновесной кривой. В этом случае допущение о постоянной скорости движения фронта соблюдается достаточно точно. При адсорбции скорость фронта и в случае нулевой начальной концентрации сорбента определяется по уравнению

$$\mu = \frac{\psi c_n}{\mathfrak{e} c_n + \rho_{\text{Hac}} X^* (c_n)} \,. \tag{3.139}$$

Для десорбции (при нулевой начальной концентрации десорбирующей среды) справедлива зависимость

$$u = \frac{\omega c^* (X_{\rm H})}{\varepsilon c^* (X_{\rm H}) + \rho_{\rm Hsc} X_{\rm H}}.$$
(3.140)

При постоянной скорости фронта безразмерные профили концентраций для внешней среды и сорбента должны совпадать, т. е. должны соблюдаться условия:

$$c/c_{\mu} = X/X^{*}(c_{\mu})$$
 (при адсорбции);
 $c/c^{*}(X_{\mu}) = X/X_{\mu}$ (при десорбции). (3.141)

Известен ряд способов применения данного метода расчета. Один из них [7] заключается в следующем. Принимают, что при данном времени т координату середины фронта z_{1/2}, в которой безразмерные концентрации фаз равны 0,5, можно найти из уравнения

$$z_{1/2} = u\tau.$$
 (3.142)

Для других значений *z* концентрации находят с помощью дифференциального уравнения:

$$\left[\frac{\rho_{\text{nac}}X^{*}(c_{\text{n}})}{c_{\text{n}}}\right]\frac{\partial c}{\partial \tau'} = K'_{y}a \ [c-c^{*}(X_{\text{n}})], \qquad (3.143)$$

в котором $\tau' = \tau - z/u$. Это уравнение является следствием дифференциального уравнения материального баланса и уравнения (3.115) для скорости массопередачи. Оно написано применительно к адсорбции. Для десорбции необходимо заменить отношение $X^*(c_u)/c_u$ на $X_u/c^*(X_u)$. При использовании уравнения (3.143) в него подставляют уравнение изотермы адсорбции и проводят интегрирование по *c* в пределах от 0,5*c*_u до *c* и по τ' — в пределах от $\tau - z_{1/2}/u$ до $\tau - z/u$ при соблюдении условий (3.141). В случае, если равновесие описывается изотермой Лэнгмюра (3.131), интегрирование приводит к следующей зависимости:

$$\frac{1}{bc_{\rm H}}\ln\frac{c/c_{\rm H}}{1-c/c_{\rm H}} + \ln\frac{2c}{c_{\rm H}} = \frac{K'_{y}ac_{\rm H}}{\rho_{\rm Hs} X^{*}(c_{\rm H}) u} (z_{1/2} - z).$$
(3.144)

Если данный метод применяют для расчета выходных кривых при заданной высоте слоя H, то время $\tau_{1/2}$, когда безразмерные концентрации фаз равны 0,5, находят из уравнения

$$\tau_{1/2} = H/u.$$
 (3.145)

Значения концентраций в другие моменты времени могут быть найдены интегрированием уравнения (3.143) по *с* в пределах от $0,5c_{\rm H}$ до *с* и по τ' — в пределах от $(\tau_{1/2} - H/u)$ до $(\tau - H/u)$. Для изотерм Лэнгмюра результатом такого интегрирования является уравнение (3.144), в котором выражение $(z_{1/2} - z)$ заменено на $(\tau - \tau_{1/2})$

Пример 30. Рассчитать для условий примера 29 высоту слоя сорбента, считая скорость движения фронта адсорбции постоянной.

Скорость фронта. Из уравнения (3.139) находим:

$$u = \frac{wc_{\text{H}}}{\epsilon c_{\text{H}} + \rho_{\text{Hac}} X^* (c_{\text{H}})} = \frac{9 \cdot 0.2}{0.4 \cdot 0.2 + 450 \cdot 0.02865} = 0.1378 \text{ cm/c}.$$

Следовательно, $c/c_{\rm B} = 0.5$ при $z = z_{1/2} = u\tau = 0.1378 \cdot 1800 = 248$ см.

Профиль концентраций в газе. Так как равновесие описывается изотермой Лэнгмюра $[1/(bc_u) = 1/(8 \cdot 0,2) = 0.625]$, проводим расчет по уравнению (3.144). Пусть, например, $c/c_u = 0,3$. Тогда левая часть этого уравнения равна:

$$0,625 \ln\left(\frac{c/c_{\rm H}}{1-c/c_{\rm H}}\right) + \ln\left(\frac{2c}{c_{\rm H}}\right) = 0,625 \ln\left(\frac{0,3}{1-0,3}\right) + \ln\left(2 \cdot 0,3\right) = -1,04$$

Следовательно,

$$z = z_{1/2} - (-1,04) \frac{\mu \rho_{\text{Hac}} X^* (c_{\text{H}})}{K_{\mu} a c_{\text{H}}} = 248 - (-1,04) \frac{0.1378 \cdot 450 \cdot 0.02885}{0.251 \cdot 1200 \cdot 10^{-2} \cdot 0.2} = 251 \text{ cm}.$$

Ниже приведены результаты расчета профиля концентраций в газе:

С/Сн	0,98	0,95	0,9	0,7	0,5	0,3	0,1	0,05	0,02
z, CM	239	241	242	245	248	251	257	260	265

Полученный профиль концентрации показан на рис. 3.28 пунктиром.

Как видим, этот метод расчета дает H = 2,6 м, что очень близко к высоте слоя (H = 2,57 м), полученной в предыдущем примере. Профили концентраций, рассчитанные двумя методами, также практически совпадают. Вообще точность расчета, основанного на допущении постоянной скорости фронта, тем выше, чем более выпукла кривая равновесия (чем меньше фактор разделения для адсорбции), чем выше скорость массопереноса и чем больше высота слоя. Требуемая высота слоя для данного процесса лишь немного превышает минимальную высоту, рассчитанную в примере 16 (248 см).

Расчет толщины слоя сорбента и длительности стадий адсорбции и десорбции с помощью профилей концентрации и выходных кривых довольно трудоемок. Поэтому (а также ввиду отсутствия данных для определения внутреннего сопротивления) расчет установок с неподвижным слоем твердой фазы часто проводят по эмпирическим зависимостям, полученным для конкретных адсорбционных систем (см. гл. 8).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Касаткин А. Г. Основные процессы и аппараты химической технологии. М.: Химия, 1973. 754 с. 2. Справочник по растворимости. Т. 2. М.: Химия, 1963. 1960 с. 3. Рамм В. М. Абсорбция газов. М.: Химия, 1976. 655 с.

- 4. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1987. 575 с.
- 5. Рид Р., Прансниц Дж., Шервид Т Свойства газов и жидкостей: Пер. с англ. Л.: Химия, 1982. 592 c.
- 6. Варгафтик В. Д. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972. 720 c.
- Шервуд Т., Пигфорд Р., Уилки Ч. Массопередача: Пер. с англ. М.: Химия, 1982. 696 с.
- 8. Перри Д. Справочник инженера химика. Т. 2: Пер. с англ. Л.: Химия, 1974. 448 с.
- 9. Whitt F. R. Brit. Chem. Eng. 1959. V 4. N 3. P. 395-397.
- 10. Последние достижения в области жидкостной экстракции: Пер. с англ./Под ред. К. Хансона. М.: Химия, 1974. 448 с.
- 11. Coulson J. M., Richardson J. F., Sinnott R. K. Chem. Eng. Design. Pergamon Press. 1983. V. 6. 838 p.
- 12. Справочник химика. Т. 1-6. Л.: Химия, 1966.
- 13. Wilke C. R., Pin Chang.//AIChE J. 1955. V 1. N 2. P. 264-278.
- 14. Каган С. З., Ковалев Ю. Н., Ильин В. И.//ЖПХ, 1967. Т. 40. № 11. С. 2478—2481. 15. Laddha G. S., Degaleesan T E. Transport phenomena in liquid extraction. New Delhi, 1976. 487 p.
- 16. Коган В. Б., Фридман В. М., Кафаров В. В. Равновесие между жидкостью и паром. Т. 1—2. М.: Наука, 1966.
- 17. Белоусов В. П., Марачевский А. Г., Панов М. Ю. Тепловые свойства растворов неэлектролитов. Л.: Химия, 1981. 264 с.
- 18. Тарелки колпачковые стальных колонных аппаратов: ОСТ 26-01-66-81.
- 19. Fair J R.//Petrochem. Eng. 1961. V. 33 (Sept). P. 210-216.
- 20. Г. Корн, Т Корн. Справочник по математике. М.: Наука, 1977. 831 с.
- 21. Hengstebeck R. J Distillation: principles and design procedures, Reinhold, N-Y, 1961.
- 22. Холланд Ч. Д. Многокомпонентная ректификация: Пер. с англ. М.: Химия, 1969. 347 с.
- 23. Праусниц Д. и др. Машинный расчет парожидкостного равновесия многокомпонентных смесей: Пер. с англ. М.: Химия, 1971. 248 с. 24. Hirata M., Ohe S., Vagahama K. Computer Aided Data Book of Vapor-liquid equilibria.
- Elsevier, 1975 (цит. по [11]). 25. Petrovich L., Thodos G.//Ind. Eng. Chem. Fundamentals, 1968. V 7. N 3. P. 274—280.
- 26. Hsiung T H., Todos G.//Int. J. Heat Mass Transfer 1977. V 20. N 3. P. 331-336.
- 27. Сегал Б. И., Семендлев К. А. Пятизначные математические таблицы. М.: Физматгиз, 1962.
- 28. Basmadjan D.//Ind. Eng. Chem. Process Design and Development. 1980. V 19. N 1. P. 129-137

ГЛАВА 4

РАСЧЕТ ВЫПАРНОЙ УСТАНОВКИ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- c теплоемкость, $Дж/(кг \cdot K)$;
- d диаметр, м;
- D расход греющего пара, кг/с;
- F поверхность теплопередачи, м²;
- G расход, кг/с;
- g vскорение свободного падения, м/c²;
- H высота, м;
- I энтальпия жидкости и пара, кДж/кг;
- K коэффициент теплопередачи, $BT/(M^2 \cdot K)$;
- Р давление, МПа;
- *Q* тепловая нагрузка, кВт;
- q удельная тепловая нагрузка, Вт/м²;
- r теплота парообразования, кДж/кг;
- *t*, *T* температура, град,
- w, W производительность по испаряемой воде, кг/с;

- х концентрация, % (масс.).
- α коэффициент теплоотдачи, Вт/(м²·K),
- λ теплопроводность, **В**т/(м·К);
- µ вязкость, Па·с;
- ρ плотность, кг/м³;
- σ поверхностное натяжение, Н/м;
- Re критерий Рейнольдса;
- Nu критерий Нуссельта;
- Рг критерий Прандтля.

Индексы:

- 1, 2, 3 первый, второй, третий корпус выпарной установки;
 - в вода:
 - вп вторичный пар;
 - r греющий пар;
 - ж жидкая фаза;
 - к конечный параметр;
 - н начальный параметр;
 - ср среднее значение:
 - ст стенка.

введение

В химической и смежной с ней отраслях иромышленности жидкие смеси, концентрированис которых осуществляется выпариванием, отличаются большим разнообразием как физических параметров (вязкость, плотность, температура кипения, величина критического теплового потока и др.), так и других характеристик (кристаллизующиеся, пенящиеся, нетермостойкие растворы и др.). Свойства смесей определяют основные требования к условиям проведения процесса (вакуум-выпаривание, прямо- и противоточные, одно- и многокорпусные выпарные установки), а также к конструкциям выпарных аппаратов.

Такое разнообразие требований вызывает определенные сложности при правильном выборе схемы выпарной установки, типа аппарата, числа ступеней в многокорпусной выпарной установке. В общем случае такой выбор является задачей оптимального поиска и выполняется техникоэкономическим сравнением различных вариантов с использованием ЭВМ.

В приведенном ниже типовом примере расчета трехкорпусной установки, состоящей из выпарных аппаратов с естественной циркуляцией (с соосной камерой) и кипением раствора

Рис. 4.1. Принципнальная схема трехкорпусной выпарной установки:

1 — емкость исходного раствора; 2, 10 — насосы; 3 — теплообменник-подогреватель: 4—6 — выпарные аппараты; 7 — барометрический конденсатор; 8 — вакуум-насос; 9 — гидрозатвор; 11 — емкость упаренного раствора; 12 — конденсатоотводчик

в трубах, даны также рекомендации по расчету выпарных аппаратов некоторых других типов: с принудительной циркуляцией, вынесенной зоной кипения, пленочных.

Принципиальная схема трехкорпусной выпарной установки показана на рис. 4.1. Исходный разбавленный раствор из промежуточной емкости / центробежным насосом 2 подается в теплообменник 3 (где подогревается до температуры, близкой к температуре кипения), а затем — в первый корпус 4 выпарной установки. Предварительный подогрев раствора повышает интенсивность кипения в выпарном аппарате 4.

Первый корпус обогревается свежим водяным паром. Вторичный пар, образующийся при концентрировании раствора в первом корпусе, направляется в качестве греющего во второй корпус 5. Сюда же поступает частично сконцентрированный раствор из 1-го корпуса. Аналогично третий корпус 6 обогревается вторичным паром второго и в нем производится концентрирование раствора, поступившего из второго корпуса.

Самопроизвольный переток раствора и вторичного пара в следующие корпуса возможен благодаря общему перепаду давлений, возникающему в результате создания вакуума конденсацией вторичного пара последнего корпуса в барометрическом конденсаторе смешения 7 (где заданное давление поддерживается подачей охлаждающей воды и отсосом неконденсирующихся газов вакуум-насосом 8). Смесь охлаждающей воды и конденсата выводится из конденсатора при помощи барометрической трубы с гидрозатвором 9. Образующийся в третьем корпусе концентрированный раствор центробежным насосом 10 подается в промежуточную емкость упаренного раствора 11.

Конденсат греющих паров из выпарных аппаратов выводится с помошью конденсатоотводчиков 12.

Задание на проектирование. Спроектировать трехкорпусную выпарную установку для концентрирования $G_{\mu} = 40\ 000\ \text{кг/ч}\ (11,12\ \text{кг/c})$ водного раствора КОН от начальной концентрации $x_{\mu} = 5\ \%$ до конечной $x_{\kappa} = 40\ \%$ при следующих условиях:

- обогрев производится насыщенным водяным паром давлением P₁₁ = 1,079 МПа;
- 2) давление в барометрическом конденсаторе P_{6к}=0,0147 МПа;
- 3) выпарной аппарат тип 1, исполнение 2 (см. Приложение 4.1);
- 4) взаимное направление пара и раствора прямоток;
- 5) отбор экстрапара не производится;
- 6) раствор поступает в первый корпус подогретым до температуры кипения.

4.1. ОПРЕДЕЛЕНИЕ ПОВЕРХНОСТИ ТЕПЛОПЕРЕДАЧИ Выпарных аппаратов

Поверхность теплопередачи каждого корпуса выпарной установки определяют по основному уравнению теплопередачи:

$$F = Q/(K\Delta t_n). \tag{4.1}$$

Для определения тепловых нагрузок Q, коэффициентов теплопередачи K и полезных разностей температур Δt_n необходимо знать распределение упариваемой воды, концентраций растворов и их температур кипения по корпусам. Эти величины находят методом последовательных приближений.

Первое приближение

Производительность установки по выпариваемой воде определяют из уравнения материального баланса:

$$W = G_{\rm H}(1 - x_{\rm H}/x_{\rm K}). \tag{4.2}$$

Подставив, получим:

$$W = 11,12(1-5/40) = 9,72 \text{ kr/c}.$$

4.1.1. Концентрации упариваемого раствора

Распределение концентраций раствора по корпусам установки зависит от соотношения нагрузок по выпариваемой воде в каждом аппарате. В первом приближении на основании практических данных принимают, что производительность по выпариваемой воде распределяется между корпусами в соответствии с соотношением

$$w_1: w_2: w_3 = 1, 0: 1, 1: 1, 2.$$

Тогда

$$w_1 = 1.0 W / (1.0 + 1.1 + 1.2) = 1.0 W / 3.3 = 2.95 \text{ kr/c},$$

 $w_2 = 1.1 W / 3.3 = 3.24 \text{ kr/c};$

$$w_3 = 1,2W/3,3 = 3,53 \text{ kr/c}.$$

Далее рассчитывают концентрации растворов в корпусах:

 $x_1 = G_{\mu}x_{\mu}/(G_{\mu} - \omega_1) = \{1, 12 \cdot 0, 05/(11, 12 - 2, 95) = 0, 068,$ или 6,8 %;

$$x_2 = G_{\mu}x_{\mu}/(G_{\mu} - w_1 - w_2) = 11,12 \cdot 0,05/(11,12 - 2,95 - 3,24) = 0,113,$$
 или 11,3 %;

 $x_3 = G_{\text{H}}x_{\text{H}}/(G_{\text{H}} - w_1 - w_2 - w_3) = 11,12,0,05/(11,12 - 2,95 - 3,24 - 3,53) = 0,4,$ или 40 %.

Концентрация раствора в последнем корпусе x₃ соответствует заданной концентрации упаренного раствора x_к.

4.1.2. Температуры кипения растворов

Общий перепад давлений в установке равен:

 $\Delta P_{ob} = P_{c1} - P_{bx} = 1,079 - 0,0147 = 1,064 \text{ M}\Pi a.$

В первом приближении общий перепад давлений распределяют между корпусами поровну Тогда давления греющих паров в корпусах (в МПа) равны:

 $P_{r1} = 1.079;$ $P_{r2} = P_{r1} - \Delta P_{o6}/3 = 1.079 - 1.064/3 = 0.7242;$ $P_{r3} = P_{r2} - \Delta P_{o6}/3 = 0.7242 - 1.064/3 = 0.3694.$

Давление пара в барометрическом конденсаторе

$$P_{\text{GK}} = P_{\text{r}3} - \Delta P_{\text{od}}/3 = 0,3694 - 1,064/3 = 0,0147 \text{ M}\Pi a,$$

что соответствует заданному значению Рок.

По давлениям паров находим их температуры и энтальпии [1]

<i>Р</i> , МПа	<i>t</i> , °C	I,кДж/кг
$P_{r1} = 1,079$	$t_{\rm rl} = 183,2$	$I_1 = 2787$
$P_{r2} = 0,7242$	$t_{r2} = 166.3$	$I_2 = 2772$
$P_{r3} = 0,3694$	$t_{r3} = 140,6$	$I_3 = 2741$
$P_{6s} = 0.0147$	$t_{0k} = 53.6$	/ _{6x} == 2596

При определении температуры кипения растворов в аппаратах исходят из следующих допущений. Распределение концентраций раствора в выпарном аппарате с интенсивной циркуляцией практически соответствует модели идеального перемешивания. Поэтому концентрацию кипящего раствора принимают равной конечной в данном корпусе и, следовательно, температуру кипения раствора определяют при конечной концентрации.

Изменение температуры кипения по высоте кипятильных труб происходит вследствие изменения гидростатического давления столба жидкости. Температуру кипения раствора в корпусе принимают соответствующей температуре кипения в среднем слое жидкости. Таким образом, температура кипения раствора в корпусе отличается от температуры греющего пара в последующем корпусе на сумму температурных потерь $\sum \Delta$ от температурной (Δ'), гидростатической (Δ'') и гидродинамической (Δ''') депрессий ($\sum \Delta = \Delta' + \Delta'' + \Delta'''$).

Гидродинамическая депрессия обусловлена потерей давления пара на преодоление гидравлических сопротивлений трубопроводов при переходе из корпуса в корпус. Обычно в расчетах принимают $\Delta''' = 1,0-1,5$ град на корпус. Примем для каждого корпуса $\Delta''' = 1$ град. Тогда температуры вторичных паров в корпусах (в °C) равны:

$$l_{\text{Bn}1} = l_{\text{r}2} + \Delta_1'' = 166,3 + 1,0 = 167,3;$$

$$t_{\text{Bn}2} = t_{\text{r}2} + \Delta_2^{\text{m}} = 140.6 + 1.0 = 141.6$$
$$t_{\text{Bn}3} = t_{\text{GK}} + \Delta_3^{\text{m}} = 53.6 + 1.0 = 54.6.$$

Сумма гидродинамических депрессий

$$\sum \Delta''' = \Delta'''_1 + \Delta''_2 + \Delta''_3 = 1 + 1 + 1 = 3 \text{°C}.$$

По температурам вторичных паров определим их давления. Они равны соответственно (в МПа): $P_{вп1} = 0.745$; $P_{вп2} = 0.378$; $P_{вп3} = 0.0154$.

Гидростатическая депрессия обусловлена разностью давлений в среднем слое кипящего раствора и на его поверхности. Давление в среднем слое кипящего раствора P_{cp} каждого корпуса определяется по уравнению

$$P_{\rm cp} = P_{\rm BR} + \rho g H \left(1 - \epsilon\right) / 2, \tag{4.3}$$

где H — высота кипятильных труб в аппарате, м; ρ — плотность кипящего раствора, кг/м³; ε — паронаполнение (объемная доля пара в кипящем растворе), м³/м³

Для выбора значения H необходимо ориентировочно оценить поверхность теплопередачи выпарного аппарата F_{op} . При кипении водных растворов можно принять удельную тепловую нагрузку аппаратов с естественной циркуляцией $q = 20\ 000 - 50\ 000\ {\rm Br/m^2}$, аппаратов с принудительной циркуляцией $q = 40\ 000 - 80\ 000\ {\rm Br/m^2}$. Примем $q = 40\ 000\ {\rm Br/m^2}$. Тогда поверхность теплопередачи 1-го корпуса ориентировочно равна:

$$F_{\rm op} = \frac{Q}{q} = \frac{w_1 r_1}{q} = \frac{2,95 \cdot 2068 \cdot 10^3}{40\,000} = 152 \,\,{\rm m}^2,$$

где r₁ — теплота парообразования вторичного пара, Дж/кг.

По ГОСТ 11987—81 [2] (см. Приложение 4.2) трубчатые аппараты с естественной циркуляцией и вынесенной греющей камерой (тип l, исполнение 2) состоят из кипятильных труб высотой 4 и 5 м при диаметре $d_{\mu} = 38$ мм и толщине стенки $\delta_{c\tau} = 2$ мм. Примем высоту кипятильных труб H = 4 м.

При пузырьковом (ядерном) режиме кипения паронаполнение составляет $\varepsilon = 0.4-0.6$. Примем $\varepsilon = 0.5$. Плотность водных растворов, в том числе раствора КОН [3] (см. Приложение 4.3), при температуре 15 °C и соответствующих концентрациях в корпусах равна:

$$\rho_1 = 1062 \text{ kr/m}^3, \rho_2 = 1104 \text{ kr/m}^3, \rho_3 = 1399 \text{ kr/m}^3.$$

При определении плотности растворов в корпусах пренебрегаем изменением ее с повышением температуры от 15 °C до температуры кипения ввиду малого значения коэффициента объемного расширения и ориентировочно принятого значения є.

Давления в среднем слое кипятильных труб корпусов (в Па) равны:

 $P_{1\,\mathrm{cp}} = P_{\mathrm{sn}\,\mathrm{I}} + \rho_{\mathrm{I}}gH(1-\epsilon)/2 = 74.0 \cdot 10^4 + 4 \cdot 1062 \cdot 9.8(1-0.5)/2 = 75.5 \cdot 10^4;$

$$P_{2cp} = P_{\text{Bn}\,2} + \rho_2 g H (1-\epsilon) / 2 = 3,78 \cdot 10^4 + 4 \cdot 1100 \cdot 9,8 (1-0,5) / 2 = 38,9 \cdot 10^4;$$

$$P_{3cp} = P_{BII3} + \rho_3 g H (1-\epsilon) / 2 = 1.54 \cdot 10^4 + 4 \cdot 1399 \cdot 9.8 (1-0.5) / 2 = 2.91 \cdot 10^4$$

Этим давлениям соответствуют следующие температуры кипения и теплоты испарения растворителя [1]

<i>Р</i> , МПа	t, °C	r, кДж/кг
$R_{1 cp} = 0,755$	$t_{1 cp} = 168,0$	$r_{\rm BRI} = 2068$
$P_{2cp} = 0.389$	$t_{2 cp} = 142.8$	$r_{\rm BR2} = 2140$
$P_{3cn} = 0.0291$	$t_{3cr} = 69.3$	$r_{\rm BRG,3} = 2340$

Определим гидростатическую депрессию по корпусам (в °С):

 $\Delta_1'' = t_{1 \text{ cp}} - t_{\text{BH}1} = 168 - 167, 3 = 0,7;$

$$\Delta_2'' = t_{2 \text{ cp}} - t_{\text{sn 2}} = 142.8 - 141.6 = 1.2;$$

$$\Delta_3'' = t_{3 \text{ cp}} - t_{\text{sn 3}} = 69.3 - 54.6 = 14.7$$

Сумма гидростатических депрессий

$$\sum \Delta'' = \Delta''_1 + \Delta''_2 + \Delta''_3 = 0.7 + 1.2 + 14.7 = 16.6$$
 °C.

Температурную депрессию Δ' определим по уравнению

$$\Delta' = 1.62 \cdot 10^{-2} \Delta'_{a_{TM}} T^2 / r_{Bn}, \qquad (4.4)$$

где T — температура паров в среднем слое кипятильных труб, К; $\Delta'_{aтм}$ — температурная депрессия при атмосферном давлении [3] (см. Приложение 4.4).

Находим значение ∆' по корпусам (в °C):

$$\Delta_1' = 1,62 \cdot 10^{-2} (168 + 273)^2 1,4/2068 = 2,07;$$

$$\Delta_2' = 1,62 \cdot 10^{-2} (142,8 + 273)^2 3,0/2140 = 3,94;$$

$$\Delta_3' = 1,62 \cdot 10^{-2} (69,3 + 273)^2 23,6/2340 = 18,13.$$

Сумма температурных депрессий

$$\Sigma \Delta' = \Delta'_1 + \Delta'_2 + \Delta'_3 = 2,07 + 3,94 + 18,13 = 24,14$$
 °C.

Температуры кипения растворов в корпусах равны (в °С):

$$t_{\kappa 1} = t_{r 2} + \Delta_1' + \Delta_1'' + \Delta_1''' = 166.3 + 2.07 + 0.7 + 1.0 = 170.07;$$

$$t_{\kappa 2} = t_{r 3} + \Delta_2' + \Delta_2'' + \Delta_2''' = 140.6 + 3.94 + 1.2 + 1.0 = 146.74;$$

$$t_{\kappa 3} = t_{0\kappa} + \Delta_3' + \Delta_3'' + \Delta_3''' = 53.6 + 18.13 + 14.7 + 1.0 = 87.43.$$

При расчете температуры кипения в пленочных выпарных аппаратах (тип 3, см. Приложение 4.1) гидростатическую депрессию Δ'' не учитывают. Температуру кипения в этих аппаратах находят как среднюю между температурами кипения растворов с начальной и конечной концентрациями при давлении в данном корпусе, полагая, что движение раствора в аппарате соответствует модели полного вытеснения.

В аппаратах с вынесенной зоной кипения как с принудительной, так и с естественной циркуляцией кипение раствора происходит в трубе вскипания, устанавливаемой над греющей камерой. Кипение в греющих трубках предотвращается за счет гидростатического давления столба жидкости в трубе вскипания. В греющих трубках происходит перегрев жидкости по сравнению с температурой кипения на верхнем уровне раздела фаз. Поэтому температуру кипения раствора в этих аппаратах также определяют без учета гидростатических температурных потерь Δ'' Перегрев раствора $\Delta t_{пер}$ может быть найден из внутреннего баланса тепла в каждом корпусе. Уравнение теплового баланса для *j*-го корпуса записывается в следующем виде:

$$G_{\mathfrak{n}j}c_{\mathfrak{n}j}(t_{\mathfrak{k}j-1}-t_{\mathfrak{k}j}) + Mc_{\mathfrak{n}j}\Delta t_{\mathfrak{n}\mathfrak{p}j} = w_j(t_{\mathfrak{p}\mathfrak{n}j}-c_{\mathfrak{s}}t_{\mathfrak{k}j}), \qquad (4.5)$$

где M — производительность циркуляционного насоса (в кг/с), тип которого определяют по каталогу [4] для выпарного аппарата с поверхностью теплопередачи $F_{\rm op}$.

Для первого корпуса l_{κ_i-1} — это темлература раствора, поступающего в аппарат из теплообменника-подогревателя.

В annapatax с принудительной циркуляцией циркуляционные насосы обеспечивают высокоразвитый турбулентный режим при скоростях раствора в трубках v = 2,0-2,5 м/с.

В аппаратах с естественной циркуляцией обычно достигаются скорости раствора v = 0,6-0,8 м/с. Для этих аппаратов масса циркулирующего раствора равна

$$M = v S \rho$$
.

Здесь S — сечение потока в аппарате (M^2), рассчитываемое по формуле $S = F_{op} d_{BH}/4H$,

где $d_{\text{вн}}$ — внутренний диаметр труб, м; H — принятая высота труб, м.

Таким образом, перегрев раствора в *j*-м аппарате $\Delta t_{nep i}$ равен:

$$\Delta t_{\operatorname{nep} j} = \frac{w_j \left(I_{\mathfrak{s}, \mathfrak{n} j} - c_{\mathfrak{s}} t_{\kappa j} \right) - G_{\kappa j} c_{\kappa} \left(t_{\kappa j - 1} - t_{\kappa j} \right)}{M c_{\kappa j}}$$

$$\tag{4.6}$$

Полезную разность температур в каждом корпусе можно рассчитать по уравнению

$$\Delta t_{nj} = t_{rj} - (t_{kj} + \Delta t_{nepj}/2).$$
(4.7)

Анализ этого уравнения показывает, что величина $\Delta t_{nep}/2$ — не что иное как дополнительная температурная потеря. В связи с этим общую полезную разность температур выпарных установок с аппаратами с выпесенной зоной кипения нужно определять по выражению

$$\sum \Delta t_{n} = t_{r1} - t_{6\kappa} - \sum \Delta' - \sum \Delta''' - \sum (\Delta t_{nep}/2).$$

4.1.3. Полезная разность температур

Общая полезная разность температур равна:

$$\sum \Delta t_n = \Delta t_{n,1} + \Delta t_{n,2} + \Delta t_{n,3}$$

Полезные разности температур по корпусам (в °C) равны:

$$\Delta t_{n1} = t_{r1} - t_{\kappa 1} = 183, 2 - 170, 07 = 13, 13;$$

$$\Delta t_{n\,2} = t_{r\,2} - t_{\kappa\,2} = 166, 3 - 146, 74 = 19,56;$$

$$\Delta t_{\rm n,3} = t_{\rm r,3} - t_{\rm k,3} = 140, 6 - 87, 43 = 53, 17.$$

Тогда общая полезная разность температур

 $\sum \Delta t_n = 13, 13 + 19, 56 + 53, 17 = 85, 86$ °C.

Проверим общую полезную разность температур:

$$\sum \Delta t_n = t_{r,1} - t_{\delta\kappa} - (\sum \Delta' + \sum \Delta'' + \sum \Delta''') = 183.2 - 53.6 - (24.14 + 16.6 + 3.0) = 85.86 \text{ °C}.$$

4.1.4. Определение тепловых нагрузок

Расход греющего пара в І-й корпус, производительность каждого корпуса по вынаренной воде и тепловые нагрузки по корпусам определим путем совместного решения уравнений тепловых балансов по корпусам и уравнения баланса по воде для всей установки:

$$Q_1 = D(I_{r1} - i_1) = 1,03 [G_{H}c_{H}(t_{K1} - t_{H}) + w_1(I_{BR1} - c_{B}t_{K1}) + Q_{KORU};$$
(4.8)

$$Q_2 = w_1 (I_{r_2} - i_2) = 1,03 [(G_{\mu} - w_1) c_1 (t_{\kappa_2} - t_{\kappa_1}) + w_2 (I_{n_2} - c_n t_{\kappa_2}) + Q_{2\kappa_0\kappa_u}];$$
(4.9)

$$Q_{3} = w_{2} (I_{r3} - i_{3}) = 1,03 [(G_{H} - w_{1} - w_{2})c_{2}(I_{K3} - I_{K2}) + w_{3}(I_{en3} - C_{e}I_{K3}) + Q_{3 \text{ ковц}}]; \quad (4.10)$$

$$W = w_1 + w_2 + w_3, \tag{4.11}$$

где 1,03 — коэффициент, учитывающий 3 % потерь тепла в окружающую среду; c_1 , c_2 , c_3 — теплоемкости растворов соответственно исходного в первом и во втором корпусах, кДж/(кг·К) [3]; $Q_{1 \text{ копц}}$, $Q_{2 \text{ конц}}$ — теплоты концентрирования по корпусам, кВт; t_{H} — температура кипения исходного раствора при давлении в 1-м корпусе; $t_{\text{H}} = t_{\text{Bn}1} + \Delta'_{\text{H}} = 167,3 + 1,0 = 168,3 °C$ (где Δ'_{H} — температурная депрессия для исходного раствора); при решении уравнений (4.8) — (4.11) можно принять

$$I_{\text{BR}\,1} \approx I_{r\,2}; \quad I_{\text{BR}\,2} \approx I_{r\,3}; \quad I_{\text{BR}\,3} \approx I_{6\kappa}.$$

Анализ зависимостей теплоты концентрирования от концентрации и температуры [5] показал, что она наибольшая для третьего корпуса. Поэтому рассчитаем теплоту концентрирования для 3-го корпуса:

$$Q_{3 \text{ кон u}} = G_{\text{сух}} \Delta q = G_{\text{H}} x_{\text{H}} \Delta q, \qquad (4.12)$$

где $G_{\text{сух}}$ — производительность аппаратов по сухому КОН, кг/с; Δq — разность ннтегральных теплот растворения при концентрациях x_2 и x_3 , кДж/кг [3]. Тогда $Q_{3 \text{ конц}} = 11,12 \cdot 0,05 (963,7 - 838,0) = 69,9 \text{ кВт.}$

Сравним $Q_{3 конш}$ с ориентировочной тепловой нагрузкой для 3-го корпуса $Q_{3 op}$: $Q_{3 op} = (G_{\kappa} - w_1 - w_2) c_2 (t_{\kappa 3} - t_{\kappa 2}) + w_3 (I_{вп 3} - c_{в} t_{\kappa 3}) = (11, 12 - 2, 95 - 3, 24) 3, 56 (87 - 146, 74) + 3, 53 (2596 - 4, 19 \cdot 87, 43) = 6816 кВт.$

Поскольку $Q_{3 \kappa_{011}}$ составляет значительно меньше 3 % от $Q_{3 \circ p}$, в уравнениях тепловых балансов по корпусам пренебрегаем величиной $Q_{\kappa_{011}}$.

Получим систему уравнений:

$$\begin{aligned} Q_1 &= D \left(2787 - 778, 1 \right) = 1,03 \left[11,12 \cdot 3,9 \left(170,7 - 168,3 \right) + w_1 \left(2772 - 4,19 \cdot 170,07 \right) \right]; \\ Q_2 &= w_1 \left(2772 - 704 \right) = 1,03 \left[\left(11,12 - w_1 \right) 3,77 \left(146,74 - 170,7 \right) + w_2 \left(2741 - 4,19 \cdot 146,74 \right) \right]; \\ Q_3 &= w_2 \left(2741 - 593 \right) = 1,03 \left[\left(11,12 - w_1 - w_2 \right) 3,56 \left(87 - 146,74 \right) + w_3 \left(2596 - 4,19 \cdot 87,43 \right) \right]; \\ W &= w_1 + w_2 + w_3 = 9,72. \end{aligned}$$

Решение этой системы уравнений дает следующие результаты:

$$D = 3,464 \text{ kr/c}; \quad w_1 = 3,04 \text{ kr/c}; \quad w_2 = 3,21 \text{ kr/c};$$

 $w_3 = 3,47 \text{ kr/c}; \quad Q_1 = 6407 \text{ kBt}; \quad Q_2 = 6099 \text{ kBt}; \quad Q_3 = 6896 \text{ kBt}.$

Результаты расчета сведены в таблицу:

	Корлус			
Параметр	1	2	3	
Производительность по испаряемой воде, w, кг/с	3,04	3,21	3,47	
Концентрация растворов х, %	0,8	0,7242	40,0	
Давление греющих паров Pr, МПа	1,079		0,3694	
Температура греющих паров I _с , °С	183,2	166,3	140,6	
Температурные потери ∑∆, град	3,77	6,14	33,83	
Температура кипения раствора <i>l</i> к, °С	170,07	146,74	87,43	
Полезная разность температур <i>Δl</i> п, град	13,13	19,56	53,17	

Наибольшее отклонение вычисленных нагрузок по испаряемой воде в каждом корпусе от предварительно принятых ($w_1 = 2,95$ кг/с, $w_2 = 3,24$ кг/с, $w_3 = 3,53$ кг/с) не превышает 3 %, поэтому не будем пересчитывать концентрации и температуры кипения растворов по корпусам. Если же расхождение составит более 5 %, необходимо заново пересчитать концентрации, температурные депрессии и температуры кипения растворов, положив в основу расчета новое, полученное из решения балансовых уравнений, распределение нагрузок по испаряемой воде.

4.1.5. Выбор конструкционного материала

Выбираем конструкционный материал, стойкий в среде кипящего раствора КОН в интервале изменения концентраций от 5 до 40 % [6]. В этих условиях химически стойкой является сталь марки X17 Скорость коррозии ее не менее 0,1 мм/год, коэффициент теплопроводности $\lambda_{cr} = 25,1$ Вт/(м·К).

4.1.6. Расчет коэффициентов теплопередачи

Коэффициент теплопередачи для первого корпуса определяют по уравнению аддитивности термических сопротивлений:

$$K_1 = \frac{1}{1/\alpha_1 + \sum \delta/\lambda + 1/\alpha_2}$$
(4.13)

171

Примем, что суммарное термическое сопротивление равно термическому сопротивлению стенки δ_{ст}/λ_{ст} и накипи δ_κ/λ_κ. Термическое сопротивление загрязнений со стороны пара не учитываем. Получим:

$$\sum \delta/\lambda = 0.002/25.1 + 0.0005/2 = 2.87 \cdot 10^{-4} \text{ m}^2 \cdot \text{K/BT}.$$

Коэффициент теплоотдачи от конденсирующегося пара к стенке а, равен [1]

$$\alpha_1 = 2.04^{4} (r_1 \rho_{m,1}^2 \lambda_{m,1}^3) / (\mu_{m,1} H \Delta t_1), \qquad (4.14)$$

где r_1 — теплота конденсации греющего пара, Дж/кг; $\rho_{m,1}$, $\lambda_{m,1}$, $\mu_{m,1}$ — соответственно плотность (кг/м³), теплопроводность Вт/(м·К), вязкость (Па·с) конденсата при средней температуре пленки $l_{nn} = l_{r,1} - \Delta l_1/2$, где Δl_1 — разность температур конденсации пара и стенки, град.

Расчет α_1 ведут методом последовательных приближений. В первом приближении примем $\Delta t_1 = 2,0$ град. Тогда

 $\alpha_1 = 2.04^{4} \sqrt{(2009 \cdot 10^3 \cdot 886^2 \cdot 0.684^3) / (0.09 \cdot 10^{-3} \cdot 4 \cdot 2)} = 10500 \text{ Br} / (\text{m}^2 \cdot \text{K}).$

Для установившегося процесса передачи тепла справедливо уравнение

$$q = \alpha_1 \Delta t_1 = \Delta t_{\rm cr} / (\sum \delta / \lambda) = \alpha_2 \Delta t_2,$$

где q — удельная тепловая нагрузка, Вт/м²; Δt_{cr} — перепад температур на стенке, град; Δt_2 — разность между температурой стенки со стороны раствора и температурой кипения раствора, град.

Отсюда

$$\Delta t_{\rm cr} = \alpha_1 \Delta t_1 \sum \delta / \lambda = 10500 \cdot 2 \cdot 2.87 \cdot 10^{-4} = 6.03$$
 град.

Тогда

$$\Delta t_2 = \Delta t_{0,1} - \Delta t_{ct} - \Delta t = 13,13 - 6,03 - 2 = 5,1$$
 град

Распределение температур в процессе теплопередачи от пара через стенку к кипящему раствору показано на рис. 4.2.

Коэффициент теплоотдачи от стенки к кипящему раствору для пузырькового кипения в вертикальных кипятильных трубках при условии естественной циркуляции раствора [7] равен

$$\alpha_2 = Aq^{0.6} = 780q^{0.6} - \frac{\lambda_1^{1.3} \rho_1^{0.5} \rho_1^{0.06}}{\sigma_1^{0.5} r_0^{0.6} \rho_1^{0.6} \sigma_1^{0.6} \sigma_1^{0.3} \mu_1^{0.3}}.$$
(4.15)

Подставив численные значения, получим:

$$\alpha_{2} = 780q^{0.6} \frac{0.61^{1.3}1062^{0.53}, 75^{0.06}}{0.058^{0.5} (2068 \cdot 10^{3})^{0.6} 0.579^{0.66}, 3771^{0.3} (0.1 \cdot 10^{-3})^{0.3}} = 18,76 (\alpha_{1} \Delta t_{1})^{0.6} = 18,76 (10 \ 500 \cdot 2)^{0.6} = 7355 \ BT/(m^{2} \cdot K).$$

Физические свойства кипящих растворов КОН и их паров приведены ниже:

		_			
Параметр 	1	2	3	Литература	
Теплопроводность раствора λ, Вт/(м·К) Плотность раствора ρ, кг/м ³ Теплоемкость раствора <i>c</i> , Дж/(кг·К) Вязкость раствора,μ, Па·с Поверхностное натяжение σ, Н/м Теплота парообразования r _в , Дж/кг Плотность пара ρ ₁₀ кг/м ³	0,61 1062 3771 0,1 · 10 0,058 2068 · 10 ³ 3 75	$0,62 \\ 1104 \\ 3561 \\ 0,29 \cdot 10^{3} \\ 0,066 \\ 2148 \cdot 10^{3} \\ 2.0$	$\begin{array}{c} 0,69\\ 1399\\ 2765\\ 0,7\cdot10^{-3}\\ 0,099\\ 2372\cdot10^{3}\\ 0.098\end{array}$	[8] [3] [3] [9] [8, 9] [1]	

Рис. 4.2. Распределение температур в процессе теплопередачи от пара к кипящему раствору через многослойную стенку:

I — пар; 2 — конденсат; 3 — стенка; 4 — накипь; 5 — килящий раствор

Рис. 4.3. Зависимость удельной тепловой нагрузки q от разности температур Δt_1

Физические свойства некоторых других растворов приведены в Приложении 4.3. Проверим правильность первого приближения по равенству удельных тепловых нагрузок:

$$q' = \alpha_1 \Delta t_1 = 10\ 500 \cdot 2 = 21\ 000\ \text{Bt/m}^2;$$

 $q'' = \alpha_2 \Delta t_2 = 7355 \cdot 5, 1 = 37\ 510\ \text{Bt/m}^2$

Как видим, $q' \neq q''$

Для второго приближения примем $\Delta t_1 = 3,0$ град.

Пренебрегая изменением физических свойств конденсата при изменении температуры на 1,0 град, рассчитаем а, по соотношению

$$\alpha_1 = 10500 \sqrt[3]{2/3} = 9500 \text{ Bt}/(\text{m}^2 \cdot \text{K}).$$

Получим:

$$\Delta t_{c\tau} = 9500 \cdot 3 \cdot 2.87 \cdot 10^{-4} = 8.18 \text{ град};$$

$$\Delta t_2 = 13.13 - 3 - 8.18 = 1.95 \text{ град};$$

$$\alpha_2 = 18.76 (9500 \cdot 3)^{0.6} = 8834 \text{ Br}/(\text{m}^2 \cdot \text{K});$$

$$q' = 9500 \cdot 3 = 28 500 \text{ Br}/\text{m}^2; \qquad q'' = 8834 \cdot 1.95 = 17 220 \text{ Br}/\text{m}^2$$

Очевидно, что $q' \neq q''$

Для расчета в третьем приближении строим графическую зависимость удельной тепловой нагрузки q от разности температур между паром и стенкой в первом корпусе (рис. 4.3) и определяем $\Delta t_1 = 2.6$ град. Получим:

$$\alpha_{1} = 10\ 500\ \sqrt{2}, \overline{0/2.6} = 9833\ \text{BT}/(\text{m}^{2}\cdot\text{K});$$

$$\Delta t_{c\tau} = 9833\cdot 2.6\cdot 2.87\cdot 10^{-4} = 7.34\ \text{rpag};$$

$$\Delta t_{2} = 13, 13 - 2.6 - 7.34 = 3.19\ \text{rpag};$$

$$\alpha_{2} = 18.76\ (9833\cdot 2.6)^{0.6} = 8276\ \text{BT}/(\text{m}^{2}\cdot\text{K});$$

$$q' = 9833\cdot 2.6 = 25\ 570\ \text{BT}/\text{m}^{2};$$

$$a''' = 8276\cdot 3.19 = 26\ 400\ \text{BT}/\text{m}^{2}$$

Как видим, $q' \approx q''$

Если расхождение между тепловыми нагрузками не превышает 3 %, расчет коэффициентов α_1 и α_2 на этом заканчивают. Находим K_1 :

 $K_1 = 1/(1/9833 + 2.87 \cdot 10^{-4} + 1/8276) = 1963 \text{ Br}/(\text{m}^2 \cdot \text{K}).$

Далее рассчитаем коэффициент теплопередачи для второго корпуса K₂. Для этого найдем:

$$\alpha_{1} = 2,04 \sqrt[4]{\frac{2068 \cdot 10^{3} \cdot 900^{2} \cdot 0,68^{3}}{0,1 \cdot 10^{-3} \cdot 4 \cdot 4,1}} = 8633 \frac{B\tau}{M^{2} \cdot K};$$

$$\Delta t_{cr} = 8633 \cdot 4,1 \cdot 2,87 \cdot 10^{-4} = 10,16 \text{ град};$$

$$\Delta t_{2} = 19,56 - 4,1 - 10,16 = 5,3 \text{ град};$$

 $\alpha_{2} \!=\! 780 \frac{0.62^{1.3} \cdot 1104^{0.5} \cdot 2.0^{0.06} \, (8633 \cdot 4.1)^{0.6}}{0.066^{0.5} \, (2148 \cdot 10^{3})^{0.6} \, 0.579^{0.66} 3561^{0.3} \, (0.29 \cdot 10^{-3})^{0.3}} \!=\! 12.77 \, (8633 \cdot 4.1)^{0.6} \!=\! 6848 \, \text{Bt/}(\text{m}^{2} \cdot \text{K}),$

$$q' = 8633 \cdot 4, 1 = 35395 \text{ BT/m}^2; \quad q'' = 6848 \cdot 5, 3 = 36294 \text{ BT/m}^2.$$

Как видим, $q' \approx q''$ Определим K_2 :

$$K_2 = \frac{1}{1/8633 + 2.87 \cdot 10^{-4} + 1/6848} = 1822 \frac{B\tau}{M^2 \cdot K}.$$

Рассчитаем теперь коэффициент теплопередачи для третьего корпуса Ка:

$$\alpha_1 = 2,04 \quad \sqrt[4]{\frac{2148 \cdot 10^3 \cdot 923^2 \cdot 0,67^3}{0,24 \cdot 10^{-3} \cdot 4 \cdot 16,0}} = 5722 \quad \frac{B\tau}{M^2 \cdot K};$$

$$\Delta t_{ct} = 5722 \cdot 16 \cdot 2,87 \cdot 10^{-4} = 26,3 \text{ град};$$

$$\Delta t_2 = 53,17 - 16,0 - 26,3 = 10,87 \text{ град};$$

$$\alpha_2 = 780 \frac{0.69^{1.3} 1400^{0.5} 0.098^{0.06} (5722 \cdot 16)^{0.6}}{0.099^{0.5} (2372 \cdot 10^3)^{0.6} 0.579^{0.66} 2765^{0.3} (0.7 \cdot 10^{-3})^{0.3}} = 8.77 (5722 \cdot 16)^{0.6} = 8317 \text{ Br} / (\text{m}^2 \cdot \text{K});$$

 $q' = 5722 \cdot 16 = 91550 \text{ Bt/m}^2$; $q'' = 8317 \cdot 10.87 = 90410 \text{ Bt/m}^2$.

Как видим, q' = q'' Найдем K_3 :

$$K_3 = \frac{1}{1/5722 + 2.87 \cdot 10^{-4} + 1/8317} = 1719 \text{ Br}/(\text{m}^2 \cdot \text{K}).$$

При кипении растворов в пленочных выпарных аппаратах коэффициент теплоотдачи рекомендуется [10] определять по уравнению

$$\alpha_2 = c \frac{\lambda}{\delta} (0.25 \text{ Re})^n \left(\frac{q\delta}{\lambda t_{\text{B},\text{II}}}\right)^m$$
(4.16)

Здесь λ — теплопроводность кипящего раствора, Вт/(м·К); δ — толщина пленки (в м), рассчитываемая по уравнению

$$\delta = \left(\frac{3}{4} \cdot \frac{v^2}{g}\right)^{1/3} \operatorname{Re}^{1/3}, \tag{4.17}$$

где v — кинетическая вязкость раствора, м²/с; Re = 4 Г/µ — критерий Re для пленки жидкости; Г = G_i/Π — линейная массовая плотность орошения, кг/(м·с); G_i — расход раствора, поступающего в *j*-й корпус, кг/с; $\Pi = \pi d_{BH}n = F_{cp}/H$ — смоченный периметр, м; µ — вязкость кипящего раствора, $\Pi a \cdot c$; *q* — тепловая нагрузка, которую в расчете принимают равной $\alpha_1 \Delta t_1$, Bт/м²

Значения коэффициентов и показателей степеней в уравнении (4.16):

при
$$q < 20\ 000\ \text{Bt/m}^2$$
: $c = 163.1$, $n = -0.264$; $m = 0.685$;
при $q > 20\ 000\ \text{Bt/m}^2$: $c = 2.6$, $n = 0.203$, $m = 0.322$.

В аппаратах с вынесенной зоной кипения, а также в аппаратах с принудительной циркуляцией обеспечиваются высокие скорости движения растворов в трубках греющей камеры и вследствие этого — устойчивый турбулентный режим течения. Принимая во внимание, что разность температур теплоносителей (греющего пара и кипящего раствора) в выпарном аппарате невелика, для вычисления коэффициентов теплоотдачи со стороны жидкости используют эмпирическое уравнение [7]:

$$Nu = 0.023 Re^{0.8} Pr^{0.4}.$$
 (4.18)

Физические характеристики растворов, входящие в критерии подобия, находят при средней температуре потока, равной

$$t_{\rm cp} = t_{\rm K} + \Delta t_{\rm nep}/2. \tag{4.19}$$

4.1.7. Распределение полезной разности температур

Полезные разности температур в корпусах установки находим из условия равенства их поверхностей теплопередачи:

$$\Delta t_{n\,i} = \sum \Delta t_n \frac{Q_i/K_i}{\sum\limits_{j=1}^{j=3} Q/K},\tag{4.20}$$

где Δt_{nj} , Q_j , K_j — соответственно полезная разность температур, тепловая нагрузка, коэффициент теплопередачи для *j*-го корпуса.

Подставив численные значения, получим:

$$\Delta t_{n1} = 85,86 \frac{6407/1963}{6407/1963 + 6099/1822 + 6896/1719} =$$

$$= 85,86 \frac{3,26}{3,26 + 3,35 + 4,01} = 85,86 \frac{3,26}{10,62} = 26,36 \text{ град};$$

$$\Delta t_{n2} = 85,86 (3,35/10,62) = 27,09 \text{ град};$$

$$\Delta t_{n3} = 85,86 (4,01/10,62) = 32,41 \text{ град}.$$

Проверим общую полезную разность температур установки:

 $\Sigma \Delta t_n = \Delta t_{n1} + \Delta t_{n2} + \Delta t_{n3} = 26,36 + 27,09 + 32,41 = 85,86$ град.

Теперь рассчитаем поверхность теплопередачи выпарных аппаратов по формуле (4.1):

$$F_1 = (6407 \cdot 10^3) / (1963 \cdot 26, 36) = 123,8 \text{ m}^2;$$

$$F_2 = (6099 \cdot 10^3) / (1822 \cdot 27, 09) = 123,8 \text{ m}^2;$$

$$F_3 = (6896 \cdot 10^3) / (1719 \cdot 32, 41) = 123,8 \text{ m}^2$$

Найденные значения мало отличаются от ориентировочно определенной рансе поверхности F_{op} . Поэтому в последующих приближениях нет необходимости вносить коррективы на изменение конструктивных размеров аппаратов (высоты, диаметра и числа труб). Сравнение распределенных из условий равенства поверхностей теплопередачи и предварительно рассчитанных значений полезных разностей температур Δt_n представлено ниже:

	Корпус		
	1	2	3
Распределенные в 1-м приближении значения Δt_n , град.	26,36	27,09	32,41
Предварительно рассчитанные значения Δt_n , град.	13,13	19,56	53,17

Второе приближение

Как видно, полезные разности температур, рассчитанные из условия равного перепада давления в корпусах и найденные в 1-м приближении из условия равенства поверхностей теплопередачи в корпусах, существенно различаются. Поэтому необходимо заново перераспределить температуры (давления) между корпусами установки. В основу этого перераспределения температур (давлений) должны быть положены полезные разности температур, найденные из условий равенства поверхностей теплопередачи аппаратов.

4.1.8. Уточненный расчет поверхности теплопередачи

В связи с тем, что существенное изменение давлений по сравнению с рассчитанным в первом приближении происходит только в 1-м и 2-м корпусах (где суммарные температурные потери незначительны), во втором приближении принимаем такие же значения $\Delta' \Delta''$ и Δ''' для каждого корпуса, как в первом приближении. Полученные после перераспределения температур (давлений) параметры растворов и паров по корпусам представлены ниже:

	Корпус			
Параметры	1	2	3	
Производительность по испаряемой воде w , кг/с Концентрация растворов x , % Температура греющего пара в 1-м корпусе t_{r1} , °С Полезная разность температур Λt_n , град Температура кипения раствора $t_k = t_r - \Delta t_n$, °С Температура вторичного пара $t_{n1} = t_k - (\Delta' + \Delta'')$,	3,04 6,8 183,2 26,36 156,84 154,07	3,21 11,3 27,09 125,98 120,84	3,47 40 32,41 87,43 54,6	
°С Давление вторичного пара Рып, МПа Температура греющего пара t _г = t _{вп} - \u03c4 ^{'''} °C	0,5297	0,2004 153,07	0, 0154 119,84	

Рассчитаем тепловые нагрузки (в кВт):

$$Q_1 = 1.03 [11, 12 \cdot 3, 9 (156, 84 - 154, 8) + 3, 04 (2762 - 4, 19 \cdot 156, 84) = 6515;$$

$$Q_2 = 1.03 [8, 08 \cdot 3, 85 (125, 98 - 156, 84) + 3, 21 (2712 - 4, 19 \cdot 125, 98)] = 6231$$

 $Q_3 = 1.03[4.87 \cdot 3.58(87.43 - 125.98) + 3.47(2596 - 4.19 \cdot 87.43)] = 7186.$

Расчет коэффициентов теплопередачи, выполненный описанным выше методом, приводит к следующим результатам [в Вт/(м²·K)] K₁ = 2022; K₂ = 1870; K₃ = 1673. Распределение полезной разности температур:

actived entering indication pastocrin remiteparyp.

 $\Delta t_{n1} = 85,86 \frac{6515/2022}{6515/2022 + 6231/1870 + 7186/1673} =$ = 85,86 $\frac{3,22}{3,22 + 3,34 + 4,16} = 85,86 \frac{3,22}{10,85} = 25,50$ град; $\Delta t_{n2} = 85,86(3,34/10,85) = 26,43$ град;

$$\Delta t_{n,3} = 85,86(4,16/10,85) = 33,93.$$

Проверка суммарной полезной разности температур:

 $\sum \Delta t_{a} = 25,50 + 26,43 + 33.93 = 85,86$ °C.

Сравнение полезных разностей температур Δt_n , полученных во 2-м и 1-м приближениях, приведено ниже:

	Kopnyc		
	1	2	3
Δt _п во 2-м приближении, град Δt _п в 1-м приближении, град	25,5 26,36	26,43 27,09	33,93 32,41

Различия между полезными разностями температур по корпусам в 1-м и 2-м приближениях не превышают 5 %. Если же разница превысит 5 %, необходимо выполнить следующее, 3-е приближение, взяв за основу расчета Δt_n из 2-го приближения, и т. д., до совпадения полезных разностей температур.

Поверхность теплопередачи выпарных аппаратов:

$$F_1 = 6\ 515\ 000/(2022 \cdot 25,50) = 126,4\ \text{m}^2; \qquad F_2 = 6\ 231\ 000/(1870 \cdot 26,43) = 126,1\ \text{m}^2;$$

$$F_3 = 7\ 186\ 000/(1673 \cdot 33,93) = 126,6\ \text{m}^2$$

По ГОСТ [1987—81 [2] выбираем выпарной аппарат со следующими характеристиками (см. Приложение 4.2):

Номинальная поверхность теплообмена F_{μ}	160 м ²
Днаметр труб d	38 imes 2 мм
Высота труб Н	4000 мм
Диаметр греющей камеры d _к	1 20 0 мм
Диаметр сепаратора d _с	2400 мм
Диаметр циркуляционной трубы $d_{ m u}$	700 мм
Общая высота аннарата Иа	13 500 мм
Масса аппарата Ма	12 000 кг

4.2. ОПРЕДЕЛЕНИЕ ТОЛЩИНЫ ТЕПЛОВОЙ ИЗОЛЯЦИИ

Толщину тепловой изоляции δ_" находят из равенства удельных тепловых потоков через слой изоляции от поверхности изоляции в окружающую среду:

$$\alpha_{\mathfrak{n}}\left(t_{\mathfrak{cr}\,2}-t_{\mathfrak{n}}\right)=\left(\lambda_{\mathfrak{n}}/\delta_{\mathfrak{n}}\right)\left(t_{\mathfrak{cr}\,1}-t_{\mathfrak{cr}\,2}\right),\tag{4.21}$$

где $\alpha_{\rm B} = 9,3 \pm 0,058t_{\rm cr\,2}$ — коэффициент теплоотдачи от внешней поверхности изоляционного материала в окружающую среду, Вт/(${\rm M}^2 \cdot {\rm K}$) [7]; $t_{\rm cr\,2}$ — температура изоляции со стороны окружающей среды (воздуха); для аппаратов, работающих в закрытом помещении, $t_{\rm cr\,2}$ выбирают в интервале 35—45 °C, а для аппаратов, работающих на открытом воздухе в зимнее время — в интервале 0—10 °C; $t_{\rm cr\,1}$ — температура изоляции со стороны аппарата; ввиду незначительного термического сопротивления стенки аппарата по сравнению с термическим сопротивлением слоя изоляции $t_{\rm cr\,1}$ принимают равной температуре греющего пара $t_{\rm r\,1}$; $t_{\rm B}$ — температура окружающей среды (воздуха), °C; $\lambda_{\rm u}$ — коэффициент теплопроводности изоляционного материала, Вт/(м·K)

Рассчитаем толщину тепловой изоляции для 1-го корпуса:

$$\alpha_{\rm B} = 9.3 \pm 0.058 \cdot 40 = 11.6 \text{ Bt}/(\text{m}^2 \cdot \text{K}).$$

В качестве материала для тепловой изоляции выберем совелит (85 % магнезии + +15 % асбеста) [11], имеющий коэффициент теплопроводности $\lambda_{II} \approx 0.09$ Вт/(м·К). Тогда получим

$$\delta_{\text{H}} = \frac{0.09 (183.2 - 40.0)}{11.6 (40.0 - 20.0)} = 0.055 \text{ M}.$$

Принимаем толщину тепловой изоляции 0,055 м и для других корпусов.

c

4.3. РАСЧЕТ БАРОМЕТРИЧЕСКОГО КОНДЕНСАТОРА

Для создания вакуума в выпарных установках обычно применяют конденсаторы смешения с барометрической трубой. В качестве охлаждающего агента используют воду, которая подается в конденсатор чаще всего при температуре окружающей среды (около 20 °C). Смесь охлаждающей воды и конденсата выливается из конденсатора по барометрической трубе. Для поддержания постоянства вакуума в системе из конденсатора с помощью вакуум-насоса откачивают неконденсирующиеся газы.

Необходимо рассчитать расход охлаждающей воды, основные размеры (диаметр и высоту) барометрического конденсатора и барометрической трубы, производительность вакуум-насоса.

4.3.1. Расход охлаждающей воды

Расход охлаждающей воды G_в определяют из теплового баланса конденсатора:

$$G_{s} = \frac{w_{3} \left(I_{6.\kappa} - c_{s} t_{\kappa} \right)}{c_{s} \left(t_{\kappa} - t_{\kappa} \right)}, \qquad (4.22)$$

где I_{б.к} — энтальпия паров в барометрическом конденсаторе, Дж/кг; t_н — начальная температура охлаждающей воды, °C; t_к — конечная температура смеси воды и конденсата, °C.

Разность температур между паром и жидкостью на выходе из конденсатора должна быть 3—5 град. Поэтому конечную температуру воды t_{k} на выходе из конденсатора примем на 3 град ниже температуры конденсации паров:

$$t_{\rm K} = t_{6,\rm K} - 3,0 = 53,6 - 3,0 = 50,6$$
 °C.

Тогда

$$G_{\rm g} = \frac{3,47 \ (2596 \ 000 - 4,19 \cdot 10^3 \cdot 50,6)}{4,19 \cdot 10^3 \ (50,6 - 20)} = 64,36 \ {\rm kr/c}.$$

4.3.2. Диаметр конденсатора

Диаметр барометрического конденсатора d_{6к} определяют из уравнения расхода:

$$d_{\mathbf{5\kappa}} = \sqrt{4w_3/(\rho\pi v)}, \qquad (4.23)$$

где ρ — плотность паров, кг/м³; v — скорость паров, м/с.

При остаточном давлении в конденсаторе порядка 10⁴ Па скорость паров v = 15-25 м/с. Тогда

 $d_{6\kappa} = \sqrt{4 \cdot 3.47/(0.098 \cdot 3.14 \cdot 20)} = 1.5 \text{ m}.$

По нормалям НИИХИММАШа [12] подбираем конденсатор диаметром, равным расчетному или ближайшему большему. Определяем его основные размеры. Выбираем барометрический конденсатор диаметром $d_{5\kappa} = 1600$ мм (см. Приложение 4.5)

4.3.3. Высота барометрической трубы

В соответствии с нормалями [12], внутренний диаметр барометрической трубы d_{6т} равен 300 мм. Скорость воды в барометрической трубе

$$v = \frac{4 (G_{\rm b} + w_3)}{\rho \pi d_{\rm 0T}^2} = \frac{4 (64, 63 + 3, 47)}{1000 \cdot 3, 14 \cdot 0, 3^2} = 0,966 \text{ m/c}$$

Высота барометрической трубы

$$H_{\delta\tau} = \frac{\mathrm{B}}{\rho_{\mathrm{B}}g} + \left(1 + \sum \xi + \lambda \frac{H_{\delta\tau}}{d_{\delta\tau}}\right) \frac{v_{\mathrm{B}}^2}{2g} + 0.5, \qquad (4.24)$$

где В — вакуум в барометрическом конденсаторе, Па; ∑ξ — сумма коэффициентов местных сопротивлений; λ — коэффициент трения в барометрической трубе; 0,5 — запас высоты на возможное изменение барометрического давления, м.

$$\mathbf{B} = P_{a_{TN}} - P_{6_K} = 9.8 \cdot 10^4 - 1.47 \cdot 10^4 = 8.33 \cdot 10^4 \ \Pi a;$$

 $\sum \xi = \xi_{\text{bx}} + \xi_{\text{bwx}} = 0,5 + 1,0 = 1,5,$

где ξ_{вх}, ξ_{вых} — коэффициенты местных сопротивлений на входе в трубу и на выходе из нее. Коэффициент трения λ зависит от режима течения жидкости. Определим режим

течения воды в барометрической трубе:

$$\operatorname{Re} = v_{B} d_{07} \rho_{B} / \mu_{B} = 0.966 \cdot 0.3 \cdot 1000 / (0.54 \cdot 10^{-3}) = 563\ 000.$$

Для гладких труб при Re = 536 000 коэффициент трения λ = 0,013 [1] Подставив в (4.24) указанные значения, получим:

$$H_{6\tau} = \frac{8,33 \cdot 10^4}{1000 \cdot 9,8} + \left(1 + 1,5 + 0,013 \frac{H_{6\tau}}{0,3}\right) \frac{0,966^2}{2 \cdot 9,8} + 0,5.$$

Отсюда находим $H_{6\tau} = 10,1$ м.

4.4. РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ ВАКУУМ-НАСОСА

Производительность вакуум-насоса G_{возд} определяется количеством газа (воздуха), который необходимо удалять из барометрического конденсатора:

$$G_{\text{BO3,1}} = 2.5 \cdot 10^{-5} (w_3 + G_{\text{B}}) + 0.01 w_3, \tag{4.25}$$

где 2,5·10⁻⁵ — количество газа, выделяющегося из 1 кг воды; 0,01 — количество газа, подсасываемого в конденсатор через неплотности, на 1 кг паров. Тогда

$$G_{\text{BO3d}} = 2.5 \cdot 10^{-5} (3.47 + 64.63) + 0.01 \cdot 3.47 = 36.4 \cdot 10^{-3} \text{ kr/c.}$$

Объемная производительность вакуум-насоса равна:

$$V_{\text{BO3A}} = R \left(273 + t_{\text{BO3A}} \right) G_{\text{BO3A}} / \left(M_{\text{BO3A}} P_{\text{BO3A}} \right), \tag{4.26}$$

где R — универсальная газовая постоянная, $\Pi ж / (кмоль \cdot K)$; $M_{воза}$ — молекулярная масса воздуха, кг/кмоль; $t_{воза}$ — температура воздуха, °C; $P_{воза}$ — парциальное давление сухого воздуха в барометрическом конденсаторе, Πa .

Температуру воздуха рассчитывают по уравнению

$$t_{B03,q} = t_{H} + 4 + 0, I(t_{K} - t_{H}) = 20 + 4 + 0, I(50, 6 - 20) = 27 \,^{\circ}\text{C}.$$

Давление воздуха равно:

$$P_{\rm BO31} = P_{\rm 6K} - P_{\rm n},$$

где P_n — давление сухого насыщенного пара (Па) при $t_{возд} = 27$ °С. Подставив, получим:

 $P_{\text{возд}} = 0,15 \cdot 9,8 \cdot 10^4 - 0,039 \cdot 9,8 \cdot 10^4 = 1,09 \cdot 10^4 \text{ Ta}.$

Тогда

$$V_{\text{BOJA}} = \frac{8310 (273 + 27) 36.4 \cdot 10^{-3}}{29 \cdot 1.09 \cdot 10^4} = 0.288 \frac{\text{m}^3}{\text{c}} = 17.3 \frac{\text{m}^3}{\text{m}\text{H}\text{H}}$$

Зная объемную производительность $V_{воза}$ и остаточное давление $P_{6\kappa}$, по каталогу [13] подбираем вакуум-насос типа BBH-25 мощностью на валу N = 48 кВт (см. Приложение 4.6).

В дальнейшем расчету и подбору по нормалям, каталогам и ГОСТам могут подлежать следующие аппараты и их параметры:

- 1) объем и размеры емкостей для исходного и упаренного растворов;
- 2) требуемый напор и марка насосов (см. гл. 1);
- 3) конструкция и поверхность теплообменника-подогревателя (см. гл. 2);
- 4) диаметры трубопроводов и штуцеров (см. гл. 1);

5) конденсатоотводчики (см. гл. 2);

6) циркуляционные насосы для выпарных аппаратов (см. гл. 1).

Более полно методы расчета, моделирования и оптимизации выпарных установок, включающих аппараты, указанные в Приложении 4.1, а также выпарные аппараты других конструкций и вспомогательное оборудование, изложены в специальной литературе [14—22]

4.5. РАСЧЕТ ОПТИМАЛЬНОГО ЧИСЛА КОРПУСОВ многокорпусной установки

В качестве критерия оптимальности могут быть приняты различные технико-экономические показатели, например стоимость единицы выпускаемой продукции, приведенный доход, приведенные затраты и другие. В частности, экономически оптимальное число корпусов многокорпусной выпарной установки можно найти по минимуму приведенных затрат, которые определяют по формуле

$$\Pi = K/T_{\mu} + \Im, \qquad (4.27)$$

где К — капитальные затраты, тыс. руб.; Э — эксплуатационные затраты, тыс. руб/год; Т_п — нормативный срок окупаемости, который можно принять равным 5 годам.

Капитальные затраты, зависящие от числа корпусов *n*, складываются из стоимости всех корпусов — *n*Ц_к, подогревателя исходного раствора — Ц_и, вакуум-насоса — Ц_{ии}, арматуры, трубопроводов, КИП и вспомогательного оборудования (например, конденсатоотводчиков) — Ц_и, а также затрат на доставку и монтаж оборудования, устройство плошадки, фундамент, здание и пр. — Ц_м.

С увеличением *n* наиболее существенно возрастает стоимость самих корпусов U_{*} вследствие роста температурных потерь во всей установке и непропорционального уменьшения полезной разности температур, приходящейся на один корпус. Растут также затраты на арматуру, трубопроводы, КИП и вспомогательное оборудование, а также затраты на доставку и монтаж оборудования. Эти затраты принято определять в долях стоимости основного оборудования. Для многокорпусной выпарной установки их можно приближенно принять равными 60—80 % от стоимости корпусов: $U_a + U_m = = 0.7n U_k$.

Другие слагаемые капитальных затрат изменяются с ростом числа корпусов менее значительно и при минимизации приведенных затрат их можно не учитывать. (В частности, стоимости подогревателя и насоса увеличиваются, так как с увеличением *n* растут температура и давление в первом корпусе. Стоимости же барометрического конденсатора и вакуум-насоса уменьшаются, так как уменьшается количество вторичного пара в последнем корпусе. В установках с принудительной циркуляцией раствора в стоимость установок должна быть включена стоимость осевых циркуляционных насосов. Однако она составляет незначительную долю от стоимости самих корпусов, и ее также можно не учитывать.)

Таким образом, капитальные затраты, существенные для решения задачи выбора оптимального числа корпусов, определяются по уравнению

$$\mathbf{K} = \mathbf{1}_{\tau} \mathbf{7} n \mathbf{\Pi}_{\mathbf{K}}. \tag{4.28}$$

Эксплуатационные расходы Э включают годовые амортизационные отчисления и затраты на ремонт, определяемые в долях от капитальных затрат коэффициентами К_а и К_р, а также затраты на пар и электроэнергию:

$$\Im = (K_a + K_p) K + [(D + D_u) \coprod_D + (n N_{uu} + N_u + N_{uu}) \coprod_{,}] \tau$$
(4.29)

Для приближенных расчетов можно принять $K_a = 0,1 \text{ год}^{-1}$, $K_p = 0,05 \text{ год}$ число часов работы в год непрерывно действующего оборудования т равным 8000 ч/год. В уравнении (4.29) *D* и *D*_n — расходы (в т/ч) пара, подаваемого в первый корпус установки и в предварительный подогреватель; $N_{u.H}$, N_{κ} и $N_{p.H}$ — расходы электроэнергии (кВт), затрачиваемой циркуляционными насосами (см. Приложение 4.7), насосом
Наибольшие затраты приходятся на греющий пар D, подаваемый в первый корпус установки и в подогреватель D_n , причем с увеличением n достигается существенная экономия лишь пара на выпаривание, а расход пара на подогрев исходного раствора до температуры кипения даже несколько возрастает за счет увеличения давления в первом корпусе.

Расходы на электроэнергию в установках с принудительной циркуляцией раствора в корпусах возрастают пропорционально числу корпусов: $nN_{u.u.}$. В установках с естественной циркуляцией они незначительны (только на подачу раствора в первый корпус и поддержание вакуума), мало зависят от числа корпусов и в расчетах приведенных затрат с целью оптимизации могут не учитываться.

Стоимость одного корпуса выпарной установки Ц_к определяется как произведение цены единицы массы аппарата на его массу. Цена единицы массы выпарного аппарата в рублях за I т определяется в соответствии с Прейскурантом № 23-03, 1981 г. (см. Приложение 4.8). Масса аппаратов (см. Приложение 4.2) зависит от их номинальной поверхности теплопередачи; ее принимают ближайшей к большей, полученной в результате технологического расчета. Массу труб $M_{\tau p}$ в греющих камерах можно приблнженно определить по уравнению

$$M_{\rm rp} = \rho_{\rm ct} \delta_{\rm rp} F = 7850 \cdot 0.002F = 15.7F, \tag{4.30}$$

где F — номинальная поверхность теплопередачи (м²); $\delta_{\tau p}$ — толщина стенок труб (м); $\rho_{e\tau}$ — плотность стали (кг/м³).

Цены греющего пара U_D и электроэнергии U_3 различны в зависимости от их лараметров и региона энергопотребления. (Для ориентировочных расчетов можно принять $U_D = 4,5$ руб. за 1 т, $U_3 = 1,5$ коп, за кВт-ч).

Результаты технико-экономических расчетов приведены ниже:

Параметры	Число корпусов п					
	3	4	5	6	7	8
<i>F</i> , м ²	125	200	200	200	200	250
<i>М</i> 10 ^{−3} , кг	8,24	12,6	12,6	12,6	12,6	16,93
Цк, руб/кг	2,28	2,20	2,20	2,20	2,20	2,20
$\Pi_{\kappa} \cdot 10^{-3}$, руб.	18,78	27,72	27,72	27,72	27,72	37,25
0,35 · 1,7 <i>п</i> Ц _к · 10 ⁻³ , руб/год	33,5	66,0	82,6	99,0	115,4	177,3
$3,6(D+D_{n}) \coprod_{D} \tau = 10^{-3},$	810	711	651	611	582	560
руб/год П · 10 ⁻³ , руб/год	843	777	737	710	697	737

Результаты расчетов показывают, что экономически оптимальной является установка из семи корпусов, причем экономия по сравнению с трехкорпусной установкой составляет 146 тыс. руб, или 17,4 %.

Ниже приведены результаты определения оптимального числа корпусов выпарной установки:

R		41	исло ко	рпусов	п	
Параметры	3	4		6	7	8
Минимальная полезная разность температур $\Delta I_{\rm nt}$, град Поверхность греющей камеры в каждом корпусе F, м 2	25,3 133	16,8 143	11.8 156	8,6 175	6,5 199	5,0 234
Расход пара на выпаривание D, кг/с	3,24	2,29	1,73	1,37	1,11	0,92
Расход пара D_n на подогрев раствора от 20 °C до $l_n = l_{\kappa 1}$, кг/с	3,01	3,20	3,29	3,35	3,38	3.39

Приложение 4.1. Типы выпарных трубчатых аппаратов (по ГОСТ 11987-81)

Тил	Наименование	Исполнение	Назначение				
1	Выпарные трубчатые аппараты с естест- венной циркуляцией	l — с соосной двух- ходовой греющей ка- мерой	Упаривание растворов, не образующих осад- ка на греющих трубках, а также при незначи- тельных накипеобразованиях на трубках,				
		2 — с вынесенной греющей камерой	удалясмых промыком Упаривание растворов, выделяющих незначи- тельный осадок, удаляемый механическим способом				
		3 — с соосной грею- щей камерой и соле- отделением	Упаривание растворов, выделяющих кристал- лы и образующих осадок, удаляемый про- мывкой				
2	Выпарные трубчатые аппараты с принуди- тельной циркуляцией	1 — с вынесенной греющей камерой	Упаривание вязких растворов или выделяю- щих осадок на греющих трубках, удаляемый механическим способом				
		2 — с соосной грею- щей камерой	Упаривание вязких чистых растворов, не вы- деляющих осадок, а также при незначитель- ных накипеобразованиях на трубках, удаляе- мых промывкой				
3	Выпарные трубчатые аппараты пленочные	I — с восходящей пленкой	Упаривание пенящихся растворов				
		2 — со стекающей пленкой	Упаривание вязких и термонестойких растворов				
Шаги ствоват	Шаг и размещение трубок в греющих камерах должны соответ-						

Диаметр трубки d, мм 38 57 Шаг разбивки t, мм 48 70

Приложение 4.2. Основные размеры выпарных аппаратов (по ГОСТ 11987—81)

F — номинальная поверхность теплообмена; D — диаметр греющей камеры; D_1 — диаметр сепаратора; D_2 — диаметр циркуляционной трубы; H — высота аппарата; H_1 — высота парового пространства; d — диаметр трубы; l — длина трубы; M — масса аппарата

Техническая характеристика выпарного аппарата с естественной циркуляцией и соосной греющей камерой (тип 1, исполнение 1)

<i>F</i> , м ²		D, MM, D1, MM,		D2, мм,	<i>Н</i> , мм,	<i>М</i> , кг,
<i>l</i> = 3000 мм	<i>l</i> == 4000 мм	не менее	не более	не более	не более	не более
10		400	600	250	10.500	1 000
16	_	600	800	300	10 500	1 200
25	_	600	1000	400	11 000	2 200
40	-	800	1200	500	11 000	3 000
63	_	1000	1400	600	11 500	4 800
100	_	1000	1800	700	11 500	6 000
	160	1200	2400	1200	$12\ 500$	8 600
	250	1400	3000	1400	12 500	13 000
	400	1800	3800	1800	$12\ 500$	21 000

Схема аппарата (тип 1, исполнение 1):

I — греющая камера; 2 сепаратор; 3 — распределительная камера

Примечания. 1. Высота парового пространства H_1 — не более 2000 мм. 2. Условное давление в греющей камере — от 0,014 до 1,6 МПа, в сепараторе — от 0,0054 до 1,0 МПа. 3. Диаметр трубы $d=38\times2$ мм.

Техническая характеристика выпарного аппарата с естественной циркуляцией и вынесенной греющей камерой (тип 1, исполнение 2)

<i>F</i> , м ²		D , мм,	Д ₁, мм,	Д₂ , мм,	<i>Н</i> , мм,	<i>М</i> , кг,
<i>l</i> = 4000 мм	<i>l</i> = 5000 мм	не менее	не более	не более	не более	не более
10	_	400	600	200	12 000	1 700
16	_	400	800	250	12 000	2 500
25	_	600	1000	300	12 500	3 000
40	_	600	1200	400	12 500	4 700
63	_	800	1600	500	13 000	7 500
100	112	1000	1800	600	13 000	8 500
125	140	1000	2200	700	13 500	11 500
1 6 0	180	1200	2400	700	13 500	12 000
200	224	1200	2800	800	14 500	14 800
250	280	1400	3200	900	14 500	15 000
315	355	1600	3600	1000	15 000	21 000
_	400	1600	3800	1000	15 000	26 500
_	450	1600	4000	1000	15 000	31 800
—	500	1600	4500	1200	16 500	33 000
—	560	1800	4500	1200	17 000	38 300
	630	1800	5000	1200	17 000	40 000
_	710	2000	5000	1400	18 000	50 000
-	800	2000	5600	1400	18 000	55 000

Схема аппарата (тип 1, исполнение 2):

Примечания. 1. Высота парового пространства H_1 — не более 2500 мм. 2. Условное давление в греющей камере — от 0,014 до 1,0 МПа, в сепараторе — от 0,0054 до 1,0 МПа. 3. Диаметр трубы $d=38\times2$ мм.

/ — греющая камера; 2 — сепаратор; 3 — циркуляционная труба

Техническая характеристика выпарного аппарата с естественной циркуляцией, соосной греющей камерой и солеотделением (тип 1, исполнение 3)

F, м ²		<i>D</i> , мм,	D 1, мм,	D ₂ , мм,	<i>Н</i> , мм,	<i>М</i> , кг,
<i>l</i> = 4000 MM	<i>l</i> = 6000 мм	не менее	не более	не более	не более	не более
10		400	600	200	14 500	1 900
16	_	400	800	250	14 500	2 500
25	_	600	1000	300	14 500	2 700
40	50	600	1200	400	15 500	3 000
63	80	800	1600	500	15 500	3 500
100	112	1000	1800	600	15 500	5 200
125	140	1000	2200	700	16 000	10 000
160	180	1200	2400	700	16 000	12 500
200	224	1200	2800	800	16 000	15 000
250	280	1400	3200	900	16 500	20 000
315	355	1600	3600	1000	17 500	23 000
_	400	1600	3800	1000	17 500	30 000
	450	1600	4000	1000	18 000	31 500
	500	1600	4500	1200	18 000	33 000
_	560	1600	4500	1200	18 000	40 000
-	630	1800	5000	1200	19 000	43 500
_	710	1800	5600	1400	19 000	48 500
_	800	2000	5600	1400	19 000	50 000

Схема аппарата (тип 1, исполнение 3):

I — греющая камера; 2 сепаратор; 3 — циркуляционная труба

Примечания. 1. Высота парового пространства H_1 — не более 2500 мм. 2. Условное давление в греющей камере — от 0,014 до 1,6 МПа, в сепараторе — от 0,0054 до 1,6 МПа. 3. Диаметр трубы $d=38\times2$ мм.

Техническая характеристика выпарного аппарата с принудительной циркуляцией и вынесенной греющей камерой (тип 2, исполнение 1)

<i>F</i> , м ²	D, мм,	<i>D</i> ₁ , мм,	<i>D</i> ₂ , мм,	<i>Н</i> , мм,	<i>М</i> , кг,
	не менее	не более	не более	не более	не более
25 40 63 100 125 160 200 250 315 400	400 600 800 800 1000 1200 1200 1400	1200 1400 2200 2600 2800 3000 3400 3800 4000	200 250 400 500 500 600 600 700 800 900	19 000 19 000 21 000 21 000 21 000 23 500 23 500 23 500 23 500 25 000	6 000 6 600 8 300 11 300 13 000 15 500 19 000 26 500 29 800 32 000
500	1600	4500	1000	$\begin{array}{c} 25 \ 000 \\ 25 \ 000 \\ 25 \ 000 \\ 25 \ 500 \\ 25 \ 500 \end{array}$	42 000
630	1800	5000	1000		55 000
800	2000	5600	1200		62 000
1000	2200	6300	1400		65 000

Примечания. 1. Высота парового пространства H_1 — не более 3000 мм. 2. Условное давление в греющей камере — от 0,014 до 1,6 МПа, в сепараторе — от 0,0054 до 1,0 МПа. 3. Диаметр трубы $d=38\times 2$, длина l=6000 мм.

Техническая характеристика выпарного аппарата с принудительной циркуляцией и соосной греющей камерой (тип 2, исполнение 2)

<i>F</i> , м ²	D, мм, не менее	<i>D</i> ₁ , мм, не более	<i>D</i> ₂, мм, не более	<i>Н</i> , мм, не более	М, кг, не более
25	400	1000	200	19 500	6 200
40	600	1200	250	19 500	7 000
63	600	1600	400	19 500	9 500
100	800	1800	500	21 500	14 500
125	800	2200	500	21 500	15 500
160	1000	2400	600	21 500	$20\ 000$
200	1000	2800	600	24 500	22 500
250	1200	3200	700	24 500	28 000
315	1200	3600	800	24 500	36 000
400	1400	3800	90 0	26 000	44 500
500	1600	4000	1000	26 000	55 500
630	1800	4500	1000	26 000	69 50 0
800	2000	5000	1200	26 500	87 500
1000	2200	5600	1400	26 500	112 000

Примечания. 1. Высота парового пространства H_1 — не более 3000 мм. 2. Условное давление в греющей камере — от 0,014 до 1,6 МПа, в сепараторе — от 0,0054 до 1,6 МПа. 3. Диаметр трубы $d=38\times2$ мм, длина l=6000 мм.

Техническая характеристика выпарного аппарата с восходящей пленкой (тип 3, исполнение 1)

	<i>F</i> , м ²					
при <i>d</i> = 3	38×2 мм	при $d = 57 \times$	<i>D</i> , мм, не менее	<i>D</i> ₁ , мм, не более	<i>Н</i> , мм, не более	М, кг, не более
<i>l</i> = 5000 мм	<i>l</i> = 7000 мм	×2,5 мм, l=7000 мм				_
10	_	10	400	600	11 000	2 200
16	_	16	400	800	11 000	3 000
25	_	25	600	1 000	11 000	3 600
40		40	600	1 200	11 000	4 400
63		63	800	1 400	12 000	5 000
100	_	100	800	1 800	$12\ 000$	7 000

Схема аппарата (тип 2, исполнение 1):

I — греющая камера; 2 сепаратор; 3 — циркуляционная труба; 4 — электронасосный агрегат

Схема аппарата (тип 2, исполнение 2):

I— греющая камера; 2 сепаратор; 3— циркуляционная труба: 4— электронасосный агрегат

Продолжение

	F, м ²					
при <i>d</i> = 3	38×2 мм	при <i>d</i> = =57×	D, мм, не менее	D., мм, не более	Н, мм, пе более	<i>М</i> , кг, не более
<i>l</i> = 5000 мм	<i>l</i> = 7000 мм	×2,5 мм, l=7000 мм				
125		125	1000	2 200	12 000	9 000
160		160	1000	2 400	$12\ 000$	10 000
200	_	200	1200	2800	12 500	11 500
224		224	1200	2800	12 500	12 000
250		250	1200	3 000	12 500	13 000
280		280	1400	3 200	12 500	14 000
315		315	1400	3 400	13 000	15 000
355		355	1400	3 600	13 000	18 500
400		400	1600	3 800	13 000	$20\ 000$
450		450	1600	4 000	13 500	$22\ 500$
500		500	1800	4 500	13 500	24 000
560		560	1800	4 500	13 500	$26\ 000$
630	_	630	1800	5 000	14 000	29 000
710		710	2000	5 000	14 000	31 000
800		800	2200	5 600	14 500	37 800
_		900	2200	5 600	14 500	40 500
_	1000		2000	6 300	14 500	42 600
-		1120	2400	6 300	15 000	45 400
_	1250	_	2200	6 300	$15\ 000$	51 900
—		1400	2800	7 000	16 000	60 300
—	1600	-	2400	7 500	16 000	70 200
-		1800	3000	8 000	16 500	75 000
_	2000		2800	8 500	16 500	83 000
—		2240	3200	9 000	17 000	90 000
-	2500		3000	9 500	17 000	103 000
	2800	_	3200	10 000	18 000	120 000
_	3150		3400	10 000	18 000	130 000

Схема аппарата (тип 3, исполнение 1): 1 — греющая камера; 2 ---

сепаратор

Примечания. І. Высота парового пространства H_1 — не более 2500 мм. 2. Условное давление в греющей камере — от 0,014 до 1,6 МПа, в сепараторе — от 0,0054 до 1,6 МПа.

Техническая характеристика выпарного аппарата со стекающей пленкой (тип 3, исполнение 2)

<i>F</i> ,	M ²	Лим	D. MM	Ним	Н. им	M vr
l == =4000 мм	<i>l</i> == =6000 мм	не менее	не более	не более	не более	не более
10	12,5	400	600	9 000	1500	1 500
16	20	400	800	9 000	1500	2 000
25	31,5	600	1000	9 500	1500	2 900
40	50	600	1200	9 500	1500	3 600
63	80	800	1600	10 500	1500	5 800
1 0 0	112	1000	1800	12 000	2000	8 800
125	140	1000	2200	12 000	2000	10 000
160	180	1200	2400	$12\ 500$	2000	13 000
200	224	1200	2800	12 500	2000	15 000
250	280	1400	3200	13 500	2000	20 000
315	355	1600	3600	15 000	2000	$23\ 500$
	400	1600	3800	15 000	2000	30 500
	450	1600	4000	16 000	2000	32 500
	500	1600	4500	16 000	2000	35 500
	5 6 0	1600	4500	16 000	2000	40 000
	630	1800	5000	17 000	2000	45 500
	710	1800	5000	17 000	2000	51 000
	800	2000	5600	18.000	2000	58 500

Примечания. 1. Условное давление в греющей камере — от 0,014 до 1,6 МПа, в сепараторе — от 0,0054 до 1,0 МПа. 2. Диаметр трубы $d = 38 \times 2$ мм.

Схема аппарата (тип 3, исполнение 2):

1 — греющая камера; 2 — селаратор Приложение 4.3. Поверхностное натяжение σ (Н/м) и плотность ρ (кг/м³) некоторых водных растворов при различных концентрациях [в % (масс.)] и температурах

Pac-	Темпе-	σ (πρκ $t = var$) /ρ (πρκ $t = const = 20$ °C)							
твор	ратура, °С	5 %	10 %	20 %	50 %				
NaOH	20/20	74,6·10 ⁻³ /1054	77,3·10 ⁻³ /1109	85,8·10 ⁻³ /1219					
NaCl	18/20	74,0·10 ⁻³ /1034	75,5·10 ⁻³ /1071	/1148	/				
Na₂SO₄	18/20	73,8 ·10 ⁻³ /1044	75,2·10 ⁻³ /1092	/1192	—/—				
NaNO ₃	30/20	72,1·10 ⁻³ /1032	72,8·10 ⁻³ /1067	74,7·10 ⁻³ /1143	79,8·10 ⁻³ /—				
KCI	18/20	73,6 · 10 ⁻³ /1030	74,8·10 ⁻³ /1063	77,3·10 ⁻³ /1133	_/_				
K2CO3	10/20	75,8·10 ⁻³ /1044	77,0·10 ⁻³ /1090	79,2·10 ⁻³ /1190	106,4 · 10 ⁻³ /1540				
NH₄NO₃	100/20	59,2·10 ⁻³ /1019	60,1·10 ⁻³ /1040	61,6·10 ⁻³ /1038	67,5·10 ⁻³ /1226				
MgCl₂	18/20	73,8·10 ⁻³ /1040	-/1082	/1171	-/-				
NH₄Cì	18/20	73,3.10-3/1014	74,5·10 ⁻³ /1029	/1057	—/—				
КОН	/20		-/1092	/1188	—/—				
CaCl₂	18/20	73,7 · 10 ⁻³ /1014	-/1084	/1178	—/ —				

Приложение 4.4. Вязкость η (мПа·с) некоторых водных растворов при различных концентрациях [в % (масс.)] и температурах

Baamaan	Концент-	μη	ри темп	ератур	e, °C	Deserve	Концент-	μη	µ при температуре, °C				
Раствор	рация, %	20	30	40	50	Раствор	рация, %	20	30	40	50		
NaOH	5	1,3	1,05	0,85	_	КСІ	5	0,99	0,8	0,66	0,48		
	15	2,78	2,10	1,65	_		15	1,0	0,83	0,69	0,52		
	25	7,42	5,25	3,86			20	1,02	0,85	0,72	0,54		
NaCl	5	1.07	0,87	0,71	0,51	NH₄NO₃	10	0,96	0,79	0,66	0,5		
	15	1,34	1,07	0,89	0,64		30	1,0	0,84	0,73	0,53		
	25	1,86	_				50	1,33	1,14	0,99	0,77		
Na₂SO₄ NaNO₃	10	1,29		-	_	MgCl ₂	10	1,5	_	_	_		
Na NO ₃	10	1,07	0,88	0,72	0,54		20	2,7	_	_	_		
	20	1,18	1,03	0,86	0,62		35	10,1	_	_	_		
	30	1,33	1,3	1,17	0,79	CaCl ₂	10	1,5	_	—	—		
							20	2,7		—	_		
							35	10,1	_	_	_		

			_								
				Концен	трация	раство	pa, %	(масс.)			
Раствор	10	20	30	35	40	45	50	5 5	60	70	80
CaCl ₂ Ca(NO ₃) ₂ CuSO ₄ FeSO ₄ KCI KNO ₃ KOH K ₂ CO ₃ MgCl ₂ MgSO ₄ NH Cl	1,5 1,1 0,3 0,3 1,3 0,9 2,2 0,8 2,0 0,7 2,0	4,5 2,5 0,6 0,7 3,3 2,0 6,0 2,2 6,6 1,7 4 3	10,5 4,3 1,4 1,3 6,1 3,2 12,2 4,4 15,4 3,4 7,6	14,3 5,4 2,1 1,6 8,0 3,8 17,0 6,0 22,0 4,8 9,6	19,0 6,7 3,1 4,5 23,6 8,0 7,0	24,3 8,3 4,2 5,2 33,0 10,9 -	30,0 10,0 6,1 45,0 14,6 	36,5 13,2 7,2 60,4 19,0 	43,0 17,2 	60,0 31,2 11,6 126,5 	49,2
NH₄Cl NH₄NO₃ (NH₄)₂SO₄ NaCl Na NO₃ NaOH Na2CO₃ Na2SO₄	2,0 1,1 0,7 1,9 1,2 2,8 1,1 0,8	4,3 2,5 1,6 4,9 2,6 8,2 2,4 1,8	7,6 4,0 2,9 9,6 4,5 17,0 4,2 2,8	9,6 5,1 3,7 5,6 22,0 5,3	11,6 6,3 4,7 6,8 28,0 —	14,0 7,5 5,9 8,4 35,0 	9,1 7,7 10,0 42,2 —	11,0 12,0 50,6 	13,2 59,6 	19,0 79,6 	28,0 106,6

Приложение 4.5. Температурные депрессии водных растворов при атмосферном давлении

Приложение 4.6. Основные размеры барометрических конденсаторов

Decision		Внутре	нний диаме	тр конденс	атора <i>d</i> _{бк} ,	MM	
Размеры	500	600	800	1000	1200	1600	2000
Толщина стенки аппарата S	5	5	5	6	6	6	10
Расстояние от верхней полки	1300	1300	1300	1300	1300	1300	1300
до крышки апларата а							
Расстояние от нижней полки	1200	1200	1200	1200	1200	1200	1200
до днища аппарата <i>г</i>							
Ширина полки b		_	500	650	750	1000	1250
Расстояние между осями кон-							
денсатора и ловушки:							
<i>K</i> 1	675	725	950	1100	1200	1450	1650
K2		—	835	935	1095	1355	1660
Высота установки Н	4300	4550	5080	5680	6220	7530	8500
Ширина установки Т	1300	1400	2350	2600	2975	3200	3450
Диаметр ловушки D	400	400	500	500	600	800	800
Высота ловушки h	1440	1440	1700	1900	2100	2300	2300
Диаметр ловушки D		_	400	500	500	600	800
Высота ловушки h			1350	1350	1400	1450	1550
Расстояние между полками:							
a_1	220	260	200	250	300	400	500
a_2	260	300	260	320	400	500	650
<i>a</i> ₃	320	360	320	400	480	640	800
<i>a</i> ₄	360	400	380	475	575	750	950
a_5	390	430	440	550	660	880	1070

D		Внутр	енний диан	метр <mark>ко</mark> нде	нсатора <i>d</i> о	к, ММ	
Размеры	500	600	800	1000	1200	1600	2000
Условные проходы штуцеров:							
лля входа пара (А)	300	350	350	400	450	600	800
для входа воды (Б)	100	125	200	200	250	300	400
лля выхода парогазовой	80	100	125	150	200	200	250
смеси (В)							
для барометрической тру-	125	150	200	200	250	300	400
бы (Г)							
воздушник (С)			25	25	25	25	25
лля входа парогазовой	80	100	180	150	260	200	250
смеси (И)							
лля выхода парогазовой	50	70	80	100	150	200	250
смеси (Ж)							
лля барометрической тру-	50	50	70	70	80	80	100
бы (Е)							

Схемы барометрических конденсаторов: a - c концентрическими полками (изготовляются диаметром 500 и 600 мм); b - c сегментными полками (изготовляются диаметром 800— 2000 мм)

Приложение 4.7. Техническая характеристика вакуум-насосов типа ВВН

Типоразмер	Остаточное давление, мм рт. ст.	Производи- тельность, м ^у /мни	Мощность на вялу. кВт	Типоразмер	Остаточное давление, мм рт ст.	Производи- тельность, м ³ /мин	Мощность на валу, кВт
BBH-0,75 BBH-1,5 BBH-3	110 110 75	0.75 1.5 3	1,3 2,1 6.5	BBH-12 BBH-25 BBH-50	23 15 15	12 25 50	20 48 94
BBH-6	38	Ğ	12,5	22	••	00	

Приложение 4.8. Характеристики осевых циркуляционных насосов для выпарных аппаратов с принудительной циркуляцией раствора

Номннальная поверхность теплопередачи, м ³ , в трубах длиной 6,0 м, диаметром 38 × 2 мм	Марка насоса, обеспечиваю- щего скорость циркуляции раствора не менее 2,0 м/с	Подача насоса, м ³ /с	Мощность электро- двигате- ля, кВт	Номинальная поверхность теплопередачн, м ³ , в трубах длиной 6,0 м, диаметром 36×2 мм	Марка насоса, обеспечиваю- щего скорость циркуляции раствора не менее 2,0 м/с	Подача насоса, м³/с	Мощность электро- двигате- ля, кВт
25 40 63 100 125 160 200	ОХ2-23Г ОХ2-23Г ОХ6-34ГА ОХ6-34ГА ОХ6-34Г ОХ6-34Г ОХ6-34Г ОХ6-46Г	0,111 ,278 ,0,278 ,0,444 ,0,693	17 * 40 * 55 *	250 315 400 500 630 800 1000	ОХ6-46Г ОХ6-54Г ОХ6-54Г ОХ6-70ГС-1 ОХ6-70ГС-1 ОХ6-70ГС-2 ОХ6-87Г-2	0,693 0,971 * 1,75 * 2,22 2,78	100 125 * 200 * 250 320

Приложение 4.9. Цена единицы массы выпарных аппаратов, руб/т (из Прейскуранта 23-03, 1981 г.)

Относительная масса				М	асса ап	парата	, т			
труб в общей массе аппарата, %	до 0,35	0,35— 0,75	0.75— 1.4	1.4 2,3	2,3— 3,8	3,8— 5,9	5,9— 12,0	12-20	20-35	более 35,0
	(Сталь	угл	ерод	иста	я				
До 20 %	1625	1360	1165	1030	940	855	770	695	635	570
30	1510	1280	1115	1005	920	855	780	715	665	610
40	1410	1215	1085	990	915	850	790	730	690	640
50	1330	1170	1055	975	915	860	810	755	710	670
60	1270	1135	1040	970	915	870	815	775	740	700
70	1225	1110	1025	970	920	885	840	800	770	730
80	1200	1110	1030	985	935	905	860	8 25	795	760
	(Сталь	нер	жаве	юща	я				
До 20 %	3215	2895	2660	2505	2385	2295	2185	2095	2020	1940
30	3155	2885	2685	2555	2450	2370	2280	2200	2140	2075
40	3105	2875	2710	2605	2510	2435	2360	2285	2235	2180
50	3075	2880	2745	2655	2580	2520	2455	2385	2330	2280
60	3060	2900	2790	2705	2640	2585	2520	2475	2435	2385
70	3070	2935	2830	2765	2705	2670	2615	2565	2535	2485
80	3095	2980	2890	2835	2780	2740	2700	2650	2620	2580

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов. Л.: Химия, 1976. 552 с.
- 2. ГОСТ 11987-81. Аппараты выпарные трубчатые.

3. Справочник химика. М. – Л.: Химия, Т. 111, 1962. 1006 с. Т. V, 1966. 974 с.

- 4. Каталог УКРНИИХИММАШа. Выпарные аппараты вертикальные трубчатые общего назначення. М.: ЦИНТИХИМНЕФТЕМАШ, 1979. 38 с.
- 5. Мищенко К. П., Полторацкий Г М. Термодинамика и строение водных и неводных растворов электролитов. Изд. 2-е. Л.: Химия, 1976. 328 с. 6. Воробьева Г. Я. Коррозионная стойкость материалов в агрессивных средах химических про-
- изводств. Изд. 2-е. М.: Химия, 1975. 816 с. 7. Касаткин А. Г Основные процессы и аппараты химической технологии. Изд. 9-е. М.: Химия,
- 1973. 750 c.
- 8. Викторов М. М. Методы вычисления физико-химических величин и прикладные расчеты. Л.: Химия, 1977 360 с.

- 9. Чернышов А. К., Поплавский К. Л., Заичко Н. Д. Сборник номограмм для химико-технологических расчетов. Л.: Химия, 1974. 200 с.
- Тананайко Ю. М., Воронцов Е. Г Методы расчета и исследования пленочных процессов. Киев: Техника, 1975. 312 с.
- 11. Теплотехнический справочник. Т. 2. М.: Энергия, 1972. 896 с.
- 12. ОСТ 26716-73. Барометрические конденсаторы.
- 13. Вакуумные насосы. Каталог-справочник. М.: ЦИНТИХИМНЕФТЕМАШ, 1970. 63 с.
- 14. Калач Т А., Радун Д. В. Выпарные станции. М.: Машгиз, 1963. 400 с.
- 15. Чернобыльский И. И. Выпарные установки. Киев: Изд. Киевского ун-та, 1960. 262 с.
- Лебедев П. Д., Щукин А. А. Теплоиспользующие установки промышленных предприятий. М.: Энергия, 1970. 408 с.
- 17 Таубман Е. И. Расчет и моделирование выпарных установок. М.: Химия, 1970. 216 с.
- Олевский В. М., Ручинский В. Р. Роторно-пленочные тепло- и массообменные аппараты. М.: Химия, 1977. 206 с.
- 19. Удыма П. Г Аппараты с погружными горелками. М.: Машиностроение, 1965. 192 с.
- 20. Попов Н. П. Выпарные аппараты в производстве минеральных удобрений. М.: Химия, 1974. 126 с.
- Кичигин М. А., Костенко Г Н. Теплообменные аппараты и выпарные установки. М.: Госэнергоиздат, 1955. 392 с.
- 22. Таубман Е. И. Выпаривание. М.: Химия, 1982. 327 с.

ГЛАВА 5

РАСЧЕТ АБСОРБЦИОННОЙ УСТАНОВКИ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- а удельная поверхность, м²/м³;
- D коэффициент диффузии, м²/с;
- *d* диаметр, м;
- F поверхность массопередачи, м²;
- G расход инертного газа, кг/с;
- g ускорение свободного падения, м/с²;
- *H*, *h* высота, м;
 - К коэффициент массопередачи;
 - L расход поглотителя, кг/с;
 - М масса вещества, передаваемого через поверхность массопередачи в единицу времени, кг/с;

M_{БУ} — мольная масса бензольных углеводородов, кг/кмоль;

- *m* коэффициент распределения;
- <u>Р</u> давление, МПа;
- *Т* температура, К;
- U плотность орошения, $m^3/(m^2 \cdot c)$,
- w скорость газа, м/с;
- концентрация жидкости;
- *у* концентрация газа;
- $\Delta ar{X}_{
 m cp}$ средняя движущая сила абсорбции по жидкой фазе, кг/кг;
- ΔΥ_{ср} средняя движущая сила абсорбции по газовой фазе, кг/кг;
 - β коэффициент массоотдачи;
 - є свободный объем, м³/м³;
 - λ коэффициент трения;
 - μ вязкость, Па·с;
 - ξ коэффициент сопротивления;
 - ρ плотность, кг/м³;
 - σ поверхностное натяжение, Н/м;
 - ψ коэффициент смачиваемости;
 - Re критерий Рейнольдса;
 - Fr критерий Фруда;
 - Гс критерий гидравлического сопротивления;
- Nu' диффузионный критерий Нуссельта;
- Рг' диффузионный критерий Прандтля.

Индексы:

- к конечный параметр;
- н начальный параметр;
- *х* жидкая фаза;
- *у* газовая фаза;
- ср средняя величина;
- 0 при нормальных условиях;
- в вода;
- травновесный состав.

введение

Области применения абсорбционных процессов в промышленности весьма обширны: получение готового продукта путем поглощения газа жидкостью; разделение газовых смесей на составляющие их компоненты; очистка газов от вредных примесей; улавливание ценных компонентов из газовых выбросов.

Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа в жидкости не сопровождается химической реакцией или влиянием этой реакции на скорость процесса можно пренебречь. Как правило, физическая абсорбция не сопровождается существенными тепловыми эффектами. Если при этом начальные потоки газа и жидкости незначительно различаются по температуре, такую абсорбцию можно рассматривать как изотермическую. С этого наиболее простого случая начнем рассмотрение расчета процесса абсорбции.

Основная сложность при проектировании абсорберов заключается в правильном выборе расчетных закономерностей для определения кинетических коэффициентов из большого числа различных, порой противоречивых, зависимостей, представленных в технической литературе. Расчеты по этим уравнениям, обычно справедливым для частных случаев, приводят зачастую к различающимся, а иногда к заведомо неверным результатам. Рекомендуемые здесь уравнения выбраны после тщательного анализа и сравнительных расчетов в широком интервале переменных, проверки адекватности расчетных данных опытным, полученным на реальных системах.

В данной главе приведены примеры расчетов насадочного и тарельчатого абсорберов по основному кинетическому уравнению массопередачи. Другие методы рассмотрены в гл. 6 на примере расчета ректификационных колонных аппаратов.

Рис. 5.1. Принципиальная схема абсорбционной установки:

1 — вентилятор (газодувка); 2 — абсорбер; 3 — брызгоотбойник; 4, 6 — оросители; 5 холодильник; 7 — десорбер; 8 — куб десорбера; 9, 13 — емкости для абсорбента; 10, 12 насосы; 11 — теплообменник-рекуператор

На рис. 5.1 дана схема абсорбционной установки. Газ на абсорбцию подается газодувкой 1 в нижнюю часть колонны 2, где равномерно распределяется перед поступлением на контактный элемент (насадку или тарелки). Абсорбент из промежуточной емкости 9 насосом 10 подается в верхнюю часть колонны и равномерно распределяется по поперечному сечению абсорбера с помощью оросителя 4. В колонне осуществляется по поперечному сечению газа и жидкости. Газ после абсорбции, пройдя брызгоотбойник 3, выходит из колонны. Абсорбент стекает через гидрозатвор в промежуточную емкость 13, откуда насосом 12 направляется на регенерацию в десорбер 7 после предварительного подогрева в теплообменнике-рекуператоре 11. Исчерпывание поглощенного компонента из абсорбента производится в кубе 8, обогреваемом, как правило, насыщенным водяным пером. Перед подачей на орошение колонны абсорбент, пройдя теплообменник-рекуператор 11, дополнительно охлаждается в холодильнике 5. Регенерация может осуществляться также другими методами, например отгонкой поглощенного компонента потоком инертного газа или острого пара, понижением давления, повышением температуры. Выбор метода регенерации существенно сказывается на технико-экономических показателях абсорбционной установки в целом.

Задание на проектирование. Рассчитать абсорбер для улавливания бензольных углеводородов из коксового газа каменноугольным маслом при следующих условиях:

производительность по газу при нормальных условиях V₀=13,9 м³/с;

2) концентрация бензольных углеводородов в газе при нормальных условиях: на входе в абсорбер $y_{\rm H} = 35 \cdot 10^{-3} \, {\rm kr/m^3};$

на выходе из абсорбера $y_{\kappa} = 2 \cdot 10^{-3} \text{ кг/м}^3$;

3) содержание углеводородов в поглотительном масле, подаваемом в абсорбер, x_H = 15 % (масс.);

4) абсорбция изотермическая, средняя температура потоков в абсорбере $t = 30 \, ^\circ \text{C}$;

5) давление газа на входе в абсорбер P=0,119 МПа.

Улавливание бензольных углеводородов из коксового газа каменноугольным маслом представляет собой процесс многокомпонентной абсорбции, когда из газа одновременно поглощается смесь компонентов — бензол, толуол, ксилол и сольвенты. Инертная часть коксового газа состоит из многих компонентов — H₂, CH₄, CO, N₂, CO₂, O₂, NH₃, H₂ и др. Сложным является и состав каменноугольного масла, представляющего собой смесь ароматических углеводородов (двух- и трехкольчатых) и гетероциклических соединений с примесью фенолов.

Для упрощения приведенных ниже расчетов газовая смесь и поглотитель рассматриваются как бинарные, состоящие из распределяемого компонента (бензольные углеводороды) и инертной части (носителей); физические свойства их приняты осредненными.

Для линеаризации уравнения рабочей линии абсорбции составы фаз выражают в относительных концентрациях распределяемого компонента, а нагрузки по фазам в расходах инертного носителя. В приведенных ниже расчетах концентрации выражены в относительных массовых долях распределяемого компонента, а нагрузки в массовых расходах носителей.

5.1. РАСЧЕТ НАСАДОЧНОГО АБСОРБЕРА

Геометрические размеры колонного массообменного аппарата определяются в основном поверхностью массопередачи, необходимой для проведения данного процесса, и скоростями фаз.

Поверхность массопередачи может быть найдена из основного уравнения массопередачи [1]:

$$F = M/(K_x \ \Delta \ddot{X}_{cp}) = M/(K_u \ \Delta \bar{Y}_{cp}), \tag{5.1}$$

где K_x , K_y — коэффициенты массопередачи соответственно по жидкой и газовой фазам, кг/(м²·с).

5.1.1. Масса поглощаемого вещества и расход поглотителя

Массу бензольных углеводородов (БУ), переходящих в процессе абсорбции из газовой смеси (Γ) в поглотитель за единицу времени, находят из уравнения материального баланса:

$$M = G \left(\bar{Y}_{\mu} - \bar{Y}_{\kappa} \right) = L \left(\bar{X}_{\kappa} - \bar{X}_{\mu} \right), \tag{5.2}$$

где L, G — расходы соответственно чистого поглотителя и инертной части газа, кг/с; \bar{X}_{μ} , \bar{X}_{κ} — начальная и конечная концентрация бензольных углеводородов в поглотительном масле, кг БУ/кг М; \bar{Y}_{μ} , \bar{Y}_{κ} — начальная и конечная концентрация бензольных углеводородов в газе, кг БУ/кг Г. Выразим составы фаз, нагрузки по газу и жидкости в выбранной для расчета размерности:

$$\bar{Y}_{n} = y_{n}/(\rho_{0,n} - y_{n});$$
 $\bar{X}_{n} = x_{n}/(100 - x_{n}),$ (5.3)

где ρ_{0y} — средняя плотность коксового газа при нормальных условиях [2] Получим:

$$\bar{Y}_{\mu} = 35 \cdot 10^{-3} / (0,44 - 35 \cdot 10^{-3}) = 0,0864$$
 кг БУ/кг Г;
 $\bar{Y}_{\kappa} = 2 \cdot 10^{-3} / (0,44 - 2 \cdot 10^{-3}) = 0,0045$ кг БУ/кг Г;
 $\bar{X}_{\mu} = 0,15 / (100 - 0,15) \approx 0,0015$ кг БУ/кг М.

Конечная концентрация бензольных углеводородов в поглотительном масле \bar{X}_{κ} обусловливает его расход (который, в свою очередь, влияет на размеры как абсорбера, так и десорбера), а также часть энергетических затрат, связанных с перекачиванием жидкости и ее регенерацией. Поэтому \bar{X}_{κ} выбирают, исходя из оптимального расхода поглотителя [3] Для коксохимических производств расход поглотительного каменноугольного масла L принимают в 1,5 раза больше минимального L_{\min} [4] В этом случае конечную концентрацию \bar{X}_{κ} определяют из уравнения материального баланса, используя данные по равновесию (см. рис. 5.2 и 5.3):

$$M = L_{\min} \left(\bar{X}_{Y_{u}}^{*} - \bar{X}_{u} \right) = 1.5 L_{\min} \left(\bar{X}_{v} - \bar{X}_{u} \right).$$
(5.4)

Отсюда

 $\bar{X}_{\kappa} = (\bar{X}^{*}_{Y_{\mu}} + 0.5\bar{X}_{\mu})/1.5 = (0.0432 + 0.5 \cdot 0.015)/1.5 = 0.0293$ Kr by/kr M.

где $ar{X}^*_{Y_u}$ — концентрация бензольных углеводородов в жидкости, равновесная с газом начального состава.

Расход инертной части газа

$$G = V_0 (1 - y_{o6}) (\rho_{0y} - y_0), \qquad (5.5)$$

где yo6 — объемная доля бензольных углеводородов в газе, равная

 $y_{\rm o6} = y_{\rm H} v_0 / M_{\rm EV} = 35 \cdot 10^{-3} \cdot 22.4 / 83 = 0.0094 \,{\rm m}^3 \,{\rm EV} / {\rm m}^3 \,{\rm \Gamma};$

М_{Бу} — мольная масса бензольных углеводородов [4]

Тогда

$$G = 13.9 (1 - 0.0094) (0.44 - 0.035) = 5.577 \text{ kg/c}.$$

Производительность абсорбера по поглощаемому компоненту

Расход поглотителя (каменноугольного масла) равен:

$$L = M/(\bar{X}_{\kappa} - \bar{X}_{\mu}) = 0.457/(0.0293 - 0.0015) = 16.44 \text{ kr/c}.$$

Тогда соотношение расходов фаз, или удельный расход поглотителя, составит:

$$l = L/G = 16,44/5.577 = 2,94$$
 кг/кг.

5.1.2. Движущая сила массопередачи

Движущая сила в соответствии с уравнением (5.1) может быть выражена в единицах концентраций как жидкой, так и газовой фаз. Для случая линейной равновесной зависимости между составами фаз, принимая модель идеального вытеснения в потоках обеих фаз, определим движущую силу в единицах концентраций газовой фазы [1]

$$\Delta \bar{Y}_{cp} = (\Delta \bar{Y}_{0} - \Delta \bar{Y}_{N}) / [\ln (\Delta \bar{Y}_{0} / \Delta \bar{Y}_{N})], \qquad (5.7)$$

7 Под ред. Ю. И. Дытнерского

Рис. 5.2. Зависимость между содержанием бензольных углеводородов в коксовом газе \overline{Y} и каменноугольном масле \overline{X} при 30 °C [2]:

1 — равновесная линия; 2 — рабочая линия

где $\Delta \overline{Y}_6$ и $\Delta \overline{Y}_{\rm M}$ — бо́льшая и меньшая движущие силы на входе потоков в абсорбер и на выходе из него, кг БУ/кг Г (рис. 5.2 и 5.3).

В данном примере

$$\Delta \bar{Y}_6 = \bar{Y}_{\rm H} - \bar{Y}_{\bar{\chi}_e}^{\bullet}; \qquad \Delta \bar{Y}_{\rm H} = \bar{Y}_{\rm H} - \bar{Y}_{\bar{\chi}_e}^{\bullet};$$

где $\bar{Y}^*_{\bar{X}_*}$ и $\bar{Y}^*_{\bar{X}_*}$ — концентрации бензольных углеводородов в газе, равновесные с концентрациями в жидкой фазе (поглотителе) соответственно на входе в абсорбер и на выходе из него (см. рис. 5.2):

$$\Delta \bar{Y}_6 = 0,0864 - 0,0586 = 0,0278 \text{ kr } \text{ БУ/kr } \Gamma;$$

$$\Delta \bar{Y}_{\mu} = 0,0045 - 0,0030 = 0,0015 \text{ kr } \text{ БУ/kr } \Gamma;$$

$$\Delta \bar{Y}_{cp} = (0,0278 - 0,0015) / [\ln (0,0278/0,0015)] = 0,009 \text{ kr } \text{ БУ/kr } \Gamma$$

5.1.3. Коэффициент массопередачи

Коэффициент массопередачи K_y находят по уравнению аддитивности фазовых диффузионных сопротивлений [1]

$$K_y = 1/(1/\beta_y + m/\beta_x), \qquad (5.8)$$

где β_x и β_y — коэффицненты массоотдачи соответственно в жидкой и газовой фазах, кг/(м²·c); *m* — коэффициент распределения, кг М/кг Г

Для расчета коэффициентов массоотдачи необходимо выбрать тип насадки и рассчитать скорости потоков в абсорбере. При выборе типа насадки для проведения массообменных процессов руководствуются следующими соображениями [3, 5]

во-первых, конкретными условиями проведения процесса — нагрузками по пару и жидкости, различиями в физических свойствах систем, наличием в потоках жидкости и газа механических примесей, поверхностью контакта фаз в единице объема аппарата и т. д.;

194

во-вторых, особыми требованиями к технологическому процессу необходимостью обеспечить небольшой перепад давления в колонне, широкий интервал изменения устойчивости работы, малое время пребывания жидкости в аппарате и т д.,

в-третьих, особыми требованиями к аппаратурному оформлению — создание единичного или серийно выпускаемого аппарата малой или большой единичной мощности, обеспечение возможности работы в условиях снльно коррозионной среды, создание условий повышенной надежности и т. д.

В коксохимической промышленности особое значение при выборе насадки имеют следующие факторы: малое гидравлическое сопротивление абсорбера, возможность устойчивой работы при сильно изменяющихся нагрузках по газу, возможность быстро и дешево удалять с поверхности насадки отлагающийся шлам и т д. Таким требованиям отвечают широко используемые деревянная хордовая и металлическая спиральные насадки.

Различные насадки показаны на рис. 5.4. Их характеристики приведены в табл. 5.1

В рассматриваемом примере выберем более дешевую насадку — деревянную хордовую, размером 10×100 мм с шагом в свету 20 мм. Удельная поверхность насадки $a=65 \text{ м}^2/\text{м}^3$, свободный объем $\varepsilon = 0,68 \text{ м}^3/\text{м}^3$, эквивалентный диаметр $d_3 = 0,042 \text{ м}$, насышная плотность $\rho = 145 \text{ кг/m}^3$

Рис. 5.4. Виды насадок:

а — деревянная хордовая; б — кольца Рашига внавал и с упорядоченной укладкой; в — кольцо с вырезами и внутренними выступами (кольцо Палля); г — керамические седла Берля; д — седла «Инталокс»; е — кольцо с крестообразными перегородками; ж — кольцо с внутренними спиралями; з — пропеллерная насалка

Насадки	а, м²/м ³	M. ³ /M. ³	d ₀ ,	р. кг/м ³	Число штук в 1 м ^а
	Регуляр	ные наса	дки		• <u> </u>
Деревянная хордовая (10×100),					
шаг в свету:				010	
10	100	0,55	0,022.	210	_
20	65	0,68	0,042	145	_
30	48	0,77	0,064	110	—
Керамические кольца Рашига:					0 500
$50 \times 50 \times 5$	110	0,735	0,027	650	8 500
$80 \times 80 \times 8$	80	0,72	0,036	670	2 200
$100 \times 100 \times 10$	60	0,72	0.048	670	1 050
He	а упорядо [.]	ченные н	асадки		
Керамические кольца Рашига:					
$10 \times 10 \times 1.5$	440	0,7	0,006	7 0 0	700 000
$15 \times 15 \times 2$	330	0,7	0,009	690	$220\ 000$
$25 \times 25 \times 3$	200	0,74	0,015	530	50 000
$35 \times 35 \times 4$	140	0,78	0,022	530	18 000
$50 \times 50 \times 5$	90	0,785	0,035	530	6 000
Стальные кольца Рашига:					
$10 \times 10 \times 0.5$	500	0,88	0,007	960	770 000
$15 \times 15 \times 0.5$	350	0,92	0,012	660	240 000
$25 \times 25 \times 0.8$	220	0,92	0,017	640	55 000
$50 \times 50 \times 1$	110	0,95	0,035	430	7 000
Керамические кольца Палля:					
$25 \times 25 \times 3$	220	0.74	0,014	610	46 000
$35 \times 35 \times 4$	165	0.76	0.018	540	18 500
$50 \times 50 \times 5$	120	0.78	0,026	520	5 800
$60 \times 60 \times 6$	96	0.79	0.033	520	3 350
Стальные кольца Палля	•••		-, -		
$15 \times 15 \times 0.4$	380	0.9	0.010	525	230 000
$25 \times 25 \times 0.6$	235	0.9	0.015	490	52 000
$25 \times 25 \times 0.8$	170	0.9	0.021	455	18 200
$50 \times 50 \times 1.0$	108	0.9	0.033	415	6 400
Кераминеские селла Берля:	100	0.0	0,000		
195	460	0.68	0.006	720	570 000
95	260	0,69	0.011	670	78 000
38	165	0,00	0.017	670	$30\ 500$
Коранические селля «Инталокс»:	100	0,1			
195	625	0.78	0.005	545	730 000
10	335	0,77	0,009	560	229 000
15 95	255	0 775	0 012	545	84 000
39	195	0.81	0.017	480	25 000
50	118	0.79	0.027	530	9 350
50	110	0,10	0,021		

T

Таблица 5.1. Характеристики насадок (размеры даны в мм)

Примечание. а удельная поверхность; с — свободный объем; d, эквивалентный диаметр; р — насыпная плотность.

5.1.4. Скорость газа и диаметр абсорбера

Предельную скорость газа, выше которой наступает захлебывание насадочных абсорберов, можно рассчитать по уравнению [1]

$$\lg\left[\frac{w_{np}^{2}a}{g\varepsilon^{3}}\cdot\frac{\rho_{y}}{\rho_{x}}\left(\frac{\mu_{x}}{\mu_{B}}\right)^{0.16}\right] = A - B\left(\frac{L}{G}\right)^{1/4}\left(\frac{\rho_{y}}{\rho_{x}}\right)^{1/8}$$
(5.9)

где $w_{\mu\nu}$ — предельная фиктивная скорость газа, м/с; μ_x , μ_B — вязкость соответственно поглотителя при температуре в абсорбере и воды при 20 °C, Па с; А, В — коэффициенты, зависящие от типа насадки; L и G — расходы фаз; кг/с.

Значения коэффициентов А и В приведены ниже [3]:

Tun насадки	A	В
Трубчата я	$0.47 + 1.5 \lg (d_2 - 0.000)$	1,75
Плоскопараллельная хордовая	Õ	1,75
Пакетная	0,062	1,55
Кольца Рашига внавал	0,073	1,75
Кольца Палля	0,49	1,04
Седла размером 25 мм	-0,33	1,04
Седла размером 50 мм	-0,58	1,04

Пересчитаем плотность газа на условия в абсорбере:

$$\rho_y = \rho_{0y} \frac{T_0}{T_0 + t} \frac{P}{P_0} = 0.44 \frac{273}{273 + 30} \cdot \frac{1.19 \cdot 10^5}{1.013 \cdot 10^5} = 0.464 \frac{\text{Kr}}{\text{M}^3}$$

Предельную скорость ω_{np} находим из уравнения (5.9), принимая при этом, что отношение расходов фаз в случае разбавленных смесей приблизительно равно отношению расходов инертных фаз:

$$\lg \left[\frac{w_{\pi\rho}^2 \cdot 65}{9.8 \cdot 0.68^3} \cdot \frac{0.464}{1060} \left(\frac{16.5 \cdot 10^{-3}}{10^{-3}} \right)^{0.16} \right] = 1.75 (2.94)^{1/4} \left(\frac{0.464}{1060} \right)^{1/8}$$

Решая это уравнение, получим $\omega_{np} = 3,03$ м/с.

Выбор рабочей скорости газа обусловлен многими факторами. В общем случае ее находят путем технико-экономического расчета для каждого конкретного процесса [3]. Коксовый газ очищают от различных примесей в нескольких последовательно соединенных аппаратах. Транспортировка больших объемов газа через них требует повышенного избыточного давления и, следовательно, значительных энергозатрат. Поэтому при улавливании бензольных углеводородов основным фактором, определяющим рабочую скорость, является гидравлическое сопротивление насадки. С учетом этого рабочую скорость *w* принимают равной 0,3—0.5 от предельной.

Примем $w = 0.4 \omega_{np} = 0.4 \cdot 3.03 = 1.21$ м/с.

Диаметр абсорбера находят из уравнения расхода:

$$d = \sqrt{\frac{4V}{\pi\omega}} = \sqrt{\frac{4V_0 \cdot \frac{T_0 + t}{T_0} \cdot \frac{P_0}{P}}{\pi\omega}},$$
(5.10)

где V — объемный расход газа при условиях в абсорбере, м³/с. Отсюда

$$d = \sqrt{\frac{\frac{4 \cdot 13.9 \cdot \frac{273 + 30}{273} \cdot \frac{1.013 \cdot 10^5}{1.19 \cdot 10^5}}{3.14 \cdot 1.21}} = 3.71 \text{ M}.$$

Выбираем [6] стандартный диаметр обечайки абсорбера d = 3,8 м. При этом действительная рабочая скорость газа в колонне

$$w = 1,21 (3,71/3,8)^2 = 1,15 \text{ m/c}.$$

Ниже приведены нормальные ряды диаметров колонн (в м), принятые в химической и нефтеперерабатывающей промышленности:

в химической промышленности — 0,4; 0,5; 0,6; 0,8; 1,0; 1,2; 1,4; 1,6; 1,8; 2,2; 2,6; 3,0; в нефтеперерабатывающей промышленности — 1,0; 1,2; 1,4; 1,6; 1,8; 2,0; 2,2; 2,4; 2,6; 2,8; 3,0; 3,2; 3,4; 3,6; 3,8; 4,0; 4,5; 5,0; 5,5; 6,0; 6,4; 7,0; 8,0; 9,0.

5.1.5. Плотность орошения и активная поверхность насадки

Плотность орошения (скорость жидкости) рассчитывают по формуле

$$U = L/(\rho_x S), \tag{5.11}$$

где S — площадь поперечного сечения абсорбера, м².

Подставив, получим:

$$U = \frac{16,44}{(1060 \cdot 0,785 \cdot 3,8^2)} = \frac{13,7 \cdot 10^{-4}}{10^{-4}} \frac{m^3}{(m^2 \cdot c)}$$

При недостаточной плотности орошения и неправильной организации подачи жидкости [3] поверхность насадки может быть смочена не полностью. Но даже часть смоченной поверхности практически не участвует в процессе массопередачи ввиду наличия застойных зон жидкости (особенно в абсорберах с нерегулярной насадкой) или неравномерного распределения газа по сечению колонны.

Существует некоторая минимальная эффективная плотность орошения U_{min}, выше которой всю поверхность насадки можно считать смоченной. Для *пленочных абсорберов* ее находят по формуле

$$U_{\min} = a\Gamma_{\min}/\rho_s. \tag{5.12}$$

Здесь

$$\Gamma_{\min} = 3.95 \cdot 10^{-8} \sigma^{3.6} \mu_x^{0.49}, \tag{5.13}$$

где Г_{тіп} — минимальная линейная плотность орошения, кг/(м·с); σ — поверхностное натяжение, мН/м.

Тогда

$$\Gamma_{\min} = 3.95 \cdot 10^{-8} \cdot 20^{3.6} \cdot 16.5^{0.49} = 7.55 \cdot 10^{-3} \text{ Kr/(M \cdot c)}.$$

Отсюда

$$U_{\rm min} = 65 \cdot 7.55 \cdot 10^{-3} / 1060 = 4.63 \cdot 10^{-4} \, \text{m}^3 / (\text{m}^2 \cdot \text{c})$$

В проектируемом абсорбере плотность орошения U выше U_{\min} , поэтому в данном случае коэффициент смачиваемости насадки $\psi = 1$.

Для насадочных абсорберов минимальную эффективную плотность орошения U_{\min} находят по соотношению [3]:

$$U_{\min} = aq_{s\phi}, \tag{5.14}$$

где $q_{3\Phi}$ — эффективная линейная плотность орошения, м²/с.

Для колец Рашига размером 75 мм и хордовых насадок с шагом более 50 мм $q_{3\Phi} = 0.033 \cdot 10^{-3} \text{ м}^2/\text{с}$; для всех остальных насадок $q_{3\Phi} = 0.022 \cdot 10^{-3} \text{ м}^2/\text{c}$.

Коэффициент смачиваемости насадки у для колец Рашига при заполнении колонны внавал можно определить из следующего эмпирического уравнения [7]:

$$\psi = 0.122 \ (U\rho_x)^{1/3} \ d_{\mu}^{-1/2} \sigma^{-m}, \tag{5.15}$$

где $d_{\rm H}$ — диаметр насадки; $m = 0,133 d_{\rm H}^{-0.5}$.

При абсорбции водой и водными растворами хорошо растворимых газов смоченная поверхность насадки уменьшается [3]. Поэтому полная смачиваемость достигается при более высоких значениях Г Для таких систем значение Г_{тіп} может быть рассчитано по уравнению

$$\frac{\Gamma_{\min}}{\mu_r} = A \operatorname{Re}_g^{0,4} \left(\frac{\rho_r \Delta \sigma^3}{\mu_r^4 g} \right)^{0.2}$$
(5.16)

где коэффициент A зависит от краевого угла смачивания и изменяется в пределах 0,12—0,17; $\Delta \sigma$ — разница между поверхностным натяжением жидкости, подаваемой на орошение колонны, и жидкости, вытекающей из нее.

Доля активной поверхности насадки фа может быть найдена по формуле [3]

$$\psi_{a} = \frac{3600U}{a \left(p + 3600qU\right)},\tag{5.17}$$

где р и д — коэффициенты, зависящие от типа насадки [3]

Подставив численные значения, получим:

$$\psi_a = \frac{3600 \cdot 0.00137}{65 (0.0078 + 3600 \cdot 0.0146 \cdot 0.00137)} = 0.95.$$

Как видим, не вся смоченная поверхность является активной. Наибольшая активная поверхность насадки достигается при таком способе подачи орошения, который обеспечивает требуемое число точек орошения n на 1 м² поперечного сечения колонны [3]. Это число точек орошения и определяет выбор типа распределительного устройства [3].

5.1.6. Расчет коэффициентов массоотдачи

Для регулярных насадок (к которым относится и хордовая) коэффициент массоотдачи в газовой фазе в находят из уравнения [1; 3]:

$$Nu'_{\mu} = 0.167 \operatorname{Re}_{\mu}^{0.74} \operatorname{Pr}_{\mu}^{0.33} (l/d_{2})^{-0.47}, \qquad (5.18)$$

где $Nu'_{y} = \beta_{y}d_{y}/D_{y}$ — диффузионный критерий Нуссельта для газовой фазы.

Отсюда β_y (в м/с) равен:

$$\beta_y = 0.167 \left(D_y/d_y \right) \operatorname{Re}_y^{0.74} \operatorname{Pr}_y^{\prime 0.33} \left(l/d_y \right)^{-0.47}, \tag{5.19}$$

где D_y — средний коэффициент диффузии бензольных углеводородов в газовой фазе, M^2/c ; $\operatorname{Re}_y = w d_s \rho_y / (\varepsilon \mu_y)$ — критерий Рейнольдса для газовой фазы в насадке; $\operatorname{Pr}'_y = = \mu_y / (\rho_y D_y)$ — диффузионный критерий Прандтля для газовой фазы; μ_y — вязкость газа, $\operatorname{Пa} \cdot c$ [2]; l — высота элемента насадки, м.

Для колонн с неупорядоченной насадкой коэффициент массоотдачи β_# можно найти из уравнения

$$Nu'_{y} = 0.407 \operatorname{Re}_{y}^{0.665} \operatorname{Pr}_{y}^{0.33}$$

Коэффициент диффузии бензольных углеводородов в газе можно рассчитать по уравнению [1, 3, 8, 9]

$$D_{y} = \frac{4.3 \cdot 10^{-8} T^{3/2}}{P \left(v_{\rm by}^{1/3} + v_{\rm f}^{1/3} \right)^{2}} \sqrt{\frac{1}{M_{\rm By}} + \frac{1}{M_{\Gamma}}}, \qquad (5.20)$$

где $v_{\rm BY}$, $v_{\rm \Gamma}$ — мольные объемы бензольных углеводородов и коксового газа в жидком состоянии при нормальной температуре кипения, см³/моль; $M_{\rm By}$, $M_{\rm \Gamma}$ — мольные массы соответственно бензольных углеводородов и коксового газа, кг/моль.

Подставив, получим:

$$D_{y} = \frac{4.3 \cdot 10^{-8} \cdot 303^{3/2}}{0.119 (96^{1/3} + 21.6^{1/3})^{2}} \sqrt{\frac{1}{83} + \frac{1}{10.5}} = 1.17 \cdot 10^{-5} \text{ m}^{2}/\text{c};$$

$$\operatorname{Re}_{y} = (1.15 \cdot 0.042 \cdot 0.464) / (0.68 \cdot 0.0127 \cdot 10^{-3}) = 2618;$$

$$\operatorname{Pr}_{y}' = (0.0127 \cdot 10^{-3}) / (0.464 \cdot 1.17 \cdot 10^{-5}) = 2.34;$$

$$\beta_{y} = 0.167 \frac{1.17 \cdot 10^{-5}}{0.042} 2618^{0.74} 2.34^{0.33} \left(\frac{0.1}{0.042}\right)^{-0.47} = 0.0137 \text{ m/c}.$$

Выразим β_и в выбранной для расчета размерности:

 $\beta_y = 0.0137 \ (\rho_y - y_{cp}) = 0.0137 \ (0.464 - 0.0185) = 0.0061 \ \kappa r / (m^2 \cdot c).$

Коэффициент массоотдачи в жидкой фазе β_x находят из обобщенного уравнения, пригодного как для регулярных (в том числе и хордовых), так и для неупорядоченных насадок [1, 3]:

$$Nu'_{x} = 0,0021 \operatorname{Re}_{x}^{0.75} \operatorname{Pr}_{x}^{\prime 0.5}, \qquad (5.21)$$

где $Nu'_{x} = \beta_{x} \delta_{np} / D_{x}$ — диффузионный критерий Нуссельта для жидкой фазы. Отсюда β_{x} (в м/с) равен:

$$\beta_x = 0.0021 \ (D_x/\delta_{np}) \ \text{Re}_x^{0.75} \ \text{Pr}_x^{\prime 0.5}, \tag{5.22}$$

где D_x — средний коэффициент диффузии бензольных углеводородов в каменноугольном масле, м²/c; $\delta_{np} = [\mu_x^2/(\rho_x^2 g)]^{1/3}$ — приведенная толщина стекающей пленки жидкости, м; $\operatorname{Re}_x = 4U\rho_x/(a\mu_x)$ — модифицированный критерий Рейнольдса для стекающей по насадке пленки жидкости; $\operatorname{Pr}'_x = \mu_x/(\rho_x D_x)$ — диффузионный критерий Прандтля для жидкости.

В разбавленных растворах коэффициент диффузии D_x может быть достаточно точно вычислен по уравнению [3, 8, 9]:

$$D_x = 7.4 \cdot 10^{-12} \ (\beta M)^{0.5} \ T / (\mu_x v_{\rm BY}^{0.6}), \tag{5.23}$$

где *М* — мольная масса каменноугольного масла, кг/кмоль; *T* — температура масла, К; μ_x — вязкость масла, мПа·с; v_{Бy} — мольный объем бензольных углеводородов, см³/моль; β — параметр, учитывающий ассоциацию молекул.

Подставив, получим:

$$D_x = 7.4 \cdot 10^{-12} (1 \cdot 170)^{0.5} 303 / (16.5 \cdot 96^{0.6}) = 1.15 \cdot 10^{-10} \text{ m}^2/\text{c};$$

$$\delta_{np} = [(16.5 \cdot 10^{-3})^2 / (1060^2 \cdot 9.8)]^{1/3} = 2.88 \cdot 10^{-4} \text{ m};$$

 $\operatorname{Re}_{x} = (4 \cdot 0.00137 \cdot 1060) / 65 \cdot 16.5 \cdot 10^{-3} = 5.41; \qquad \operatorname{Pr}_{x}' = (16.5 \cdot 10^{-3}) / 1060 \cdot 1.15 \cdot 10^{-10} = 1.31 \cdot 10^{5};$

$$\beta_x = 0.0021 \frac{1.15 \cdot 10^{-10}}{2.88 \cdot 10^{-4}} 5.41^{0.75} (1.31 \cdot 10^5)^{0.5} = 1.065 \cdot 10^{-6} \text{ m/c}.$$

Выразим β_x в выбранной для расчета размерности:

$$\beta_x = 1,065 \cdot 10^{-6} (\rho_x - c_{x cp}) = 1,065 \cdot 10^{-6} (1060 - 16,2) = 1,11 \cdot 10^{-3} \text{ kr}/(\text{m}^2 \cdot \text{c}),$$

где c_{xep} — средняя объемная концентрация бензольных углеводородов в поглотителе, кг БУ/(м³·см)

По уравнению (5.8) рассчитаем коэффициент массопередачи в газовой фазе Ку:

$$K_y = 1/[1/(6,1\cdot 10^{-3}) + 2/(1,11\cdot 10^{-3})] = 5,09\cdot 10^{-4} \text{ kr}/(\text{M}^2 \cdot \text{c}).$$

5.1.7. Поверхность массопередачи и высота абсорбера

Поверхность массопередачи в абсорбере по уравнению (5.1) равна:

$$F = 0.457 / (5.09 \cdot 10^{-4} \cdot 0.009) \approx 10^5 \text{ m}^2$$

Высоту насадки, необходимую для создания этой поверхности массопередачи, рассчитаем по формуле

$$H = F / (0.785 a d^2 \psi_a). \tag{5.24}$$

Подставив численные значения, получим:

$$H = 10^{5} / (0,785 \cdot 65 \cdot 3,8^{2} \cdot 0,95) = 143$$
 м.

Обычно высота скрубберов не превышает 40—50 м, поэтому для осуществления заданного процесса выберем 4 последовательно соединенных скруббера, в каждом из которых высота насадки равна 36 м. Во избежание значительных нагрузок на нижние слои насадки ее укладывают в колонне ярусами по 20—25 решеток в каждом. Каждый ярус устанавливают на самостоятельные поддерживающие опоры, конструкции которых даны в справочнике [6] Расстояние между ярусами хордовой насадки составляет обычно 0,3— 0,5 м [4]

Принимая число решеток в каждом ярусе 25, а расстояние между ярусами 0,3 м, определим высоту насадочной части абсорбера:

$$H_{\rm H} = H + 0.3 \left(\frac{H}{(0.25l)} - 1 \right) = 36 + 0.3 \left(\frac{36}{(25 \cdot 0.1)} - 1 \right) = 40 \, {\rm M}.$$

Расстояние между днищем абсорбера и насадкой Z_u определяется необходимостью равномерного распределения газа по поперечному сечению колонны. Расстояние от верха насадки до крышки абсорбера Z_u зависит от размеров распределительного устройства для орошения насадки и от высоты сепарационного пространства (в котором часто устанавливают каплеотбойные устройства для предотвращения брызгоуноса из колонны). Согласно [12], примем эти расстояния равными соответственно 1,4 и 2,5 м. Тогда общая высота одного абсорбера

$$H_a = H_u + Z_b + Z_u = 40 + 1.4 + 2.5 = 43.9$$
 M.

5.1.8. Гидравлическое сопротивление абсорберов

Гидравлическое сопротивление ΔP обусловливает энергетические затраты на транспортировку газового потока через абсорбер. Величину ΔP рассчитывают по формуле [3]:

$$\Delta P = \Delta P_{\rm c} \cdot 10^{bU} \tag{5.25}$$

где ΔP_c — гидравлическое сопротивление сухой (не орошаемой жидкостью) насадки, Па; U — плотность орошения, м³/(м²·c); b — коэффициент, значения которого для различных насадок приведены ниже [3]

Насадка	b	Насадка	b
Кольца Рашига в укладку:		Кольца Палля (50 мм)	126
50 мм	173	Блоки керамические	151
80 мм	144	Седла «Инталокс»:	
100 мм	119	25 мм	33
Кольца Рашига внавал:		50 мм	28
25 мм	184	Седла Берля (25 мм)	30
50 мм	169	• • •	

Гидравлическое сопротивление сухой насадки $\Delta P_{\rm c}$ определяют по уравнению

$$\Delta P_{\rm c} = \lambda \, \frac{H}{d_s} \frac{w_0^2}{2} \, \rho_y, \tag{5.26}$$

где λ — коэффициент сопротивления. Для хордовой насадки [10]:

$$\lambda = 6.64 / \operatorname{Re}_{y}^{0.375}; \tag{5.27}$$

 $w_0 = w/\varepsilon$ — скорость газа в свободном сечении насадки (в м/с).

Подставив, получим:

$$\lambda = 6.64/2618^{0.375} = 0.347;$$

 $\Delta P_{\rm c} = 0.347 \frac{144}{0.042} \frac{(1.15/0.68)^2}{2} \frac{0.464}{2} = 789 \ \Pi a.$

Коэффициент сопротивления беспорядочных насадок, в которых пустоты распределены равномерно по всем направлениям (шары, седлообразная насадка), рекомендуется [3] рассчитывать по уравнению

$$\lambda = 133/\text{Re}_y + 2.34. \tag{5.28}$$

201

Коэффициент сопротивления беспорядочно насыпанных кольцевых насадок можно рассчитывать по формулам:

при ламинарном движении (Re₄ < 40)

$$\lambda = 140/\mathrm{Re}_{y}; \tag{5.29}$$

при турбулентном движении (Re_y> 40)

$$\lambda = 16/\text{Re}_y^{0.2}.$$
 (5.30)

Коэффициент сопротивления регулярных насадок находят по уравнению

$$\lambda = \lambda_{\rm rp} + \xi \ (d_{\rm s}/l), \tag{5.31}$$

где λ_{τр} — коэффициент сопротивления трению; ξ — коэффициент местного сопротивления:

$$\xi = 4.2/\epsilon^2 - 8.1/\epsilon + 3.9$$

Гидравлическое сопротивление орошаемой насадки ΔP равно:

$$\Delta P = 789 \cdot 10^{119 \cdot 0.00137} = 1148 \ \Pi a.$$

Общее сопротивление системы абсорберов определяют с учетом гидравлического сопротивления газопроводов, соединяющих их (см. гл. 1).

Анализ результатов расчета насадочного абсорбера показывает, что основное диффузионное сопротивление массопереносу в этом процессе сосредоточено в жидкой фазе, поэтому можно интенсифицировать процесс абсорбции, увеличив скорость жидкости. Для этого нужно либо увеличить расход абсорбента, либо уменьшить диаметр абсорбера. Увеличение расхода абсорбента приведет к соответствующему увеличению нагрузки на систему регенерации абсорбента, что связано с существенным повышением капитальных и энергетических затрат (возрастают расходы греющего пара и размеры теплообменной аппаратуры). Уменьшение диаметра абсорбера приведет к увеличению рабочей скорости газа, что вызовет соответствующее возрастание гидравлического сопротивления абсорберов. Ниже приведены результаты расчета абсорбера при рабочей скорости газа w = 2,15 м/c, практически вдвое превышающей принятую ранее:

Параметр	<i>w</i> ==1,15 м/с	<i>w</i> = 2,15 м/с
$U, m^3/(m^2 \cdot c)$	0,00137	0,00252
$\beta_x, \kappa r/(m^2 \cdot c)$	0,00111	0,00178
$\beta_{\mu}, \kappa r/(m^2 \cdot c)$	0,0061	0,01
$\vec{R}_{\mu}, \kappa r / (M^2 \cdot c)$	0,000509	0,00082
<i>F</i> , M ²	100 000	61 900
<i>d</i> , м	3,8	2,8
Н, м	144	163
Δ <i>Р</i> , Па	1148	4920
Число абсорберов	4	5

Как видно из приведенных данных, повышение интенсивности процесса приводит к значительному уменьшению диаметра колонны при некотором возрастании высоты насадки и к существенному повышению гидравлического сопротивления.

Приведенный расчет выполнен без учета влияния на основные размеры абсорбера некоторых явлений (таких как неравномерность распределения жидкости при орошении, обратное перемешивание, неизотермичность процесса и др.), которые в ряде случаев могут привнести в расчет существенные ошибки. Эти явления по-разному проявляются в аппаратах с насадками разных типов. Оценить влияние каждого из них можно, пользуясь рекомендациями, приведенными в литературе [3, 8]

5.2. РАСЧЕТ ТАРЕЛЬЧАТОГО АБСОРБЕРА

Большое разнообразие тарельчатых контактных устройств затрудняет выбор оптимальной конструкции тарелки. Прн этом наряду с общими требованиями (высокая интенсивность единицы объема аппарата, его стоимость и др.) выдвигаются требования, обусловленные спецификой производства: большой интервал устойчивой работы при изменении нагрузок по фазам, возможность использования тарелок в среде загрязненных жидкостей, возможность защиты от коррозии и т. п. Зачастую эти характеристики тарелок становятся превалирующими, определяющими пригодность той или иной конструкции для использования в каждом конкретном процессе. Для предварительного выбора конструкции тарелок можно пользоваться данными, приведенными в табл. 5.2 [3; 11]. При выборе тарелки следует учитывать важнейшие показатели процесса. Тарелки, для которых одному из предъявленных требований соответствует балл 0, отвергаются; для остальных тарелок баллы суммируются. Самой пригодной можно считать тарелку с наибольшей суммой баллов.

В процессе предварительного выбора тарелок (их может оказаться 2—3 типа) надо рассмотреть оценки по отдельным показателям, обращая особое внимание на баллы 1 и 5, причем решение обычно является компромиссным между желательными и нежелательными характеристиками. При этом учитывают и такие факторы, как промышленный опыт эксплуатации, возможность быстрого изготовления и т д. Окончательный выбор определяется технико-экономическим анализом.

При расчете движущей силы в аппаратах с переточными тарелками (ситчатыми, клапанными, колпачковыми и др.) необходимо учитывать влияние на нее взаимного направления потоков фаз, поперечной неравномерности потока жидкости, продольного перемешивания жидкости, уноса, продольного перемешивания газа по рекомендациям, приведенным в литературе [5]. Пример такого расчета рассмотрен в гл. 6.

Ниже в качестве примера приведен расчет абсорбера с тарелками провального типа.

					Тип	тарелк	и			
Показатель	1	2	3	4	5	6	7	8	9	10
Нагрузки по жилкости и газу:		_								
большие	.2	1	3	4	4	4	4	4	2	4
малые	3	3	3	2	3	5	5	5	$\tilde{4}$	2
Большая область устойчивой работы	4	3	4	4	5	5	5	5	4	ĩ
Малое гидравлическое сопро-	0	0	0	3	2	3	2	2	3	4
тивление										
Малый брызгоунос	1	1	2	3	3	3	4	3	5	4
Малый запас жидкости	0	0	0	3	4	3	3	3	3	4
Малое расстояние между тарел-	3	2	3	4	5	4	4	4	5	5
камн							-	-	-	-
Большая эффективность	4	3	4	4	4	5	4	5	5	4
Большая интенсивность	2	1	3	4	5	4	4	4	5	4
Реагирование на изменение на-	3	2	4	3	4	5	5	5	3	1
грузок										
Малые капитальные затраты	1	2	1	3	4	3	4	3	3	4
Малый расход металла	2	2	3	4	3	4	4	3	3	5
Легкость осмотра, чистки и ре-	2	1	3	3	2	3	3	2	ĩ	5
монта						-	•	-	•	Ũ
Легкость монтажа	1	1	3	4	2	4	4	3	3	5
Возможность обработки взвесей	Ī	Ō	Õ	1	Õ	i	i	ĭ	ŏ	4
Легкость пуска и остановки	4	4	4	2	3	4	5	4	4	2
Возможность отвода тепла	Î	1	1	3	Ō	2	2	2	3	3
Возможность использования в	2	Í	2	3	2	2	$\overline{2}$	$\overline{2}$	ī	4
агрессивных средах			_	_	_		_	_	-	-

Таблица 5.2. Сравнительная характеристика тарелок

Показатал		Тил тарелки											
	11	12	13	14	15	16	17	18	19	20			
Нагрузки по жидкости и газу:													
большие	4	5	4	4	4	4	5	4	5	4			
малые	3	2	3	3	4	3	ī	4	ĩ	3			
Большая область устойчивой	ī	ī	2	3	4	3	3	4	3	3			
работы	•	•	-	•	•	•	-	•		•			
Малое гидравлическое сопро-	3	4	3	3	4	3	5	3	4	4			
тивление	•	-	•		•	•	•	•	•				
Малый брызгоунос	4	4	4	4	4	4	5	3	5	5			
Малый запас жилкости		4	2	3	3	5	5	3	5	5			
Малое расстояние между тарел-	5	4	4	5	5	4	4	4	4	4			
ками	0	•	•	Ŭ	0	•	•	•	•	•			
Большая эффективность	4	3	4	4	4	3	3	4	4	4			
Большая интенсивность	4	4	4	4	4	4	5	4	5	4			
Реагноование на изменение на-	i	o i	2	3	3	3	š	3	3	3			
гоузок	•	U	-	0	Ũ	Ŭ	Ū	Ū	0	Ŭ			
Малые капитальные затраты	5	5	2	3	4	4	4	4	4	4			
Малый расход металда	5	s s	4	5	4	5	5	4	5	5			
Легкость осмотра цистки и ре-	4	1	7	4	3	จั	3	à	à	ă			
монтя	7	т	0	7	3	J	U	0	0	0			
Легиость монтажа	5	2	3	5	5	4	4	4	4	4			
Возможность обработки вавесей	จั	ŝ	3	4	4	3	, 9	i i	9	9 9			
Легкость пуска и остановки	3	5	จั	3	2	ว้	â	่า่	วั	วั			
BORNOWHOCTL OTROIR THURS	3	5	2	3	5	ň	ñ	ň	ň	ň			
Возможность неновноевания в	1	3	3	4	2	3	3	3	š	2			
	т	J	2	т	J	2	4	4	2	2			

Примечания. 1. Обозначение типов тарелок: 1 — колпачковая с круглыми колпачками; 2 — колпачковая с прямоугольными колпачками; 3 — «Юнифлакс»; 4 — ситчатая с переливом; 5 — ситчатая с направляющими отбойниками; 6 — клапанная с круглыми клапанами; 7 — клапанная с прямоугольными клапанами; 8 — балластная; 9 — колпачково-ситчатая; 10 — решетчатая провальная; 11 — дырчатая провальная; 12 — трубчатая провальная; 13 — волнистая провальная; 14 — провальная; с азной перфорацией; 15 — Киттеля; 16 — чешуйчатая; 17 — пластиичатая; 18 — Гипронефтемаша; 19 — каскадная; 20 — Вентури. 2. Соответствие каждой тарелки тому или нному показателю оценено по следующей шкале: 0 — не пригодна; 1 — сомпительно пригодна; 4 — хорошо пригодна; 5 — отлично пригодна.

Массу улавливаемых бензольных углеводородов и расход поглотительного масла определяют так же, как для насадочного абсорбера (см. разд. 5.1.1).

В колоннах с провальными тарелками с достаточной достоверностью можно принять движение газа соответствующим модели идеального вытеснения и полное перемешивание жидкости на каждой ступени. В этом случае, пренебрегая влиянием уноса жидкости, при большом числе тарелок в колонне (больше 8—10 шт.) движущую силу можно рассчитывать как для противоточного аппарата с непрерывным контактом фаз. Оценочный расчет показывает, что в нашем примере число тарелок велико, поэтому можно воспользоваться указанным приближением и определить движущую силу как среднелогарифмическую разность концентраций (см. разд. 5.1.2).

5.2.1. Скорость газа и диаметр абсорбера

Скорость газа в интервале устойчивой работы провальных тарелок может быть определена с помощью уравнения [1, 3]:

$$Y = Be^{-4X} \tag{5.32}$$

Здесь

$$Y = \frac{\omega^2}{g d_s F^2} \frac{\rho_y}{\rho_x} \left(\frac{\mu_x}{\mu_b}\right)^{0.16} \qquad \qquad X = (L/G)^{1/4} \left(\frac{\rho_y}{\rho_x}\right)^{1/8}$$

где w — скорость газа в колонне, м/с; d_s — эквивалентный диаметр отверстин или щели в тарелке, м; F_c — доля свободного сечения тарелки, м²/м²; μ_x , μ_b — вязкость соответственно поглотительного масла при температуре в абсорбере и воды при температуре 20 °C, Па.с.

Подставив, получим:

$$X = (16,44/5,577)^{1/4} (0,464/1060)^{1/8} = 0,498.$$

Коэффициент *B* равен 2,95 для нижнего и 10 -для верхнего пределов нормальной работы тарелки. Наиболее интенсивный режим работы тарелок соответствует верхнему пределу, когда B = 10, однако с учетом возможного колебания нагрузок по газу принимают B = 6 - 8.

Приняв коэффициент B = 8, получим:

$$Y = 8 \cdot 2.72^{-4 \cdot 0.498} = 1.092$$

По каталогу [12] (см. Приложение 5.1) выберем решетчатую провальную тарелку со свободным сечением $F_c = 0.2 \text{ м}^2/\text{м}^2$ и шириной щели $\delta = 6 \text{ мм}$; при этом $d_s = -2\delta = 2 \cdot 0.006 = 0.012 \text{ м}$. Тогда

$$Y = \frac{\omega^2}{9.8 \cdot 0.012 \cdot 0.2^2} \cdot \frac{0.464}{1060} \left(\frac{16.5 \cdot 10^{-3}}{10^{-3}}\right)^{0.16} = 1,092.$$

Отсюда $\omega = 2,74$ м/с.

Для ситчатых тарелок рабочую скорость газа можно рассчитать по уравнению [7]

$$\omega = 0.05 \sqrt{\rho_x/\rho_y}.$$
 (5.33)

Для клапанных тарелок

$$\left(\frac{\omega}{F_c}\right)^{1.85} = \frac{G}{S_o} \frac{2g}{\xi \rho_y}, \qquad (5.34)$$

где G — масса клапана, кг; S_o — площадь отверстия под клапаном, м²; ξ — коэффициент сопротивления, который может быть принят равным 3. По ГОСТ 16452—79 диаметр отверстия под клапаном равен 40 мм, масса клапана 0,04 кг.

Для колпачковых тарелок предельно допустимую скорость рекомендуется рассчитывать по уравнению [1]

$$\omega = \frac{0.0155}{d_{\kappa}^{2/3}} \sqrt{\frac{\rho_{x}}{\rho_{y}}} h_{\kappa}, \qquad (5.35)$$

где d_κ — диаметр колпачка, м; h_κ — расстояние от верхнего края колпачка до вышерасположенной тарелки, м.

Диаметр абсорбера находят из уравнения расхода (5.10):

$$d = \sqrt{\frac{4 \cdot 13.9 \frac{273 + 30}{273} \frac{1.013 \cdot 10^5}{1.19 \cdot 10^5}}{3.14 \cdot 2.74}} = 2.47 \text{ M}.$$

Принимаем [6] (см. разд. 5.1.4) стандартный диаметр обечайки абсорбера d = 2.6. При этом действительная скорость газа в колонне

$$\omega = 2.74 \ (2,47/2,6)^2 = 2.47 \ \text{m/c}.$$

5.2.2. Коэффициент массопередачи

Обычно расчеты тарельчатых абсорберов проводят по модифицированному уравнению массопередачи, в котором коэффициенты массопередачи для жидкой K_{xi} и газовой K_{yi} фаз относят к единице рабочей площади тарелки:

$$M = K_{xy}F \Delta \bar{X}_{cp} = K_{yy}F \Delta \bar{Y}_{cp}, \qquad (5.36)$$

205

где M — масса передаваемого вещества через поверхность массопередачи в единицу времени, кг/с; F — суммарная рабочая площадь тарелок в абсорбере, м².

Необходимое число тарелок n определяют делением суммарной площади тарелок F на рабочую площадь одной тарелки f:

$$n = F/f. \tag{5.37}$$

Коэффициенты массопередачи определяют по уравнениям аддитивности фазовых диффузионных сопротивлений:

$$K_{xl} = \frac{1}{\frac{1}{\beta_{xl}} + \frac{1}{m\beta_{yl}}}; \qquad K_{yl} = \frac{1}{\frac{1}{\beta_{yl}} + \frac{m}{\beta_{xl}}}, \qquad (5.38)$$

где β_{xi} и β_{yi} — коэффициенты массоотдачи, отнесенные к единице рабочей площади тарелки соответственно для жидкой и газовой фаз, кг/(м²·с).

В литературе приводится ряд зависимостей для определения коэффициентов массоотдачи. На основании сопоставительных расчетов рекомендуем использовать обобщенное критериальное уравнение [13], применимое для различных конструкций барботажных тарелок:

$$Nu' = A Pe'^{0.5} \Gamma c \left(\frac{\mu_y}{\mu_x + \mu_y} \right)^{0.5}$$
 (5.39)

При этом для жидкой фазы

$$\operatorname{Nu}_{x}^{\prime} = \frac{\beta_{xl}l}{D_{x}}; \qquad \operatorname{Pe}_{x}^{\prime} = \frac{Ul}{(1-\varepsilon) D_{x}};$$

для газовой фазы

$$\operatorname{Nu}_{y}^{\prime} = \frac{\beta_{yl}l}{F_{c}D_{y}}; \qquad \operatorname{Pe}_{y}^{\prime} = \frac{\omega l}{\varepsilon D_{y}},$$

где A — коэффициент; D_x , D_y — коэффициенты молекулярной диффузии распределяемого компонента соответственно в жидкости и газе, M^2/c ; $U/(1-\varepsilon)$, w/ε — средние скорости жидкости и газа в барботажном слое, M/c; ε — газосодержание барботажного слоя, M^3/M^3 ; $\Gamma c = \Delta P_n/(\rho_x gl)$ — критерий гидравлического сопротивления, характеризующий относительную величину удельной поверхности массопередачи на тарелке; $\Delta P_n = \rho_x gh_0$ — гидравлическое сопротивление барботажного газожидкостного слоя (пены) на тарелке, Πa ; h_0 — высота слоя светлой (неаэрированной) жидкости на тарелке, м; l — характерный линейный размер, равный среднему диаметру пузырька или газовой струи в барботажном слое, м.

В интенсивных гидродинамических режимах характерный линейный размер *l* становится, по данным ряда авторов [13], практически постоянной величиной, мало зависящей от скоростей фаз и их физических свойств. В этом случае критериальные уравнения, решенные относительно коэффициентов массоотдачи, приводятся к удобному для расчетов виду:

$$\beta_{xt} = 6.24 \cdot 10^5 D_x^{0.5} \left(\frac{U}{1-\epsilon}\right)^{0.5} h_0 \left(\frac{\mu_u}{\mu_x + \mu_y}\right)^{0.5}$$
(5.40)

$$\beta_{yl} = 6.24 \cdot 10^5 D_y^{0.5} \left(\frac{w}{e}\right)^{0.5} h_0 \left(\frac{\mu_y}{\mu_x + \mu_y}\right)^{0.5}$$
(5.41)

5.2.3. Высота светлого слоя жидкости

Высоту светлого слоя жидкости на тарелке h_0 находят из соотношения [3]:

$$\Delta P_n = g \rho_x h_0 = g \rho_x (1 - \varepsilon) h_n, \qquad (5.42)$$

где h_п — высота газожидкостного барботажного слоя (пены) на тарелке, м. Отсюда

$$h_0 = (1 - \varepsilon) h_n$$

Высоту газожидкостного слоя для провальных тарелок определяют из уравнения [3]

$$Fr = \frac{0.0011B}{C} \frac{\rho_r}{\rho_y} \,. \tag{5.43}$$

где $Fr = w_0^2/(gh_0)$ — критерий Фруда; w_0 — скорость газа в свободном сечении (щелях) тарелки, м/с; B — коэффициент — см. уравнение (5.32); C — величина, равная

$$C = \left(\frac{U^6 \mu_x^2 \rho_x}{g \sigma^3}\right)^{0.067} \tag{5.44}$$

Плотность орошения U для провальных тарелок без переливных устройств равна:

$$U = L/(\rho_s \cdot 0.785d^2). \tag{5.45}$$

Отсюда получим:

$$U = \frac{16,44}{(1060 \cdot 0,785 \cdot 2,6^2)} = 0,0029 \text{ m}^3/(\text{m}^2 \cdot \text{c})$$

Тогда

$$C = \frac{0.0029^6 (16.5 \cdot 10^{-3})^2 1060}{9.8 (29 \cdot 10^{-3})^3} = 0.165.$$

Пересчитаем коэффициент В (который ранее был принят равным 8) с учетом действительной скорости газа в колонне:

$$B=8 (2,47/2,74)^2=6,5.$$

Тогда

 $Fr = 0.0011 \cdot 6.5 \cdot 1060 / (0.165 \cdot 0.464) = 99.$

Отсюда находим высоту газожидкостного слоя:

$$h_{\rm n} = \frac{w_0^2}{g\,{\rm Fr}} = \frac{w^2}{F_{\rm c}^2 g\,{\rm Fr}} = \frac{2.47}{0.2^2 \cdot 9.8 \cdot 99} = 0.157.$$

Газосодержание барботажного слоя находят по уравнению [3]:

$$\varepsilon = 1 - \frac{0.21}{\sqrt{F_c} \cdot Fr^{0.2}} = 1 - \frac{0.21}{\sqrt{0.2} \cdot 99^{0.2}} = 0.812 \text{ m}^3/\text{m}^3.$$
(5.46)

Тогда высота светлого слоя жидкости:

 $h_0 = (1 - 0.812) \ 0.157 = 0.0295 \ M.$

Для барботажных тарелок других конструкций газосодержание можно находить по единому уравнению [3]

$$\varepsilon = \sqrt{Fr} / (1 + \sqrt{Fr}), \qquad (5.47)$$

где $\operatorname{Fr} = \boldsymbol{\omega}^2/(gh_0)$.

Для колпачковых тарелок высоту светлого слоя жидкости можно находить по уравнению [3]:

$$h_0 = 0.0419 + 0.19h_{\text{nep}} - 0.0135w \sqrt{p_y} + 2.46q, \qquad (5.48)$$

207

где $h_{\rm nep}$ — высота переливной перегородки, м; q — линейная плотность орошения. м³/(м·с), равная $q = Q/L_c$; Q — объемный расход жидкости, м³/с; L_c — периметр слива (ширина переливной перегородки), м.

Для ситчатых и клапанных тарелок в практических расчетах можно пользоваться уравнением [3]

$$h_0 = 0.787 q^{0.2} h_{\text{nep}}^{0.56} \omega^m \left[1 - 0.31 \exp\left(-0.11 \mu_x \right) \right] \left(\sigma_x / \sigma_a \right)^{0.09}, \tag{5.49}$$

где m — показатель степени, равный 0,05—4,6 h_{nep} ; здесь μ_x — в мПа·с, σ_x , σ_B — в мН/м.

5.2.4. Коэффициенты массоотдачи

Рассчитав коэффициенты молекулярной диффузии бензольных углеводородов в масле D_x и газе D_y (см. разд. 5.1.6), вычислим коэффициенты массоотдачи:

$$\beta_{xf} = 6.24 \cdot 10^5 \ (1.15 \cdot 10^{-10})^{0.5} \ \left(\frac{0.0029}{1 - 0.812}\right)^{0.5} 0.0295 \ \left(\frac{0.0127}{16.5 + 0.0127}\right)^{0.5} = 0.000678 \ \text{m/c};$$

$$\beta_{yf} = 6.24 \cdot 10^5 \cdot 0.2 \ (1.17 \cdot 10^{-5})^{0.5} \ \left(\frac{2.47}{0.812}\right)^{0.5} 0.0295 \ \left(\frac{0.0127}{16.5 + 0.0127}\right)^{0.5} = 0.61 \ \text{m/c}.$$

Выразим β_{xi} и β_{ui} в выбранной для расчета размерности:

$$\begin{aligned} \beta_{xi} = 0.000678 \ (\rho_x - c_{x\,cp}) = 0.000678 \ (1060 - 16.2) = 0.709 \ \kappa r / (m^2 \cdot c); \\ \beta_{yi} = 0.61 \ (\rho_y - y_{cp}) = 0.61 \ (0.464 - 0.0185) = 0.272 \ \kappa r / (m^2 \cdot c). \end{aligned}$$

Коэффициент массопередачи

$$K_{yl} = \frac{1}{1/0.272 + 2/0.709} = 0.154 \text{ kg/(m^2 \cdot c)}.$$

5.2.5. Число тарелок абсорбера

Число тарелок абсорбера находим по уравнению (5.37). Суммарная поверхность тарелок

$$F = 0.457 / (0.154 \cdot 0.009) = 330 \text{ m}^2$$

Рабочую площадь тарелок с перетоками / определяют с учетом площади, занятой переливными устройствами:

$$f = q \cdot 0.785d^2, \tag{5.50}$$

где ф — доля рабочей площади тарелки, м²/м²; d -- диаметр абсорбера, м.

Рабочую площадь *ј* провальной тарелки можно принять равной сечению абсорбера, т. е. $\varphi = 1$

Тогда требуемое число тарелок

$$n = 330/(0.785 \cdot 2.6^2) = 63.$$

5.2.6. Выбор расстояния между тарелками и определение высоты абсорбера

Расстояние между тарелками принимают равным или несколько большим суммы высот барботажного слоя (пены) h_n и сепарационного пространства h_c :

$$h \geqslant h_0 + h_c. \tag{5.51}$$

Высоту сепарационного пространства вычисляют, исходя из допустимого брызгоуноса с тарелки, принимаемого равным 0,1 кг жидкости на 1 кг газа. Рекомендованы [3] расчетные уравнения для определения брызгоуноса *е* (кг/кг) с тарелок различных конструкций. Для провальных и клапанных тарелок

$$P = A \left[\omega^{m} / h_{\rm c}^{n} \right] \tag{5.52}$$

где f — поправочный множитель, учитывающий свойства жидкости и равный 0,0565 (ρ_x/σ)^{1.1}; σ — в мН/м; коэффициент A и показатели степени m и n приведены ниже:

Тарелка	А	m	
Провальная (дырчатая, решетчатая, с	золнистая) 1,4 · 10 ⁻⁴	2,56	$2,56 \\ 2,5$
Клапанная и балластная	8,5 · 10 ⁻⁵	2,15	

Для тарелок других конструкций брызгоунос рассчитывают по уравнениям, приведенным ниже.

Для ситчатых тарелок

$$e = 0,000077 (73/\sigma) (w/h_c)^{3.2}$$
 (5.53)

Для колпачковых тарелок унос жидкости можно определять по следующей зависимости [3]:

$$3600Eh_{c}^{2.59}\mu_{\tau}\sigma^{0.4} = f(w\sqrt{\rho_{y}/\rho_{x}}), \qquad (5.54)$$

где E — масса жидкости, уносимой с 1 м² рабочей площади сечения колонны (за вычетом переливного устройства), кг/(м²·c); μ_x — в мПа·c; σ — в мН/м.

Графическая зависимость функции (5.54) приведена на рис. 5.5.

Для провальных тарелок по уравнению (5.52) найдем:

$$0, 1 = 1, 4 \cdot 10^{-4} \cdot 5.65 \cdot 10^{-2} (1060/20)^{1.4} (2.47^{2.56})$$

Решая относительно h_c, получим h_c = 0,343 м. Тогда расстояние между тарелками

$$h = 0,157 + 0,343 = 0.5$$
 м.

Расстояние между тарелками стальных колонных аппаратов следует выбирать из ряда: 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200 мм.

Выберем расстояние между тарелками абсорбера h = 0.5 м. Тогда высота тарельчатой части абсорбера

$$H_{\tau} = (n-1) h = (63-1) 0.5 = 31 \text{ M}.$$

Примем (см. разд. 5.1.7) расстояние между верхней тарелкой и крышкой абсорбера 2,5 м; расстояние между нижней тарелкой и днищем абсорбера 4.0 м. Тогда общая высота абсорбера

$$H_a = 31 + 2.5 + 4.0 = 37.5$$
 M.

5.2.7. Гидравлическое сопротивление тарелок абсорбера

Гидравлическое сопротивление тарелок абсорбера определяют по формуле

$$\Delta P_a = n \ \Delta P. \tag{5.55}$$

Полное гидравлическое сопротивление одной тарелки ΔP складывается из трех слагаемых:

$$\Delta P = \Delta P_{\rm c} + \Delta P_{\rm u} + \Delta P_{\rm o}. \tag{5.56}$$

Гидравлическое сопротивление сухой (неорошаемой) тарелки

$$\Delta P_{\rm c} = \frac{1}{2} w^2 \rho_y / (2F_{\rm c}^2). \tag{5.57}$$

Рис. 5.6. Схема расчета абсорбционных аппаратов

Значения коэффициентов сопротивления ξ сухих тарелок различных конструкций приведены ниже [3, 5]

Тарелка	ξ
Колпачковая	4.05.0
Клапанная	3.6
Ситчатая	1.1 - 2.0
Провальная с щелевидными отверстиями	1,4-1,5

Принимая $\xi = 1,5$, получим:

$$\Delta P_{\rm c} = 1.5 \cdot 2.47^2 \cdot 0.464 / (0.2^2 \cdot 2) = 53.0 \ \Pi a.$$

Гидравлическое сопротивление газожидкостного слоя (пены) на тарелке

$$\Delta P_{\rm n} = g \rho_{\rm s} h_0; \qquad \Delta P_{\rm n} = 9.8 \cdot 1060 \cdot 0.0295 = 306 \ \Pi a. \tag{5.58}$$

Гидравлическое сопротивление, обусловленное силами поверхностного натяжения [3]

$$\Delta P_{\sigma} = 4\sigma/d_{\sigma}; \qquad \Delta P_{\sigma} = 4 \cdot 20 \cdot 10^{-3}/0.012 = 6.7 \ \Pi a. \tag{5.59}$$

Тогда полное гидравлическое сопротивление

$$\Delta P = 53 + 306 + 6.7 = 365.7$$
 Па.

Гидравлическое сопротивление всех тарелок абсорбера

$$\Delta P_a = 365, 7 \cdot 63 = 23040$$
 Па.

5.3. СРАВНЕНИЕ ДАННЫХ РАСЧЕТА НАСАДОЧНОГО И ТАРЕЛЬЧАТОГО АБСОРБЕРОВ

Результаты расчетов насадочного и тарельчатого абсорберов приведены ниже:

Параметр	Насадочный абсорбер	Тарельчатый абсорбер
Диаметр, м	3,8	2,6
Высота, м	43,9	37,5
Объем, м ³	1991	199
Число абсорберов, шт.	4	1
Скорость газа, м/с	1,15	2,47
Гидравлическое сопротивление контактных элементов, Па	1148	23 040

Сравнение этих данных и их анализ показывают, что применение тарельчатого абсорбера позволяет существенно сократить размеры колонн, однако при этом значительно возрастают энергетические затраты на преодоление газовым потоком сопротивления абсорбера. Окончательное решение о применении того или иного типа аппаратов может дать лишь полный сравнительный технико-экономический расчет.

Учет влияния на процесс массопередачи таких явлений, как брызгоунос в тарельчатых колоннах, перемешивание и байпасирование потоков, показан на примере расчета процесса ректификации (см. гл. 6).

На рис. 5.6 дана схема расчета насадочных и тарельчатых алпаратов для проведения процесса физической абсорбции, не осложненной химической реакцией, протекающими одновременно тепловыми процессами (неизотермическая абсорбция), процессами, связанными с промежуточным отбором или рециркуляцией жидкости, существенно отражающимися на структуре потоков.

Примеры расчетов осложненных процессов абсорбции приведены в монографии [3].

приложения

Приложение 5.1. Конструкции колонных аппаратов

Колонные аппараты предназначены для проведения процессов тепло- и массообмена (ректификация, дистилляция, абсорбция, десорбция) в химической, нефтехимической, нефтеперерабатывающей и других отраслях промышленности.

Колонные аппараты изготовляют диаметром 400—4000 мм: для работы под давлением до 16 кгс/см² (1,6 МПа) — в царговом (на фланцах) исполнении корпуса, для работы под давлением до 40 кгс/см² (4,0 МПа), под атмосферным давлением или под вакуумом (с остаточным давлением не ниже 10 мм рт. ст.) — в цельносварном исполнении корпуса.

В зависимости от диаметра колонные аппараты изготовляют с тарелками различных типов. Колонные аппараты диаметром 400-—4000 мм оснащают стандартными контактными и распределительными тарелками, опорными решетками (для насадочных аппаратов), опорами, люками, поворотными устройствами, днищами и фланцами.

Колонные анпараты диаметром 400—800 мм с насыпной насадкой изготовляют в царговом исполнении. Для равномерного распределения жидкости по поверхности насадки аппараты оснащены распределительными тарелками типа ТСН-III и перераспределительными типа ТСН-II. Каждый ярус насадки опирается на опорную решетку.

Колонные аппараты диаметром 1000—2800 мм с насыпной насадкой изготовляют с цельносварным корпусом и съемной крышкой. Для равномерного распределения жидкости по поверхности насадки аппараты оснащены распределительными тарелками типа ТСН-III и перераспределительными типа TCH-II.

Распределительную тарелку типа TCH-III устанавливают в верхней части аппарата, перераспределительную типа TCH-II — под опорной решеткой для насадки (кроме нижней опорной решетки). Каждый ярус насадки опирается на опорную решетку. Высоту яруса насадки указывает заказчик. Для каждого яруса насадки на корпусе аппарата имеется два люка диаметром 500 мм каждый.

На корпусе цельносварного тарельчатого аппарата предусмотрены люки для обслуживания тарелок. Люки рекомендуется предусматривать для каждых 5—10 тарелок, располагая их попеременно с диаметрально противоположных сторон корпуса.

Люки изготовляют по ОСТ 26-2000-77 - ОСТ 26-2015-77.

Для колонн диаметром 1000—1600 мм рекомендуются диаметр люка 500 мм, расстояние между тарелками в месте установки люка 800 мм; для колонн диаметром свыше 1600 мм диаметр люка 600 мм, расстояние между тарелками в месте установки люка 800 и 1000 мм. Для обслуживания тарелок типов ТКП и ТСО рекомендуемый диаметр люка 450 или 500 мм.

Минимальные толщины стенок корпуса колонного аппарата зависят от диаметра аппарата:

Диаметр аппарата, мм	1000-1800	2000 - 2600	2800 - 3200	3400	4000
Толщина стенки, мм	10	12	14	18	24

Типы колонных тарельчатых аппаратов [12] приведены в таблице ниже.

Типы колонных тарельчатых аппаратов

	Ряд днаметров колонных аппаратов, мм										
Тип тарелки	400	500	600	80 0	1000	1200	1400	1600	1800	2000	
	·		КСК	(с ко	лпачко	выми	гарелк	ами)			
ТСК-1 (ОСТ 26-01-282—74) ТСК-Р (ОСТ 26-808—73) ТСК-РЦ, ТСК-РБ (ОСТ 26-1111—74)	+	+	+	+	+ +	+	+ +	+ +	+ +	+ +	
·	КСС (с ситчатыми тарелками)										
ТС, ТС-Р, ТС-Р2, ТС-РЦ, ТС-РБ (ОСТ 26-805—73)	+	+	+	+	+	+	+	+	+	+	
			KCF	р (сре	шетча	тыми т	арелка	ми)			
TCP (OCT 26-675-72) TP (OCT 26-666-72)	+	+	+	+	+	+	+	+	+	+	
			K	CH (c	насып	ной на	ісадкой	i)			
TCH-II, TCH-III (OCT 26-705—73)	+	+	+	÷	+	÷	+	+	+	+	
	ККП (с клапанными тарелками)										
ТКП однопоточные ТКП двухпоточные (ОСТ 26-02-1401—77)					+	+	+	+	+	+ +	

	Ряд диаметров колоняых аппаратов, мм											
Іип тарелки	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000		
		КСК (с колпачковыми тарелками)										
ТСК-1 (ОСТ 26-01-28274) ТСК-Р (ОСТ 26-80873) ТСК-РЦ, ТСК-РБ (ОСТ 26-111174)	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +				
		КСС (с ситчатыми тарелками)										
ТС, ТС-Р, ТС-Р2, ТС-РЦ, ТС-РБ (ОСТ 26-805—73)	-ŀ	+	+	+	+	+	+	+				
			KCF) (c pe	шетча	гыми т	арелка	ми)				
TCP (OCT 26-675—72) TP (OCT 26-666—72)	+	+	+	+	+	+	+	+				
			к	CH (c	насыц	иой на	садкой	i)				
TCH-11, TCH-111 (OCT 26-705—73)	+-	+	+	ł	+	+	÷	+				
			KKI	П (ск.	лапанп	ыми т	арелка	ми)				
ТКП однопоточные ТКП двухпоточные (ОСТ 26-02-1401—77)	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+		

Приложение 5.2. Тарелки колонных аппаратов

колонны D, ммссчене колонны, м²барботажа, м Слива Lr, мслива, м² слива, м²патруб- ков, м² napob, %для про- хода паров, %15:20304000,1261,330,3020,0050,0086,3553055000,1962,450,40,0070,01586000,283,250,480,0120,027108000,50360,570,0210,0499,710000,789,30,80,050,0739	Диаметр	Свободное	Длина линии	Периметр	Площадь	Площадь паровых	Относи- тельная площадь	h _д при h		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>D</i> , м	IM	колонны, м ²	барботажа, м	тажа, м слива слива, м ² патруб- <i>L</i> _r , м слива, м ² ков, м ²	патруб- ков, м ²	для про- хода паров, %	15:20	30	
	400 500 600 800 1000))))	0,126 0,196 0,28 0,503 0,78	1,33 2,45 3,25 6 9,3	0,302 0,4 0,48 0,57 0,8	0,005 0,007 0,012 0,021 0,05	0,008 0,015 0,027 0,049 0,073	6,35 8 10 9,7 9	5—30	5—40

Техническая характеристика колпачковых тарелок типа ТСК-1

Диаметр колонны D, мм	Число кол- пач-	Диаметр колпачка d, мм	Шаг <i>t</i> , мм	Исполнение колпачка 1 2					Масс пачк (при = 2 Н, = 3 для	сакол- авкг и h == 0 мм, 800 мм) испол-
	, NOB			<i>Н</i> 1, мм	<i>h</i> , мм	<i>Н</i> 1, мм	<i>h</i> , мм	<i>k</i> , мм	пения	ения 2
400 500 600 800 1000	7 13 13 24 37	60 60 80 80 80	90 90 110 110 110	50 50 55 55 55 55	15; 20	60 60 70 70 70 70	20; 30	010	10 13 18 28 39	10,7 13,88 21,3 30,4 42,7

Техническая	характеристика	колпачковых	тарелок	типа	ТСК-Р

	Диаметр колонны D, мм									
Параметры	1000	1200	1400	1600	1800	2000	2200			
Свободное сечение колон- ны. м ²	0,78	1,13	1,54	2,01	2,54	3,14	3,81			
Длина линии барботажа, м	10,8	12,3	15,4	20,7	25,8	36,4	44,6			
Периметр слива L _s , м	0,665	0,818	1,09	1,238	1,419	1,455	1,606			
Сечение перелива, м ²	0.064	0,099	0,198	0,269	0,334	0,33	0,412			
Свободное сечение тарел- ки, м ²	0,09	0,129	0,162	0,219	0,272	0,385	0,471			
Относительная площадь для прохода паров <i>F</i> ., %	11,5	11,4	10,5	10,9	10,7	12,2	12,3			
Масса, кг	57,8	68,6	90,3	118,3	146	179,3	211,6			

	Диаметр колонны D, мм									
параметры	2400	2600	2800	3000	3200	3400	3600			
Свободное сечение колон- ны, м ²	4,52	5,31	6,16	7,07	8,04	9,08	10,18			
Длина линии барботажа, м	52,8	60,3	72,8	80,4	75,4	83,8	87,6			
Периметр слива Le, м	1,775	2,032	2,096	2,39	2,36	2,62	2,88			
Сечение перелива, м ²	0,505	0,674	0,686	0,902	0,88	1,128	1,441			
Свободное сечение тарел-	0,557	0,638	0,769	0,849	1,18	1,32	1,37			
ки, м²										
Относительная площадь для прохода паров F_{c} , %	12,3	12,1	12,5	12,1	14,6	⁻ 14,5	13,5			
Масса, кг	240,8	305	349,7	355	509	546	582			

Техническая характеристика колпачковых тарелок типов ТСК-РЦ и ТСК-РБ

	Диаметр колонны D, мм						
Параметры	1400	1600	1800	2000	2200		
Свободное сечение колонны, м ²	1,54	2,01	2,54	3,14	3,8		
Длина линии барботажа, м	15,1	16,97	23,88	27,65	37,7		
Периметр слива L _c , м	2,34/1,932	2,74/2,22	3,15/2,304	3,55/2,792	3,95/2,77		
Сечение перелива, м ²	0,211/0,251	0,259/0,311	0,277/0,334	0,404/0,536	0,426/0,464		
Свободное сечение тарелки, м ²	0,134	0,179	0,252	0,292	0,398		
Относительная плошадь для прохода паров F _c , %	8,7	8,91	9,92	9,3	10,44		
Масса, кг	140/136	161/155	184/176	242/233	308/298		

Паланалан	Диаметр колонны <i>D</i> , мм								
Параметры	2400	2600	2800	3200	3600				
Свободное сечение колонны, м ² Длина линии барботажа, м Периметр слива L_c , м Сечение перелива, м ² Свободное сечение тарелки, м ² Относительная площадь для прохода паров F_c , %	4,52 49,02 4,35/2,824 0,444/0,458 0,518 11,45	5,31 55,3 4,75/3,368 0,582/0,696 0,584 11	6,16 67,87 5,15/3,412 0,629/0,674 0,717 11,63	8,04 62,2 5,95/4,446 1,064/1,372 0,975 12,13	10,18 83,84 6,75/4,896 1,273/1,582 1,318 12,95				
Масса, кг	362/340	373/356	443/441	593/557	694/668				
II римечание. Числитель — для колонны типа ТСК·РЦ, знаменатель — типа ТСК-РБ.									

Колпачок Исполнение 1 D 7 Исполнение 2 52

<u>2 отв</u> Ø10

Диа- метр колон- ны <i>D</i> , мм	Сво- бодное сече- нне колон- ны, м ²	Рабо- чее сече- ние			Отно-					
			3	4	5	8	Сече-	си- тель-	Пери-	1
			Шаг между отверстиями 1, мм					ная пло-	метр слива	Мас⊷ са,кі
		тарел- кн, м²	7—12	8-13	10-18	16-25	м ²	пере-	<i>L</i> _c , м	
			Относители		%					
400 500 600 800 1000	0.126 0.196 0.28 0.51 0.785	0,054 0,089 0,14 0,41 0,713	$\begin{array}{c} 6,62-2,26\\ 7,57-2,62\\ 8,2-2,8\\ 10,25-3,49\\ 10-3,38\end{array}$	9,1-2,56 10,3-2,93 11,2-3,2 14-3,96 13,6-3,86	9,1—2,78 10,3—3,18 11,2—3,46 13,9—4,3 13,6—4,2	9,1-3,7 10,3-4,22 11,2-4,6 14-5,7 13,6-5,55	0,004 0,1 0,1 0,016 0,036	3,81 3,6 4,3 4,1 4,6	0,302 0,4 0,48 0,57 0,8	8,2 10 13,6 21 41,5

Техническая характеристика ситчатых тарелок типов ТС-Р и ТС-Р2

Диа- метр ко- лок- ны <i>D</i> , мм	Сво- бодное сече- пие колон- ны, м ²	ао- ное це. Тип тарел- тарел- ки м ²	Рабо- чее сече- ние таре.т- ки	Диаметр отверстия d, мм				-	Отно-	Ī	
				3	4	5	8	Сече-	сн- тель-	Пери-	
				Шаг между отверстиями /, мм				ние пере-	ная пло-	метр слива	Mac- ca,
				7-12	8 15	10-17	16-25	м ²	пере-	<i>L</i> _c , м	
				Относительное свободное сечение тарелки F., %					% %		
1	2	3	4	5	6	7	6	9	10	11	12
1200	1,13	TC-P TC-P2	1.01 0 .89 6	8,4-2,75 7,65-2,6	11,1-3,13 10,4-2,97	11,1-3,4 10,4-3,25	11,1-4.5 10.4-4.28	0,06	5,3 10,53	0,722 0,884	62 58
1400	1,54	TC-P TC-P2	1,368	8,53,48 8,53,23	13,9—3,96 12,9—3,67	13,9—4,3 12,9—3,99	13,9-5,71	0,087 0,234	5,65 19,2	0,86 1,135	72 73
Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
1600	2.01	тср	1 834	10 4 2 58	14.7 4.06	14 7 4 49	147 596	0.089		0.705	<u> </u>
1000	2,01		1 496	10,4-0,50	14,7-4,00	14,7-4,42	14,7-0,00	0,000	4,4	0,790	95
1800	2 54	TC.P	2 204	13.8_4.7	18 8 - 5 34	14,1-4,32	14,1~	0,292	14,0	1,20	115
1000	2,04	TC.P2	1.64	132 - 45	18-514	18-557	187.4	0,120	177	1,00	96.5
2000	3.14	TC-P	2 822	116 - 395	15.8-4.5	15 84 89	158-649	0.159	5.06	1,02	120
	•,	TC-P2	2.09	8.2-2.78	11.4 - 3.17	11.4 - 3.44	11.4 - 4.57	0.525	16.7	1.66	107
2200	3.8	TC-P	3.478	13.3-4.48	17.9-5.08	17.9-5.52	17.9 - 7.32	0.161	4.25	1.24	138
		TC-P2	2,46	7,9 - 2,68	10.7 - 3.06	10.7 - 3.32	10.7-4.37	0.67	15	1.85	137
2400	4,52	TC-P	3,9	11,1-3,78	15,3 - 4,29	15,3-4,62	15,3-6,18	0,317	6,9	1,57	172
		TC-P2	2,96	9,2-6,12	12,5-3,59	12,5-3,85	12.5 - 5.11	0,77	17	2	162,5
2600	5,3	TC-P	4,784	12,2-4,17	16,7-4,73	16,7-5,3	16.7 6,81	0,258	4,88	1,54	200
		TC-P2	3,27	7,5-2,58	10,4-2,9	10,4-3,15	10,44,18	1,015	19,2	2,25	188
2800	6,16	ТС∙Р	5,64	13,7-4,65	18,6-5,28	18,65,73	18,6-7,6	0,26	4,2	1,575	218
		TC-P2	3,96	7,75—2,64	10,5-2,99	10,5 - 3,26	10,5-4,32	1,1	17,0	2,385	189
3000	7,06	TC-P	6,43	12,5-4,27	17,1-4,83	17,1-5,25	17, I — 6,96	0,315	4.4	1,715	340
		TC-P2	4,52	5,5-1,87	7,5-2,12	7,46—2,31	7,5—3,06	1,27	18	2,61	220
3200	8,04	TC-P	7,268	13-4,42	17,7-5,02	17,7—5,45	17,7-7,23	0,385	4,7	1,86	265
		TC-P2	5,03	8,7-2,96	11,8-3,37	11,8-3,65	11,8-4,85	1,505	18,7	2,74	255
3400	9,06	TC-P	8,308	11,9-4,07	16,3-4,61	16,3-5	16,3-6,64	0,376	4,15	1,905	290
		TC-P2	5,88	9,2-3,12	12,5-3,56	12,5 - 3,85	12,5-5,13	1,59	17,6	2,87	270
3000	10,2	IC-P	9	11,9-4,05	16,2-4,6	16,2-5	10,2-6,64	4,59	5.7	2,24	305
		1C-P2	6,3	8,11-2,75	11,13,13	11,1-3,4	11,14,52	1,95	19,1	3,1	295

Примечания. 1. Шаг расположения отверстий принимается в указанных пределах через 1 мм. 2. В таблице указана масса тарслки при шаге между отверстиями 10 мм и диаметре отверстия 3 мм. 3. Расстояние между тарелками для колонных аппаратов днаметром 400—1000 мм h=300 мм, для колонных аппаратов днаметром 1200—3600 мм h=500 мм. 4. Плотпость при подсчете массы 785 кг/м³.

Техническая характеристика ситчатых тарелок типов ТС-РЦ и ТС-РБ

		Диам	иетр колонны	D , мм	
Параметры	Диаметр колонны D, мм 1400 1600 1800 2000 нны, м² 1,54 2,01 2,54 3,14 и, м² 1,078 1,44 1,928 2,2 е сече- 10,18-2,89 11,99-3,41 12,6-3,15 9 9,28-2,64 10,18-2,89 11,99-3,41 12,6-3,89 13 9,28-2,86 10,18-3,14 11,99-3,7 12,6-5,16 13 9,28-3,8 10,18-4,17 11,99-4,91 12,6-5,16 13 0,211/0,251 0,259/0,311 0,277/0,334 0,404/0,536 0, ива, % 13,7/16,3 12,9/15,4 10,9/13,2 12,8/17,1 1 2,34/1,93 2,74/2,22 3,15/2,30 3,55/2,79 3 123/119 140/134 157/149 208/199 3 4, м² 3,618 4,032 4,857 5,604 e сече- 10,48-3,56 9,93-3,38 10,62-3,61 9,33-3,17 9 14,26-4,05 13,5-3,84 14,46-4,11 12,7	2200			
Свободное сечение колонны, м ²	1,54	2,01	2,54	3,14	3,8
Рабочее сечение тарелки, м ²	1,078	1,44	1,928	2,2	2,92
Относительное свободное сече-					
ние F _c , % при d (мм)/t (мм):					
8/(16-25)	6,82 - 2,32	7,48-2,55	8,81-2,99	9,26-3,15	9,64-3,28
5/(10-18)	9,28-2,64	10,18-2,89	11,99—3,41	12,6-3,58	13,13-3,73
4/(8-15)	9,28-2,86	10,18-3,14	11,99—3,7	12,6-3,89	13,13-4,05
$\frac{3}{(7-12)}$	9,28-3,8	10,18-4,17	11,99—4,91	12,6-5,16	13,13-5,38
Сечение перелива, м'	0,211/0,251	0,259/0,311	0,277/0,334	0,404/0,536	0,426/0,464
Относит. площадь перелива, %	13,7/16,3	12,9/15,4	10,9/13,2	12,8/17,1	11,2/12,2
Периметр слива L _{сл} , м	2,34/1,93	2,74/2,22	3,15/2,30	3,55/2,79	3,95/2,77
Масса, кг	123/119	140/134	157/149	208/199	263/251
Параметры	2400	2600	2800	3200	3600
Свободное сечение колонны, м ²	4,52	5.3	6.16	8.04	10.2
Рабочее сечение тарелки, м ² Относительное свободное сече-	3,618	4,032	4,857	5,604	7,325
Hue F_c , % при a (MM)/ t (MM): 8/(16-25)	10,48	9,93—3,38	10,62—3,61	9,33—3,17	9,93—3,3 9
5/(10-18)	14,26-4,05	13,5—3,84	14,46—4,11	12,7—3,61	13,5—3,86

14,20-4,00	13,3-3,64	14,40-4,11	12,1-3,01	13,3-3,60
14,26-4,4	13,5-4,17	14,46-4,46	12,7 - 3,92	13,5-4,19
14,265,84	13,5-5,53	14,46-5,92	12,7-5,2	13,5-5,56
0,444/0,458	0,582/0,696	0,629/0,674	1,064/1,372	1,273/1,582
9,8/10,1	11/13,2	10,2/10,9	13,2/17,1	12,5/15,5
4,35/2,82	4,75/3,3	5,15/3,41	5,95/4,45	6,75/4,90
360/280	305/288	360/358	525/488	600/570
	14,26-4,4 14,26-5,84 0,444/0,458 9,8/10,1 4,35/2,82 360/280	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Примечание. Числитель — для тарелок типа ТС-РЦ, знаменатель — типа ТС-РБ.

<u>A-A</u>

			_	_									_				
Диаметр	Свобод-	обод- сече- D1,	D2.								ш	ar <i>t</i> .	мм				
<i>D</i> , мм	ное сече-	D1. мм	D ₂ , мм	D_3 , MM	D4, ММ	<i>b</i> , MM	8	10	12	14	15	18	20	22	24	28	32
(масса, кг)	лонны, м ²						01	носи	гельно	ое сво	бодн	oe cev	ение	таре.	тки <i>F</i>	с, M ² /	′ M ²
400	0,125	380	360	386	395	4	0,18	0,15	0,13	0,11	0,1	0,09	0,08	0,07	0,06	_	
(5,1)						6		0,23	0,18	0,15	0,13	0,12	0,11	0,0 9	0,07	0.06	0,05
500	0,196	480	460	485	4 9 5	4	0,19	0,15	0,14	0,12	0,11	0,1	0,09	0,07	0,06	—	
(7,6)						6	_	0,24	0,19	0,15	0,14	0,13	0,11	0,09	0 ,08	0,07	0,06
600	0,283	580	560	585	595	4	0,2	0,17	0,15	0,13	0,12	0,11	0,1	0,08	0 ,07	_	-
(10)						6		0,25	0,2	0,19	0,15	0,14	0,12	0,11	0,09	0,08	0,07
8 00	0,503	780	760	785	79 5	4	0,21	0,17	0,15	0,13	11,0	0,1	0,09	0,08	0,07		-
(14,7)					•	6	-	0,27	0,22	0,19	0,16	0,15	0,14	0,12	0,11	0,09	0,0 8

Техническая характеристика решетчатых тарелок типа ТС-Р

Примечания. 1. Указана масса одной тарелки. 2. Значение s=2,5 мм.

<u>А-А</u> повернуто

60

2

	Chafaanaa					Жидкостной патрубок					
диаметр колонны D, мм	свооодное сечение колонны, м ²	<i>D</i> 1, мм	D2, мм	<i>h</i> , мм	<i>h</i> 1, мм	<i>d</i> , мм	<i>t</i> , мм	<i>п</i> , шт.	свободное сечение, м ²		
400 500 600 800 1000 1200 1400 1600 1800	0,126 0,196 0,283 0,503 0,785 1,13 1,539 2,01 2,545	320 350 380 480 580 780 980 1170 1170	300 330 360 460 560 760 960 1150 1150	185 215 315 350 470 510 520 645 705	50 50 130 210 210 210 310 310	32 32 32 45 45 45 45 45 57 57		13 19 25 25 37 61 110 110 110	0,0006 0,0006 0,0013 0,0013 0,0013 0,0013 0,0013 0,0013 0,0022 0,0022		
2000 2200 2400 2600 2800	3,141 3,801 4,5 2 4 5,309 6,157	1370 1570 1770 1770 2000	1350 1550 1750 1750 1950	730 745 845 900 915	310 310 380 380 380	57 57 57 57 57	95 95 95 95 95	212 276 276 352	0,0022 0,0022 0,0022 0,0022 0,0022		

Техническая характеристика распределительных тарелок типа ТСН-11

	Параметры тарелки											
Днаметр колонны	рабочее		максимально до- пустимая на-	число отверстий	масса та (ориенти	релки, кг ровочно)						
<i>D</i> . мм	сечение, м ²		грузка по жид- кости, м ³ /(м ² ·ч)	для слива жидкости n ₁	из углероди- стой стали	из легиро- ванной стали						
400	0.08	0.0078	195	4	6,1	3,5						
500	0.096	0.0115	180	4	9	5,1						
600	0,173	0,0151	165	4	11,4	7						
800	0,181	0,0326	200	4	16,4	9						
1000	0,264	0,0471	190	6	27,3	14,9						
1200	0,478	0,0793	220	6	37,1	19,8						
1400	0,754	0,144	320	6	48,8	24,6						
1600	1,075	0,2421	330	6	65	40,8						
1800	1,075	0,2421	270	6	73,1	45,1						
2000	1,474	0,3433	300	8	110,5	81,3						
2200	1,936	0,4665	335	8	142,6	110,3						
2400	2,461	0,6073	365	8	193	137,5						
2600	2,461	0,6073	320	8	200	141						
2800	3,141	0,7749	345	8	230	180,5						

À-A

Лиаметр	Свободное				1	Жилкостной патрубок					
колонны D, мм	сечение колопны, м ²	D 1, мм	D2, мм	<i>D</i> ₃ , мм	<i>h</i> , мм	<i>d</i> , мм	<i>t</i> , мм	<i>п</i> , шт.	свободное сечение, м ²		
400 500 600 800 1000 1200 1400 1600 1800 2000 2200	0,126 0,196 0,283 0,503 0,785 1,13 1,539 2,01 2,545 3,141 3,801	320 350 380 480 580 780 980 1170 1170 1370	260 290 460 560 660 860 1060 1250 1250 1450 1650	110 110 130 160 190 220 260 310 310 330 360		32 32 32 45 45 45 45 57 57 57 57	80 80 80 95 95 95	12 16 21 24 30 54 96 96 96 142	0,0006 0,0006 0,0013 0,0013 0,0013 0,0013 0,0013 0,0013 0,0022 0,0022 0,0022		
2400 2600 2800	4,524 5,309 6,157	1770 1770 2000	1850 1850 2080	400 400 410	200 200 200	57 57 57 57	95 95 95 95	254 254 330	0,0022 0,0022 0,0022 0,0022		

Техническая характеристика тарелок типа ТСН-Ш

	Парамстры тарелки											
Диаметр колонны	рабочее		максимально до- пустимая на-	число отверстий	масса та (орненти	релки, кг ровочно)						
<i>D</i> , мм	сечение, м ²		грузка по жид- кости, м ³ / (м ² · ч)	для слива жидкости n ₁	из углероди- стой стали	из легиро- ванной стали						
400	0.08	0.0073	180	8	5.6	3.8						
500	0.098	0.0097	155	8 8	69	4 7						
600	0,113	0,0127	145	8	7.4	5						
800	0,181	0,0313	190	10	10.9	7.6						
1000	0,264	0,0391	175	12	14,4	9,7						
1200	0,478	0,0703	190	18	23,6	15,7						
1400	0,754	0,1249	250	22	35,8	24,5						
1600	1,075	0,2112	280	26	52,3	34						
1800	1,075	0,2112	240	26	52,3	34						
2000	1,474	0,3125	270	30	68,4	52,4						
2200	1,938	0,4268	305	34	89,8	72,2						
2400	2,461	0,558	330	38	113,5	90						
2600	2,461	0,558	290	38	113,5	90						
2800	3,141	0,7261	320	42	145,1	114,1						

					Шаr t = 50 мм			Ша	r (=75	MM	Шаг (=100 мм			
Дна- метр колон- ны D, мм	Сво- бод- ное сече- ние колон- ны, м ²	Рабо- чее сече- ние тарел- ки *, м ²	Пери- метр слива, м	Сече- ние пере- лива, м ²	относи- тельное свободное сечение тарелки, %	число клапа- нов **	число рядов клапа- нов на поток	относительное свободное сече- ние тарелки, %	число клапа- нов **	число рядов клапа- нов на поток	относительное свободное сече- ние тарелки, %	число клапа- нов **	число рядов клапа- нов на поток	
1000	0.78	0,5	0,84	0,14	7,69	48	6	5,12	32	4	_		_	
1200	1,13	0,79	0,97	0,17	10,44	94	9	6,63	60	6	5,57	50	5	
1400	1,54	1,1	1,12	0,22	11,42	140	12	7,79	96	8	5,84	72	6	
1600	2,01	1,47	1,26	0,27	13,23	212	15	8,25	132	10	6,36	102	8	
1800	2,55	1,83	1,43	0,3	13,23	268	17	8,46	172	11	6,90	140	9	
2000	3,14	2,24	1,6	0,45	13,65	342	19	9,36	234	13	7,03	176	10	
2200	3,80	2,76	1,74	0,52	14,26	432	22	9,44	286	15	7,13	216	11	
2400	4,52	3,21	1,92	0,66	14,55	524	24	9,55	344	16	7,20	260	12	
2600	5,30	3,84	2,05	0,74	14,91	630	27	9,98	422	18	7,71	326	14	
2800	6,15	4,4!	2,23	0,87	15,25	748	29	10,12	496	19	7,75	380	15	
3000	7,07	5,01	2,4	1,03	14,87	838	31	9,95	560	21	7,28	410	16	
3200	8,04	5,76	2,54	1,14	15,32	982	34	10,51	674	23	7,70	496	17	
3400	9,08	6,44	2,72	1,32	15,38	1112	36	10,22	740	24	7,62	556	18	
3600	10,20	7,39	2,85	1,4	15,87	1290	39	9,84	800	26	7,83	636	20	
3800	11,30	8,08	3,03	1,61	15,8	1424	41	10,45	938	27	8,66	780	21	
4000	12,60	8,96	3,2	1,82	15,83	1590	43	10,67	1072	29	8,08	812	22	

Техническая характеристика клапанных однопоточных тарелок типа ТКП

Приведены данные для тарелки модификации А.
 Число клапанов на тарелке может быть уменьшено на 5% по сравнению с указанным в таблице

	Масса тарелки, кг (не более) *								
Лизметр	из углерод	истой стали							
диаметр колонны D, мм	общая	в том числе деталей из коррозионно- стойкой стали	из корро- зионно- стойкой стали						
1000	80	45	55						
1900	05	55	70						
1400	125	70	90						
1600	125	80	iño						
1800	140	100	125						
1000	200	190	145						
2000	200	120	140						
2200	220	160	200						
2400	270	175	200						
2000	290	1/0	220						
2600	330	200	240						
3000	300	220	270						
3200	470	280	350						
3400	500	300	395						
3600	570	340	445						
3800	620	370	480						
4000	670	400	520						

^{*} Приведена масса при расстоянии между тарелками 600 мм.

1	Гехническая	характеристика	двихпоточных	тарелок	типа	TKI	7
				1			

	}				Шar	t = 50 M	4 M	Ша	t = 75	мм	Шаг t = 100 мм		
Диа- метр колон- ны <i>D</i> , мм	Сво- бод- ное сече- ние колон- ны, м ²	Рабо- чее сече- ние тарел- ки *, м ²	Пери- метр слива, м	Сече- нне пере- лива, м ²	относи- тельное свободное сечение тарелки, %	число клапа- нов **	число рядов клапа- нов на поток	относительное свободное сече- ние тарелки, %	число клапа- нов **	число рядов клапа- нов на поток	относительное свободное сече- ние тарелки, %	число клапа- нов **	число рядов клапа- нов на поток
1400	1,54	1,02	- 1,88	0,22	6,3	78	3	_		_		_	
1600	2,01	1,25	2,24	0,33	7,24	116	4	5,65	90	3			
1800	2,55	1,72	2,4	0,38	8,09	164	6	5,14	104	4			
2000	3,14	2,08	2,64	0,46	8,95	224	7	6,24	156	5	4,95	124	4
2200	3,80	2,51	3,02	0,53	9,12	276	8	5,94	180	5	4,48	136	4
2400	4,52	2,93	3,3	0,69	9,56	344	9	6,56	236	6	5,34	192	5
2600	5,30	3,62	3,46	0,76	11,4	480	11	7,4	312	7	6,1	256	6
2800	6,15	4,36	3,6	0,81	12,32	604	13	8,66	424	9	6,78	332	7
3000	7,07	4,74	4,08	1,03	11,68	656	13	8,03	452	9	6,11	344	7
3200	8,04	5,59	4,22	1,12	12,35	788	15	8,66	536	10	6,27	416	8
3400	9,08	6,23	4,52	1,32	12,3	890	16	8,61	624	11	6,24	452	8
3600	10,18	7,11	4,76	1,43	12,75	1032	17	8,3	672	11	6,67	540	9
3800	11,34	7,68	5,14	1,69	12,8	1148	18	8,65	776	12	6,46	580	9
4000	12,57	8,75	5,28	1,79	13,4	1336	20	8,79	876	13	6,82	680	10

Приведены данные для тарелки модификации А.
 ** Приведены минимальные сечения переливов (одного центрального и двух боковых) и минимальный периметр слива.
 *** Число клапанов на тарелке может быть уменьшено на 5 % по сравнению с указанными в таблице.

	Масса тарелки, кг (не более) *							
Лизмето	из углер							
колонны D, мм	общая	в том числе деталей нз коррозионно- стойкой стали	из корро- зионно- стойкой стали					
1400	190	60	125					
1600	230	70	140					
1800	270	80	160					
2000	360	110	210					
2200	390	120	230					
2400	430	130	275					
2600	470	145	300					
2800	520	155	330					
3000	570	170	370					
3200	6 20	185	420					
3400	6 80	210	470					
3600	750	230	520					
3800	820	250	560					
4000	900	270	6 2 0					

Приведена масса при расстоянии между тарелками 600 мм.

			Шаг щелей /, мм												Macca
метр колон-	S, MM	<i>b</i> , мм	8	10	12	14	16	18	20	22	24	28	32	36	тарел- ки, кг (не
ны • D, мм				<u>-</u>	отн	оситель	noe ce	ободное 	сечени	іе т а ре.	лкн, м ²	/м²			бо- лее)
1000	2	4	0,22	0,17	0,15	0,13	0,11	0,10	0,09	0,08	0,07	_			38
1000	4	6		0,27	0,22	0,19	0,16	0,15	0,14	0,12	0,11	0,09	80,0	0,07	55
1200	2	4	0,24	0,21	0,16	0,14	0,12	0,11	0,10	0,09	0,08	0.11	0.00	0.09	49
1200	4	6	0.05	0,32	0,24	0,20	0,18	0,10	0,14	0,13	0,12	0,14	0,09	0,00	60
1400	2	4	0,25	0,21	0,10	0,10	0,10	0,12	0,10	0,09	0,00	0.11	01	0.00	00
1400	-4 -0	4	0.26	0,32	0,20	0,23	0,20	0,17	0,10	0,13	0,14	0,11	0,1	0,09	79
1600	4	6	0,20	0.31	0.25	0,14	0,10	0.17	0.15	0,03	0.13	0.11	01	0.09	123
1800	2	4	0.28	0.22	0.18	0.15	0.14	0.12	0.11	0.10	0.09				94
1800	4	6		0.32	0.27	0.23	0.20	0.18	0.16	0.15	0.13	0.11	0.1	0.09	148
2000	2	4	0,26	0.20	0,17	0,15	0,13	0,12	0,10	0,09	0,08			_	129
2000	4	6	_	0,31	0,26	0,28	0,20	0,18	0,16	0,15	0,13	0,11	0,1	0,09	199
2200	2	4	0,27	0,20	0,18	0,15	0,13	0,12	0,11	0,10	0,09	-	-	-	151
2200	4	6	-	0,32	0,26	0,22	0,20	0,18	0,16	0,14	0,13	0,12	0,1	0,09	235
2400	2	4	0,27	0,22	0.18	0,16	0,14	0,12	0,11	0,10	0,09				196
2400	4	6		0,31	0,27	0,22	0,20	0,18	0,16	0,15	0,13	0,12	0,1	0,09	301
2600	2	4	0,3	0,21	0,18	0,16	0,14	0,12	0,11	0,10	0,09	~			228
2600	4	6		0,31	0.27	0,24	0,20	0,18	0,16	0,15	0,14	0,12	0,1	0,09	335
2800	2	4	0,27	0,24	0,19	0,10	0,14	0,12	0,11	0,10	0,09	0.19	0.1	0.00	249
2800	4	0 4	0.99	0,30	0.28	0,23	0,20	0,10	0,10	0,15	0,14	0,12	0,1	0,09	285
3000	2 4	4 6	0,28	0,22 0,33	0,18	0,10	0,14 0,21	0,12	0,16	0,15	0,09	0,12	0,1	0,09	285 389

Техническая характеристика решетчатых тарелок типа ТР

* Верхняя строка — для тарелок из легированной стали, нижняя — из углеродистой.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Касаткин А. Г. Основные процессы и аппараты химической технологии. Изд. 9-е. М.: Химия, 1973. 750 c.
- 2. Справочник коксохимика. Т. З. М.: Металлургия, 1966. З91 с.
- 3. Рамм В. М. Абсорбция газов. М.: Химия, 1976. 655 с.
- 4. Коробчанский И. Е., Кузнецов М. Д. Расчет аппаратуры для улавливания химических продуктов коксования. М.: Металлургия, 1972. 295 с.
- 5. Александров И А. Ректификационные и абсорбционные аппараты. М.: Химия, 1978. 277 с.
- 6. Лащинский А. А., Толчинский А. Р. Основы конструирования и расчета химической аппаратуры. Л.: Машиностроение, 1970. 752 с.
- 7 Стабников В. Н. Расчет и конструирование контактных устройств ректификационных и абсорбционных аппаратов. Киев: Техніка, 1970. 208 с.
- 8. Павлов К. Ф., Романков П. Г. Носков А. А. Примеры и задачи по курсу процессов и аппаратов. Л.: Химия, 1976. 552 с.
- 9. Бретшнай дер С. Свойства газов и жидкостей. М. Л.: Химия, 1970. 535 с.
- 10. Хоблер Т Массопередача и абсорбция. Л.: Химия, 1964. 479 с. 11. Дытнерский Ю. И.//Хим. и нефт. машиностроение. 1964 № 3. С. 13-15.
- 12. Колонные аппараты. Каталог. М.: ЦИНТИХИМНЕФТЕМАШ, 1978. 31 с. 13. Касаткин А. Г., Дытнерский Ю. И., Кочергин Н. В. Тепло- и массоперенос. Т. 4. Минск: Наука и техника. 1966. С. 12-17

ГЛАВА 6 РАСЧЕТ РЕКТИФИКАЦИОННОЙ УСТАНОВКИ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- а удельная поверхность, м²/м³;
- D коэффициент диффузии, м²/с;
- d диаметр, м;
- F расход исходной смеси, кг/с;
- G расход паровой фазы, кг/с;
- g ускорение свободного падения, м/с²;
- H, h высота, м;
 - К коэффициент массопередачи;
 - L расход жидкой фазы, кг/с;
 - М мольная масса, кг/кмоль;
 - т коэффициент распределения;
 - N число теоретических ступеней разделения;
 - *n* число единиц переноса;
 - Р расход дистиллята, кг/с;
 - *R* флегмовое число;
- T, t температура, град;
 - U плотность орошения, м³/(м² · c),
 - ₩ расход кубовой жидкости, кг/с;
 - w скорость пара, м/с;
 - концентрация жидкой фазы;
 - у концентрация паровой фазы;
 - в коэффициент массоотдачи;
 - ϵ свободный объем, м³/м³;
 - µ вязкость, Па · с;
 - $\rho плотность, \ \kappa r / M^3;$
 - σ поверхностное натяжение. Н/м:
 - ψ коэффициент смачиваемости;
- Re критерий Рейнольдса,
- Fr критерий Фруда;
- Гс критерий гидравлического сопротивления;
- Nu' диффузионный критерий Нуссельта;
- Pr' диффузионный критерий Прандтля.
 - 8 Под ред. Ю. И. Дытнерского

Индексы:

- б -- параметры бензола;
- т параметры толуола;
- в укрепляющая (верхняя) часть колонны;
- н исчерпывающая (нижняя) часть колонны;
- F параметры исходной смеси;
- Р параметры дистиллята;
- W параметры кубовой жидкости;
- x жидкая фаза;
- у паровая фаза;
- ср средняя величина;
- э эквивалентный размер.

введение

Ректификация — массообменный процесс, который осуществляется в болышинстве случаев в противоточных колонных аппаратах с контактными элементами (насадки, тарелки), аналогичными используемым в процессе абсорбции. Поэтому методы подхода к расчету и проектированию ректификационных и абсорбционных установок имеют много общего. Тем не менее ряд особенностей процесса ректификации (различное соотношение нагрузок по жидкости и пару в нижней и верхней частях колонны, переменные по высоте колонны физические свойства фаз и коэффициент распределения, совместное протекание процессов массо- и теплопереноса) осложняет его расчет.

Одна из сложностей заключается в отсутствии обобщенных закономерностей для расчета кинетических коэффициентов процесса ректификации. В наибольшей степени это относится к колоннам диаметром более 800 мм с насадками и тарелками, широко применяемым в химических производствах. Большинство рекомендаций сводится к использованию для расчета ректификационных колонн кинетических зависимостей, полученных при исследовании абсорбционных процессов (в приведенных в данной главе примерах в основном использованы эти рекомендации).

Приведены примеры расчетов насадочной (с кольцами Рашига) колонны с применением модифицированных уравнений массопередачи (метод числа единиц переноса и высоты единицы переноса) и тарельчатой (с ситчатыми тарелками) колонны с определением числа тарелок графоаналитическим методом (построение кинетической линии). Другие методы расчета, которые могут

Рис. 6.1. Принципиальная схема ректификационной установки:

1 — емкость для исходной смеси; 2, 9 — насосы; 3 — теплообменник-подогреватель; 4 — кипятильник; 5 — ректификационная колонна; 6 — дефлегматор; 7 — холодильник дистиллята; 8 — емкость для сбора дистиллята; 10 — холодильник кубовой жидкости; 11 — емкость для кубовой жидкости быть использованы при проектировании ректификационной колонны, приведены в гл. 5 на примере расчета абсорбционных колонн.

Принципиальная схема ректификационной установки представлена на рис. 6.1 Исходную смесь из промежуточной емкости / центробежным насосом 2 подают в теплообменник 3, где она подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси x_F .

Стекая вниз по колонне, жидкость взаимодействует с поднимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка x_W , т. е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обогашается легколетучим компонентом. Для более полного обогащения верхнюю часть колонны орошают в соответствии с заданным флегмовым числом жидкостью (флегмой) состава x_P , получаемой в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из дефлегматора в виде готового продукта разделения дистиллята, который охлаждается в теплообменнике 7 и направляется в промежуточную емкость 8.

Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость — продукт, обогащенный труднолетучим компонентом, который охлаждается в теплообменнике 10 и направляется в емкость 11.

Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной бинарной смеси на дистиллят (с высоким содержанием легколетучего компонента) и кубовый остаток (обогащенный труднолетучим компонентом).

Задание на проектирование. Рассчитать ректификационную колонну непрерывного действия для разделения бинарной смеси бензол — толуол, если производительность по исходной смеси F=5 кг/с; содержание легколетучего компонента [% (масс.)] в исходной смеси $\bar{x}_F=35$; в дистилляте $\bar{x}_P=98$; в кубовом остатке $\bar{x}_W=1.7$; давление в паровом пространстве дефлегматора P=0.1 МПа.

6.1. РАСЧЕТ НАСАДОЧНОЙ РЕКТИФИКАЦИОННОЙ КОЛОННЫ НЕПРЕРЫВНОГО ДЕЙСТВИЯ

Расчет ректификационной колонны сводится к определению ее основных геометрических размеров — диаметра и высоты. Оба параметра в значительной мере определяются гидродинамическим режимом работы колонны, который, в свою очередь, зависит от скоростей и физических свойств фаз, а также от типа и размеров насадок.

При выборе типа насадок для массообменных аппаратов руководствуются рядом соображений (см. гл. 5, разд. 1.3; там же приведены основные характеристики различных насадок). При проведении процессов вакуумной ректификации с целью снижения гидравлического сопротивления выбирают специальные виды насадок, обладающих большим свободным объемом. Наиболее правильно выбор оптимального типа и размера насадки может быть осуществлен на основе технико-экономического анализа общих затрат на разделение в конкретном технологическом процессе.

Ориентировочный выбор размера насадочных тел можно осуществить исходя из следующих соображений. Чем больше размер элемента насадки, тем больше ее свободный объем (живое сечение) и, следовательно, выше производительность. Однако вследствие меньшей удельной поверхности эффективность крупных насадок несколько ниже. Поэтому насадку большого размера применяют, когда требуются высокая производительность и сравнительно невысокая степень чистоты продуктов разделения.

В ректификационных колоннах, работающих при атмосферном давлении, для разделения агрессивных жидкостей, а также в тех случаях, когда не требуется частая чистка аппарата, обычно применяют керамические кольца Рашига. Для данного случая примем насадку из керамических колец Рашига размером $50 \times 50 \times 5$ мм. Удельная поверхность насадки $a = 87,5 \text{ м}^2/\text{м}^3$, свободный объем $\varepsilon = 0,785 \text{ м}^3/\text{м}^3$, насыпная плотность 530 кг/м³

Насадочные колонны могут работать в различных гидродинамических режимах [1]: пленочном, подвисания и эмульгирования. В колоннах большой производительности с крупной насадкой осуществление процесса в режиме эмульгирования приводит к резкому уменьшению эффективности разделения, что объясняется существенным возрастанием обратного перемешивания жидкости и значительной неравномерностью скорости паров по сечению аппарата. Ведение процесса в режиме подвисания затруд-

нено вследствие узкого интервала изменения скоростей пара, в котором этот режим существует. Поэтому выберем пленочный режим работы колонны.

Для определения скоростей потоков необходимо определить нагрузки по пару и жидкости.

6.1.1. Материальный баланс колонны и рабочее флегмовое число

Производительность колонны по дистилляту *Р* и кубовому остатку *W* определим из уравнений материального баланса колонны:

$$F = P + W; \qquad F\overline{x}_F = P\overline{x}_P + W\overline{x}_W. \tag{6.1}$$

Отсюда находим:

$$W = \frac{F(\bar{x}_P - \bar{x}_F)}{\bar{x}_P - \bar{x}_W} = \frac{5(0.98 - 0.35)}{0.98 - 0.017} = 3.27 \text{ kr/c};$$
$$P = F - W = 5 - 3.27 = 1.73 \text{ kr/c}.$$

Нагрузки ректификационной колонны по пару и жидкости определяются рабочим флегмовым числом R; его оптимальное значение R_{ont} можно найти путем технико-экономического расчета. Ввиду отсутствия надежной методики оценки R_{ont} используют приближенные вычисления, основанные на определении коэффициента избытка флегмы (орошения) $\beta = R/R_{min}$. Здесь R_{min} — минимальное флегмовое число:

$$R_{\min} = (x_P - y_F^*) / (y_F^* - x_F), \qquad (6.2)$$

где x_F и x_P — мольные доли легколетучего компонента соответственно в исходной смеси и дистилляте, кмоль/кмоль смеси; y_F^{*} — концентрация легколетучего компонента в паре, находящемся в равновесии с исходной смесью, кмоль/кмоль смеси.

Обычно коэффициент избытка флегмы, при котором достигается оптимальное флегмовое число, не превышает 1,3 [2] Один из возможных приближенных методов расчета R заключается в нахождении такого флегмового числа, которому соответствует минимальное произведение N(R+1), пропорциональное объему ректификационной колонны (N — число ступеней изменения концентраций или теоретических тарелок, определяющее высоту колонны, а R+1 — расход паров и, следовательно, сечение колонны) [3].

Определим *R* по этой рекомендации. Пересчитаем составы фаз из массовых долей в мольные по соотношению

$$x_F = \frac{\bar{x}_F/M_6}{\bar{x}_F/M_6 + (1 - \bar{x}_F)/M_{\rm T}},$$
(6.3)

где *M*₆ и *M*_т — молекулярные массы соответственно бензола и толуола, кг/кмоль. Получим:

$$x_F = \frac{0.35/78}{0.35/78 + (1 - 0.35)/92} = 0.388$$
 кмоль/кмоль смеси.

Аналогично найдем: x_p=0,983; x_W=0,02 кмоль/кмоль смеси. Тогда минимальное флегмовое число равно:

$$R_{\min} = (0.983 - 0.61) / (0.61 - 0.388) = 1.68.$$

Задавшись различными значениями коэффициентов избытка флегмы β, определим соответствующие флегмовые числа. Графическим построением ступеней изменения концентраций между равновесной и рабочими линиями на диаграмме состав пара y — состав жидкости x (рис. 6.2, a) находим N [1] Рановесные данные для различных

систем приведены в справочнике [4] Результаты расчетов рабочего флегмового числа представлены на рис. 6.3 и приведены ниже:

β	1,05	1,35	1,75	2,35	3,30	6,25
Ŕ	1.76	2,27	2,94	3,95	5,55	8,82
Ν	23,0	17.0	14,5	12,5	11,5	10,0
N(R+1)	63,5	55,6	57,1	61,9	75,3	98,2

Минимальное произведение N(R+1) соответствует флегмовому числу R=2,1. При этом коэффициент избытка флегмы $\beta=2,1:1,68=1,25$. На рис. 6.4 изображены рабочие линии и ступени изменения концентраций для верхней (укрепляющей) и нижней (исчерпывающей) частей колонны в соответствии с найденным значением R.

Средние массовые расходы (нагрузки) по жидкости для верхней и нижней частей колонны определяют из соотношений:

$$L_{\rm B} = PRM_{\rm B}/M_{\rm P}; \tag{6.4}$$

$$L_{\rm u} = PRM_{\rm u}/M_{\rm P} + FM_{\rm u}/M_{\rm F}, \tag{6.5}$$

где M_F и M_F — мольные массы дистиллята и исходной смеси; M_B и M_B — средние мольные массы жидкости в верхней н нижней частях колонны.

Мольную массу дистиллята в данном случае можно принять равной мольной массе легколетучего компонента — бензола. Средние мольные массы жидкости в верхней и

Рис. 6.2. Диаграммы равновесия между паром и жидкостью при постоянном давлении:

а — в координатах у — х (состав пара — состав жидкости); здесь же показано графическое определение числа ступеней изменения копцентраций при различных флегмовых числах: б в координатах *l* — х, у (температура — состав пара н жидкости)

Рис. 6.3. Определение рабочего флегмового числа

Рис. 6.4. Изображение рабочих линий в диаграмме у – х при действительном флегмовом числе

нижней частях колонны соответственно равны:

$$M_{\rm B} = M_6 x_{\rm cp, B} + M_{\rm T} (1 - x_{\rm cp, B}); M_{\rm H} = M_6 x_{\rm cp, H} + M_{\rm T} (1 - x_{\rm cp, H}),$$
(6.6)

где M_6 и M_7 — мольные массы бензола и толуола; $x_{cp.B}$ и $x_{cp.H}$ — средний мольный состав жидкости соответственно в верхней и нижней частях колонны:

$$x_{cp. b} = (x_P + x_F)/2 = (0.983 + 0.388)/2 = 0.686$$
 кмоль/кмоль смеси;
 $x_{cp. b} = (x_F + x_W)/2 = (0.388 + 0.02)/2 = 0.204$ кмоль/кмоль смеси.

Тогда

 $M_{\rm b} = 78 \cdot 0,686 + 92(1 - 0,686) = 82,4$ кг/кмоль;

$$M_{\rm H} = 78 \cdot 0.204 + 92(1 - 0.204) = 89.1$$
 кг/кмоль

Мольная масса исходной смеси

$$M_F = 78 \cdot 0.388 + 92(1 - 0.388) = 86.6$$
 кг/кмоль.

Подставим рассчитанные величины в уравнения (6.4) и (6.5), получим:

$$L_{\rm p} = 1.73 \cdot 2.1 \cdot 82.4/78 = 3.84 \ {\rm kr/c};$$

$$L_{\rm H} = 1,73 \cdot 2,1 \cdot 89,1/78 + 5,0 \cdot 89,1/86,6 = 9,29 \ {\rm kr/c}.$$

Средние массовые потоки пара в верхней G_в и нижней G_н частях колонны соответственно равны:

$$G_{\rm B} = P(R+1) M_{\rm B}^{\prime}/M_{\rm P}; \qquad G_{\rm H} = P(R+1) M_{\rm H}^{\prime}/M_{\rm P}. \tag{6.7}$$

Здесь М'в и М'н — средние мольные массы паров в верхней и нижней частях колонны:

$$M'_{\rm B} = M_6 y_{\rm cp.B} + M_{\rm T} (1 - y_{\rm cp.B}); \qquad M'_{\rm H} = M_6 y_{\rm cp.H} + M_{\rm T} (1 - y_{\rm cp.H}), \tag{6.8}$$

где

$$y_{cp.B} = (y_P + y_F)/2 = (0.983 + 0.58)/2 = 0.78$$
 кмоль/кмоль смеси;
 $y_{cp.B} = (y_F + y_W)/2 = (0.58 + 0.02)/2 = 0.3$ кмоль/кмоль смеси.

Тогда

$$M'_{s} = 78 \cdot 0, 78 + 92(1 - 0, 78) = 81, 1 \text{ KeV}(1 - 0, 78) = 81, 1 \text{ KeV}(1 - 0, 78) = 87, 8 \text{$$

Подставив численные значения в уравнение (6.7), получим:

 $G_{\rm B} = 1,73(2,1+1)\,81,1/78 = 5,58\,\kappa\Gamma/c;$ $G_{\rm H} = 1,73(2,1+1)\,87,8/78 = 6,04\,\kappa\Gamma/c.$

6.1.2. Скорость пара и диаметр колонны

Выбор рабочей скорости паров обусловлен многими факторами и обычно осуществляется путем технико-экономического расчета для каждого конкретного процесса. Для ректификационных колонн, работающих в пленочном режиме при атмосферном давлении, рабочую скорость можно принять на 20—30 % ниже скорости захлебывания [5].

Предельную фиктивную скорость пара w_n , при которой происходит захлебывание насадочных колонн, определяют по уравнению [6]

$$\frac{\omega_{n}^{2} a \rho_{y} \mu_{x}^{0.16}}{g e^{3} \rho_{x}} = 1.2 \exp\left[-4 \left(\frac{L}{G}\right)^{0.25} \left(\frac{\rho_{y}}{\rho_{x}}\right)^{0.125}\right],$$
(6.9)

где ρ_x , ρ_y — средние плотности жидкости и пара, кг/м³; μ_x — в мПа·с.

Поскольку отношения L/G и физические свойства фаз в верхней и нижней частях колонны различны, определим скорости захлебывания для каждой части отдельно.

Найдем плотности жидкости ρ_{xB} , ρ_{xH} и пара ρ_{yB} , ρ_{yH} в верхней и нижней частях колонны при средних температурах в них t_B и t_H . Средние температуры паров определим по диаграмме t - x, y (см. рис. 6.2, δ) по средним составам фаз: $t_B = 89$ °C; $t_H = 102$ °C. Тогда

$$\rho_{ys} = \frac{M'_s}{22.4} \frac{T_0}{T_0 + t_s}; \qquad \rho_{ys} = \frac{M'_s}{22.4} \frac{T_0}{T_0 + t_s}$$
(6.10)

Отсюда получим:

$$\rho_{y,s} = \frac{81,1\cdot 273}{22,4\ (273+89)} = 2.73\ \kappa \Gamma/M^3; \qquad \rho_{y,s} = \frac{87,8\cdot 273}{22,4\ (273+102)} = 2.85\ \kappa \Gamma/M^3$$

Плотность физических смесей жидкостей подчиняется закону аддитивности:

 $\rho_{\rm CM} = \rho_1 x_{\rm ob} + \rho_2 (1 - x_{\rm ob}),$

где x_{об} — объемная доля компонента в смеси.

В рассматриваемом примере плотности жидких бензола и толуола близки [7], поэтому можно принять $\rho_{xe} = \rho_{xe} = r_0 \kappa r / m^3$.

Вязкость жидких смесей µ_x находим по уравнению [8]

$$\lg \mu_x = x_{cp} \lg \mu_{x \, 6} + (1 - x_{cp}) \lg \mu_{x \, 7}, \qquad (6.11)$$

где µ_{x6} и µ_{x1} — вязкости жидких бензола и толуола при температуре смеси [7]. Тогда вязкость жидкости в верхней и нижней частях колонны соответственно равна:

$$\lg \mu_{xs} = 0.686 \lg 0.297 + (1 - 0.686) \lg 0.301; \qquad \lg \mu_{xs} = 0.204 \lg 0.261 + (1 - 0.204) \lg 0.271.$$

откуда

$$\mu_{xB} = 0,298 \text{ M}\Pi a \cdot c;$$
 $\mu_{xB} = 0,269 \text{ M}\Pi a \cdot c$

Предельная скорость паров в верхней части колонны w_{ns} :

$$\frac{\omega_{ns}^2 \cdot 87, 5 \cdot 2, 73 \cdot 0, 298^{0.16}}{9,8 \cdot 0, 785^3 \cdot 796} = 1,2 \exp\left[-4\left(\frac{3,84}{5,58}\right)^{0.25} \left(\frac{2,73}{796}\right)^{0.125}\right],$$

откуда $w_{nB} = 1.96$ м/с.

Предельная скорость паров в нижней части колонны шик:

$$\frac{w_{n_{\rm H}}^2 \cdot 87, 5 \cdot 2, 85 \cdot 0, 269^{0.16}}{9, 8 \cdot 0, 785^3 \cdot 796} = 1,2 \exp\left[-4\left(\frac{9, 29}{6, 04}\right)^{0.25} \left(\frac{2, 85}{796}\right)^{0.125}\right],$$

откуда $w_{nH} = 1,59$ м/с.

Примем рабочую скорость w на 30 % ниже предельной:

$$w_{\rm B} = 0.7 \cdot 1.96 = 1.37 \, {\rm m/c};$$
 $w_{\rm H} = 0.7 \cdot 1.59 = 1.11 \, {\rm m/c}$

Диаметр ректификационной колонны определим из уравнения расхода:

$$d = \sqrt{4G}/\left(\pi w\rho\right) \tag{6.12}$$

Отсюда диаметры верхней и нижней части колонны равны соответственно:

$$d_{\rm B} = \sqrt{(4 \cdot 5,58)/(3,14 \cdot 1,37 \cdot 2,73)} = 1,38 \text{ m}; \qquad d_{\rm H} = \sqrt{(4 \cdot 6,04)/(3,14 \cdot 1,11 \cdot 2,85)} = 1,56 \text{ m}$$

Рационально принять стандартный диаметр обечайки d = 1,6 м (см. разд. 5.1.4) одинаковым для обеих частей колонны. При этом действительные рабочие скорости паров в колонне равны:

$$w_{\rm s} = 1.37 (1.38/1.6)^2 = 1.02 \text{ m/c};$$
 $w_{\rm s} = 1.11 (1.56/1.6)^2 = 1.06 \text{ m/c},$

что составляет соответственно 52 и 66 % от предельных скоростей.

6.1.3. Высота насадки

Высоту насадки Н рассчитывают по модифицированному уравнению массопередачи [1]

$$H = n_{oy} h_{oy}, \tag{6.13}$$

где n_{oy} — общее число единиц переноса по паровой фазе; h_{oy} — общая высота единицы переноса, м.

Общее число единиц переноса вычисляют по уравнению

$$n_{oy} = \int_{y_{W}}^{y_{P}} dy / (y' - y).$$
(6.14)

Обычно этот интеграл определяют численными методами. Решим его методом графического интегрирования:

$$\int_{y_{W}}^{y_{P}} dy/(y^{*}-y) = SM_{x}M_{y}, \qquad (6.15)$$

где S — площадь, ограниченная кривой, ординатами y_W и y_P и осью абсцисс (рис. 6.5); M_x , M_y — масштабы осей координат.

Данные для графического изображения функции $1/(y^* - y) = f(y)$ приведены ниже:

y	y*-y	$l/(y^*-y)$	y	y* — y	$1/(y^*-y)$
0,020	0,030	33,3	0,660	0,060	16,7
0,060	0,055	18,2	0,720	0,070	14,3
0,135	0,075	13,3	0,790	0,065	15,4
0,290	0,085	11,8	0,860	0,057	17,5
0,445	0,065	15,4	0,925	0,045	22,2
0,580	0,030	33,3	0,983	0,010	100,0

По рис. 6.5 находим общее число единиц переноса в верхней $n_{oy B}$ и нижней $n_{oy H}$ частях колонны:

$$n_{oyn} = \int_{y_F}^{y_F} \frac{dy}{y^* - y} = 8.37; \qquad \qquad \int_{y_W}^{y_F} \frac{dy}{y^* - y} = 8.75. \tag{6.16}$$

Общую высоту единиц переноса h_{oy} определим по уравнению аддитивности:

$$h_{oy} = h_y + mGh_x/L, \tag{6.17}$$

где h_x и h_y — частные высоты единиц переноса соответственно в жидкой и паровой фазах; m — средний коэффициент распределения в условиях равновесия для соответствующей части колонны.

Отношение нагрузок по пару и жидкости G/L, кмоль/кмоль, равно:

для верхней части колонны

$$G/L = (R+1)/R$$

для нижней части колонны

$$G/L = (R+1)/(R+j),$$

где

$$j = FM_P / (PM_F). \tag{6.18}$$

232

Рис. 6.5. Графическое определение обшего числа единиц переноса в паровой фазе для верхней (укрепляющей) части колонны в интервале изменения состава пара от y_F до y_P и для нижней (исчерпывающей) — в интервале от y_W до y_F

Рис. 6.6. Данные для определения коэффициентов в уравнениях (6.19) и (6.20):

а — зависимость коэффициентов с и ψ от отношения рабочей скорости пара к предельной w/w_n ; б — зависимость коэффициента Ф от массовой плотности орошения L; I-3 — для керамических колец Рашига размером $25 \times 25 \times 3$ (1). $35 \times 35 \times 4$ (2) и $50 \times 50 \times 5$ (3)

ψ

200

150

100

50

0 20 40

Подставив численные значения, получим:

$$i = 5 \cdot 78 / (1, 73 \cdot 86, 6) = 2, 6.$$

На основании анализа известных уравнений и проведенных по ним сопоставительных расчетов для определения h_x и h_y рекомендуем зависимости [9], результаты вычислений по которым хорошо согласуются с данными, полученными на практике для колонн диаметром до 800 мм.

Высота единицы переноса в жидкой фазе

$$h_x = 0.258 \Phi c \Pr_x^{0.5} Z^{0.15}, \tag{6.19}$$

где с и Ф — коэффициенты, определяемые по рис. 6.6, а и б; $\Pr_x = \mu_x / (\rho_x D_x)$ — критерий Прандтля для жидкости; Z — высота слоя насадки одной секции, которая из условия прочности опорной решетки и нижних слоев насадки, а также из условия равномерности распределения жидкости по насадке не должна превышать 3 м.

Высота единицы переноса в паровой фазе

$$h_y = 0.0175 \psi \Pr_y^{0.5} d^{1.24} Z^{0.33} / (L_S f_1 f_2 f_3)^{0.6}, \qquad (6.20)$$

где ψ — коэффициент, определяемый по рис. 6.6, a; $\Pr_y = \mu_y / (\rho_y D_y)$ — критерий Прандтля для пара; $L_s = L / (0.785d^2)$ — массовая плотность орошения, кг/(м²·c); d — диаметр колонны, м; $f_1 = \mu_x^{0.16} (\mu_x - \text{в мПа·c}); f_2 = (1000/\rho_x)^{1.25}; f_3 = (72.8 \cdot 10^{-3})^{0.8} / \sigma.$

Для колонн диаметром более 800 мм рекомендуем рассчитывать h_y по уравнению (6.20) с показателем степени у величины d, равным 1,0 вместо 1,24. Для расчета h_x и h_y необходимо определить вязкость паров и коэффициенты диффузии в жидкой D_x и паровой D_y фазах. Вязкость паров для верхней части колонны

$$\mu_{y_{B}} = \frac{M'_{a}}{y_{B}M_{6}/\mu_{y_{6}} + (1 - y_{B})M_{7}/\mu_{y_{7}}},$$
(6.21)

где $\mu_{y\,6}$ и $\mu_{y\,\tau}$ — вязкость паров бензола и толуола при средней температуре верхней части колонны, мПа·с; y_{B} — средняя концентрация паров: $y_{B} = (y_{P} + y_{F})/2$.

Подставив, получим:

$$y_{0} = (0.983 + 0.58) / 2 = 0.78;$$

$$\mu_{y_{0}} = \frac{81.1}{0.78 \cdot 78 / 0.0092 + (1 - 0.78) \cdot 0.92 / 0.0085} = 0.0091 \text{ m}\Pi a \cdot c.$$

Аналогичным расчетом для нижней части колонны находим µ_{ун} = 0,0092 мПа·с. Вязкости паров µ_{ув} и µ_{ун} близки, поэтому можно принять среднюю вязкость паров в колонне µ_у = 0,00915 мПа·с.

Коэффициент диффузии в жидкости при средней температуре t (в °C) равен:

$$D_x = D_{x\,20} \left[1 + b \left(t - 20 \right) \right]. \tag{6.22}$$

Коэффициенты диффузии в жидкости $D_{x 20}$ при 20 °С можно вычислить по приближенной формуле [8]:

$$D_{x20} = \frac{10^{-6} \sqrt{1/M_6 + 1/M_7}}{AB \sqrt{\mu_x} (v_6^{1/3} + v_7^{1/3})^2}, \qquad (6.23)$$

где A, B — коэффициенты, зависящие от свойств растворенного вещества и растворителя; v₆, v_т — мольные объемы компонентов в жидком состоянии при температуре кипения, см³/моль; µ_x — вязкость жидкости при 20 °C, мПа·с.

Тогда коэффициент диффузии в жидкости для верхней части колонны при 20 °С равен:

$$D_{x * 20} = \frac{10^{-6}}{1 \cdot 1 \sqrt{0.63} (96^{1/3} + 118, 2^{1/3})^2} \sqrt{\frac{1}{78} + \frac{1}{92}} = 2.28 \cdot 10^{-9} \text{ m}^2/\text{c}.$$

Температурный коэффициент b определяют по формуле

$$b = 0.2\sqrt{\mu_x}/\sqrt[3]{\rho_x}, \qquad (6.24)$$

где µ_x и р_x принимают при температуре 20 °C. Тогда

$$b = 0.2 \cdot \sqrt{0.63} / \sqrt[3]{796} = 0.017$$

Отсюда

$$D_{xs} = 2,28 \cdot 10^{-9} [1 + 0.017 (89 - 20)] = 4.6 \cdot 10^{-9} \text{ m}^2/\text{c}.$$

Аналогично для нижней части колонны находим:

$$D_{x_{11}} = 5,11 \cdot 10^{-9} \text{ m}^2/\text{c}.$$

Коэффициент диффузии в паровой фазе может быть вычислен по уравнению

$$D_{y_{\rm B}} = \frac{4.22 \cdot 10^{-2} T^{3/2}}{P \left(v_{\rm b}^{1/3} + v_{\rm t}^{1/3} \right)^2} \sqrt{\frac{1}{M_6}} + \frac{1}{M_{\rm t}}, \qquad (6.25)$$

где T — средняя температура в соответствующей части колонны, К; P — абсолютное давление в колонне, Па.

Тогда для верхней части колонны

$$D_{yB} = \frac{4.22 \cdot 10^{-2} (273 + 89)^{3/2}}{10^5 (96^{1/3} + 118.2^{1/3})^2} \sqrt{\frac{1}{78} + \frac{1}{92}} = 5.06 \cdot 10^{-6} \text{ m}^2/\text{c}.$$

Аналогично для нижней части колонны получим:

$$D_{\rm WH} = 5.39 \cdot 10^{-6} \, {\rm M}^2/{\rm c}$$

Таким образом, для верхней части колонны

$$h_{xb} = 0,258 \cdot 0,068 \cdot 0,92 \left(\frac{0.298 \cdot 10^{-3}}{796 \cdot 4,6 \cdot 10^{-9}}\right)^{0.5} \cdot 3^{0.15} = 0,173 \text{ m};$$

$$h_{yb} = \frac{0,0175 \cdot 205 \left(\frac{0,0091 \cdot 10^{-3}}{2,73 \cdot 5,06 \cdot 10^{-6}}\right)^{0.5} \cdot 1,6 \cdot 3^{0.33}}{\left[\frac{3,84 \cdot 0,298^{0.16}}{0,785 \cdot 1,6^2} \left(\frac{1000}{796}\right)^{1.25} \left(\frac{72,8 \cdot 10^{-3}}{20 \cdot 10^{-3}}\right)^{0.8}\right]^{0.6}} = 2,27 \text{ m}.$$

Для нижней части колонны

$$h_{x \text{ m}} = 0.258 \cdot 0.084 \cdot 0.78 \left(\frac{0.269 \cdot 10^{-3}}{796 \cdot 5.11 \cdot 10^{-6}}\right)^{0.5} \cdot 3^{0.15} = 0.162 \text{ m};$$

$$h_{y \text{ m}} = \frac{0.0175 \cdot 205 \left(\frac{0.0092 \cdot 10^{-3}}{2.85 \cdot 5.39 \cdot 10^{-6}}\right)^{0.5} \cdot 1.6 \cdot 3^{0.33}}{\left[\frac{9.29 \cdot 0.269^{0.16}}{0.785 \cdot 1.6^2} \left(\frac{1000}{796}\right)^{1.25} \left(\frac{72.8 \cdot 10^{-3}}{20 \cdot 10^{-3}}\right)^{0.8}\right]^{0.6}} = 1.29 \text{ m}.$$

По уравнению (6.17) находим общую высоту единицы переноса для верхней и нижней частей колонны:

$$h_{oys} = 2,27 + 0.625(2,1+1)0,173/2,1 = 2,43$$
 M;
 $h_{oys} = 1,29 + 1,51(2,1+1)0,162/(2,1+2,6) = 1,45$ M.

Значения m = 0,625 для верхней части колонны и m = 1,51 — для нижней определены арифметическим усреднением локальных значений m в интервалах изменения составов жидкости соответственно от x_F до x_P и от x_W до x_F .

Высота насадки в верхней и нижней частях колонны равна соответственно:

$$H_{\rm B} = 2,43 \cdot 8,37 = 20,3$$
 M; $H_{\rm B} = 1,45 \cdot 8,75 = 12,7$ M.

Общая высота насадки в колонне

$$H = 20,3 + 12,7 = 33$$
 M

С учетом того, что высота слоя насадки в одной секции Z = 3 м, общее число секций в колонне составляет 11 (7 секций в верхней части и 4 — в нижней).

Общую высоту ректификационной колонны определяют по уравнению

$$H_{\kappa} = Zn + (n-1)h_{\rm p} + Z_{\rm B} + Z_{\rm H}, \qquad (6.26)$$

где Z — высота насадки в одной секции, м; n — число секций; h_p — высота промежутков между секциями насадки, в которых устанавливают распределители жидкости, м; Z_B и Z_u — соответственно высота сепарационного пространства над насадкой и расстояние между днищем колонны и насадкой, м.

Значения Z_в и Z_н выбирают в соответствии с рекомендациями [10]:

Диаметр колонны, мм	Z _в , мм	Z _н , мм
400-1000	600	1500
1200-2200	1000	2000
2400 и более	1400	2500

Общая высота колонны

$$H_{\kappa} = 3 \cdot 11 + 10 \cdot 0.5 + 1.0 + 2.0 = 41$$
 M.

В каталоге [10] приведены конструкции и геометрические размеры тарелок для распределения жидкости, подаваемой на орошение колонны, и устройств для перераспределения жидкости между слоями насадки (см. Приложение 5.2).

6.1.4. Гидравлическое сопротивление насадки

Гидравлическое сопротивление насадки ΔP находят по уравнению

$$\Delta P = 10^{169U} \Delta P_c. \tag{6.27}$$

Гидравлическое сопротивление сухой неорошаемой насадки ΔP_c рассчитывают по уравнению [1]:

$$\Delta P_c = \lambda \, \frac{H}{d_s} \, \frac{w^2 \rho_g}{2\varepsilon^2} \,, \tag{6.28}$$

где λ — коэффициент сопротивления сухой насадки, зависящий от режима движения газа в насадке.

Критерий Рейнольдса для газа в верхней и нижней частях колонны соответственно равен:

$$\operatorname{Re}_{y_{B}} = \frac{w_{B}d_{9}\rho_{y_{B}}}{\epsilon\mu_{y_{B}}} = \frac{1.02 \cdot 0.035 \cdot 2.73}{0.785 \cdot 0.0091 \cdot 10^{-3}} = 14\,000;$$

$$\operatorname{Re}_{y_{H}} = \frac{w_{v}d_{s}\rho_{y_{H}}}{e\mu_{y_{H}}} = \frac{1.06 \cdot 0.035 \cdot 2.85}{0.785 \cdot 0.0092 \cdot 10^{-3}} = 15\ 100.$$

Следовательно, режим движения турбулентный.

Для турбулентного режима коэффициент сопротивления сухой насадки в виде беспорядочно засыпанных колец Рашига находят по уравнению

$$\lambda = 16/\text{Re}_y^{0.2}$$

Для верхней и нижней частей колонны соответственно получим:

$$\lambda_{\rm s} = 16/1400^{0.2} = 2.36;$$
 $\lambda_{\rm s} = 16/15100^{0.2} = 2.34$

Коэффициенты сопротивления для других режимов и различных типов насадок приведены в гл. 5 (разд. 5.1.8).

Гидравлическое сопротивление сухой насадки в верхней и нижней частях колонны равно:

$$\Delta P_{c,n} = 2,36 \frac{21}{0.035} \cdot \frac{1.02^2 \cdot 2.73}{2 \cdot 0.785^2} = 3180 \text{ Tma.}$$
$$\Delta P_{c,n} = 2,34 \frac{12}{0.035} \cdot \frac{1.06^2 \cdot 2.85}{2 \cdot 0.785^2} = 2030 \text{ Tma.}$$

Плотность орошения в верхней и нижней частях колонны определим по формулам:

$$U_{\rm B} = L_{\rm B} / (\rho_{\rm x} 0.785d^2); \qquad U_{\rm H} = L_{\rm H} / (\rho_{\rm x} 0.785d^2). \tag{6.29}$$

Подставив численные значения, получим:

$$U_{\rm B} = 3.84 / (796 \cdot 0.785 \cdot 1.6^2) = 0.0024 \, {\rm m}^3 / ({\rm m}^2 \cdot {\rm c});$$

$$U_{\rm H} = 8.98/(796 \cdot 0.785 \cdot 1.6^2) = 0.0056 \,{\rm M}^3/({\rm M}^2 \cdot {\rm c}).$$

Гидравлическое сопротивление орошаемой насадки в верхней и нижней частях колонны:

$$\Delta P_{\rm e} = 10^{169 \cdot 0.0024} 3180 = 7550 \ \mbox{Πa$}; \qquad \Delta P_{\rm w} = 10^{169 \cdot 0.0056} 2030 = 18\ 000 \ \mbox{Πa$}.$$

Общее гидравлическое сопротивление орошаемой насадки в колонне:

 $\Delta P = \Delta P_{\rm B} + \Delta P_{\rm H} = 7550 + 18000 = 25550 \ \Pi a.$

Гидравлическое сопротивление насадки составляет основную долю общего сопротивления ректификационной колонны. Общее же сопротивление колонны складывается из сопротивлений орошаемой насадки, опорных решеток, соединительных паропроводов от кипятильника к колонне и от колонны к дефлегматору. Общее гидравлическое сопротивление ректификационной колонны обусловливает давление и, следовательно, температуру кипения жидкости в испарителе. При ректификации под вакуумом гидравлическое сопротивление может существенно отразиться также на относительной летучести компонентов смеси, т. е. изменить положение линии равновесия.

Приведенный расчет выполнен без учета влияния на основные размеры ректификационной колонны ряда явлений (таких как неравномерность распределения жидкости при орошении, обратное перемешивание, тепловые эффекты и др.), что иногда может внести в расчет существенные ошибки. Оценить влияние каждого из них можно, пользуясь рекомендациями, приведенными в литературе [8, 11, 12] и в гл. 3. Последовательность приведенного расчета рекомендуется сохранить и для колонн с насадками других типов. Расчетные зависимости для определения предельных нагрузок по фазам, коэффициентов массоотдачи и гидравлического сопротивления насадок достаточно полно представлены в литературе [1, 11] и в гл. 5.

6.2. РАСЧЕТ ТАРЕЛЬЧАТОЙ РЕКТИФИКАЦИОННОЙ КОЛОННЫ Непрерывного действия

Большое разнообразие тарельчатых контактных устройств затрудняет выбор оптимальной конструкции тарелки. При этом наряду с общими требованиями (высокая интенсивность единицы объема аппарата, его стоимость и др.) ряд требований может определяться спецификой производства: большим интервалом устойчивой работы при изменении нагрузок по фазам, способностью тарелок работать в среде загрязненных жидкостей, возможностью защиты от коррозии и т. п. Зачастую эти качества становятся превалирующими, определяющими пригодность той или иной конструкции для использования в каждом конкретном процессе. Для предварительного выбора конструкции тарелок можно воспользоваться табл. 5.2.

Размеры тарельчатой колонны (диаметр и высота) обусловлены нагрузками по пару и жидкости, типом контактного устройства (тарелки), физическими свойствами взаимодействующих фаз.

Нагрузки по пару и жидкости и флегмовое число определены при расчете насадочной колонны (см. разд. 6.1.1).

Ректификацию жидкостей, не содержащих взвешенные частицы и не инкрустирующих, при атмосферном давлении в аппаратах большой производительности часто осуществляют на ситчатых переточных тарелках. Поэтому приведем пример расчета ректификационной колонны с ситчатыми тарелками.

6.2.1. Скорость пара и диаметр колонны

Расчет скорости пара в колоннах с тарелками различных конструкций выполняется по уравнениям, приведенным в разд. 5.2.1. Для ситчатых тарелок рекомендуется уравнение (5.33).

Допустимая скорость в верхней и нижней частях колонны соответственно равна:

$$w_{\mu} = 0.05\sqrt{796/2.73} = 0.853 \text{ m/c};$$
 $w_{\mu} = 0.05\sqrt{796/2.85} = 0.834 \text{ m/c}.$

Ориентировочный диаметр колонны определяют из уравнения расхода:

$$d = \sqrt{4G/(\pi w \rho_y)}$$

Как правило, несмотря на разницу в рассчитанных диаметрах укрепляющей и исчерпывающей частей колонны (вследствие различия скоростей и расходов паров), изготовляют колонну единого диаметра, равного большему из рассчитанных.

В данном случае скорости w_в и w_н мало отличаются друг от друга; используем в расчете среднюю скорость паров:

$$w = (0.853 \pm 0.834)/2 = 0.844$$
 M/c.

Принимаем средний массовый поток пара в колонне С равным полусумме С, и С,

G = (5,58 + 6,04)/2 = 5,81 Kr/c.

Средняя плотность паров

$$\rho_y = (\rho_{yB} + \rho_{yB})/2 = (2,73 + 2,85)/2 = 2,79 \text{ Kr/m}^3.$$

Диаметр колонны

$$d = \sqrt{(4 \cdot 5, 81) / (3, 14 \cdot 0, 844 \cdot 2, 79)} = 1,77$$
 м.

Выберем стандартный диаметр обечайки колонны (см. разд. 5.1.4) d = 1.8 м. При этом рабочая скорость пара

$$w = 0.844 (1.77/1.8)^2 = 0.82 \text{ m/c}.$$

По каталогу [10] для колонны диаметром 1800 мм выбираем ситчатую однопоточную тарелку ТС-Р со следующими конструктивными размерами (см. гл. 5, Приложение 5.2):

Диаметр отверстий в тарелке d _о	8 мм
Шаг между отверстиями /	15 мм
Свободное сечение тарелки Fc	18,8 %
Высота переливного порога hnep	30 MM
Ширина переливного порога b	1050 мм
Рабочее сечение тарелки S _т	2,294 м ²

Скорость пара в рабочем сечении тарелки

$$w_{\tau} = w \cdot 0.785 d^2 / S_{\tau} = 0.82 \cdot 0.785 \cdot 1.8^2 / 2.294 = 0.91 \text{ m/c}$$

6.2.2. Высота колонны

Как показано выше (разд. 3.1.8), число действительных тарелок в колонне может быть определено графоаналитическим методом (построением кинетической линии). Для этого необходимо рассчитать общую эффективность массопередачи на тарелке (к. п. д. по Мэрфри). Эффективность тарелки по Мэрфри E_{My} с учетом продольного перемешивания, межтарельчатого уноса и доли байпасирующей жидкости приближенно определяется следующими уравнениями [14]:

$$E_{My} = \frac{E'_{My}}{1 + e\lambda E'_{My} / [m \ (1 - \theta)]};$$
(6.30)

$$E'_{My} = \frac{E''_{My}}{1 + \lambda \theta E''_{My} / (1 - \theta)}; \qquad (6.31)$$

$$E_{My}'' = \frac{E_y}{B} \left[\left(1 + \frac{B}{S} \right)^S - 1 \right]; \tag{6.32}$$

$$B = \frac{\lambda \left(E_y + e/m \right)}{\left(1 - \theta \right) \left(1 + e\lambda/m \right)},$$
(6.33)

где $\lambda = m (R+1) R$ — фактор массопередачи для укрепляющей части колонны; $\lambda = m (R+1)/(R+f)$ — фактор массопередачи для исчерпывающей части колонны; E_q — локальная эффективность по пару; *е* — межтарельчатый унос жидкости, кг жидкости/кг пара; θ — доля байпасирующей жидкости; *S* — число ячеек полного перемешивания; *m* — коэффициент распределения компонента по фазам в условиях равновесия.

Локальная эффективность Еу связана с общим числом единиц переноса по паровой

фазе на тарелке nog следующим соотношением:

$$E_y = 1 - e^{-n_{oy}}, \tag{6.34}$$

где

$$n_{oy} = K_{yf} M' / (\omega_{\tau} \rho_{y}). \tag{6.35}$$

Здесь K_{yf} — в кмоль/(м²·с); M' — средняя мольная масса паров, кг/кмоль.

В настоящее время нет достаточно надежных данных для определения поверхности контакта фаз, особенно эффективной поверхности массопередачи при барботаже на тарелках. Поэтому обычно в расчетах тарельчатых колонн используют коэффициенты массопередачи, отнесенные к единице рабочей площади тарелки (K_{yl}). Коэффициент K_{yl} определяют по уравнению аддитивности фазовых диффузионных сопротивлений:

$$K_{yl} = \frac{1}{1/\beta_{yl} + m/\beta_{xl}},$$
 (6.36)

где β_{xi} и β_{yi} — коэффициенты массоотдачи, отнесенные к единице рабочей плошади тарелки соответственно для жидкой и паровой фаз, кмоль/(м²·с).

В литературе приводится ряд зависимостей для определения коэффициентов массоотдачи на тарелках различных конструкций. Однако большинство их получено путем обобщения экспериментальных данных по абсорбции и десорбции газов и испарению жидкостей в газовый поток. В ряде работ показано, что с достаточной степенью приближения эти данные можно использовать для определения коэффициентов массоотдачи процессов ректификации бинарных систем, для которых мольные теплоты испарения компонентов приблизительно равны. В частности, для тарелок барботажного типа рекомендуются [15] обобщенные критериальные уравнения типа (5.39), которые приводятся к удобному для расчетов виду:

$$\beta_{x_l} = 6.24 \cdot 10^5 D_x^{0.5} \left(\frac{U}{1-\epsilon}\right)^{0.5} h_o \left(\frac{\mu_y}{\mu_x + \mu_y}\right)^{0.5}$$
(6.37)

$$\beta_{yl} = 6.24 \cdot 10^5 F_c D_y^{0.5} \left(\frac{w_r}{\varepsilon}\right)^{0.5} h_o \left(\frac{\mu_y}{\mu_x + \mu_y}\right)^{0.5}$$
(6.38)

По этим уравнениям получают удовлетворительные результаты для расчета нейтральных и положительных бинарных смесей. Для отрицательных смесей необходимо учитывать поверхностную конвекцию. Методика учета этого явления в тарельчатых колоннах приведена в монографии [16].

Анализ результатов расчетов показал, что коэффициенты массоотдачи для колпачковых тарелок, определяемые по уравнениям (6.37) и (6.38), оказываются завышенными. Это объясняется тем, что величина h_0 , рассчитываемая по уравнению (5.48), включает полный запас жидкости на тарелке, значительная доля которой не участвует в образовании поверхности контакта фаз, в то время как h_0 в уравнениях (6.37) и (6.38) отражает влияние этой поверхности на коэффициенты массоотдачи. Для определения эффективности коллачковых тарелок могут быть рекомендованы уравнения (3.73).

6.2.3. Высота светлого слоя жидкости на тарелке и паросодержание барботажного слоя

Высоту светлого слоя жидкости h₀ для ситчатых тарелок находят по уравнению

$$h_0 = 0.787_q^{0.2} h_{nep}^{0.56} \omega_{\tau}^{m} [1 - 0.31 \exp(-0.11 \mu_x)] (\sigma_x / \sigma_y)^{0.09}, \qquad (6.39)$$

где $q = L(\rho_x b)$ — удельный расход жидкости на 1 м ширины сливной перегородки, м²/с; b — ширина сливной перегородки, м; h_{nep} — высота переливной перегородки, м; σ_x , $\sigma_{\rm B}$ — поверхностное натяжение соответственно жидкости и воды при средней температуре в колонне; μ_x — в мПа·с; $m = 0.05 - 4.6h_{\rm nep} = 0.05 - 4.6 \cdot 0.03 = -0.088$.

Для верхней части колонны

$$h_{0.\text{B}} = 0.787 \left(\frac{3.84}{796 \cdot 1.05}\right)^{0.2} 0.03^{0.56} 0.91^{-0.088} \left[1 - 0.31 \cdot 2.72^{-0.11 \cdot 0.298}\right] \left(\frac{20}{60}\right)^{0.09} = 0.0229 \text{ m}.$$

Для нижней части колонны

$$h_{0 \text{ m}} = 0.787 \left(\frac{9.29}{796 \cdot 1.05}\right)^{0.2} 0.03^{0.56} 0.91^{-0.088} \left[1 - 0.31 \cdot 2.72^{-0.11 \cdot 0.269}\right] \left(\frac{20}{60}\right)^{0.09} = 0.0275 \text{ m}.$$

Паросодержание барботажного слоя є находят по формуле

$$\epsilon = \sqrt{Fr} / (1 + \sqrt{Fr}),$$

где $Fr = w_t^2/(gh_0)$.

Для верхней части колонны

$$Fr_{B} = \frac{0.91^{2}}{9.8 \cdot 0.0229} = 3.68; \qquad \epsilon_{B} = \frac{\sqrt{3.68}}{1 + \sqrt{3.68}} = 0.66.$$

Для нижней части колонны

$$Fr_{u} = \frac{0.91^{2}}{9.8 \cdot 0.0275} = 3.07;$$
 $e_{u} = \frac{\sqrt{3.07}}{1 + \sqrt{3.07}} = 0.64$

Формулы для расчета гидродинамических параметров тарелок других типов приведены в гл. 5 (разд. 5.2.3).

6.2.4. Коэффициенты массопередачи и высота колонны

Рассчитав коэффициенты молекулярной диффузии в жидкой D_x и паровой D_y фазах (см. разд. 6.1.3), вычисляем коэффициенты массоотдачи.

Для верхней части колонны: коэффициент массоотдачи в жидкой фазе

$$\beta_{x_1} = 6.24 \cdot 10^5 \ (4.6 \cdot 10^{-9})^{0.5} \left[\frac{3.84}{796 \cdot 2.294} \int_{(1-0.66)}^{0.5} 0.0229 \left(\frac{0.0091}{0.298 + 0.0091} \right)^{0.5} = 0.0138 \ \text{m/c};$$

коэффициент массоотдачи в паровой фазе

$$\beta_{yf} = 6,24 \cdot 10^5 (5,06 \cdot 10^{-6})^{0.5} 0,188 \left(\frac{0.91}{0,66}\right)^{0.5} 0,0229 \left(\frac{0.0091}{0,298 + 0,0091}\right)^{0.5} = 1.22 \text{ m/c};$$

Для нижней части колонны:

коэффициент массоотдачи в жидкой фазе

$$\beta_{xf} = 6.24 \cdot 10^5 (5.11 \cdot 10^{-9})^{0.5} \left[\frac{9.29}{796 \cdot 2.294 (1 - 0.64)} \right]^{0.5} 0.0275 \left(\frac{0.0092}{0.269 + 0.0092} \right)^{0.5} = 0.0282 \text{ m/c};$$

коэффициент массоотдачи в паровой фазе

$$\beta_{yj} = 6,24 \cdot 10^5 (5,39 \cdot 10^{-6})^{0.5} 0,188 \left(\frac{0.91}{0.64}\right)^{0.5} 0,0275 \left(\frac{0,0092}{0,269 + 0,0092}\right)^{0.5} = 1.6 \text{ m/c}.$$

Пересчитаем коэффициенты массоотдачи на кмоль/(м²·с): для верхней части колонны

$$\beta_{xl} = 0.0138 \frac{\rho_x}{M_{\bullet}} = 0.0138 \frac{796}{82.4} = 0.124 \text{ кмоль/(m2·c)};$$

$$\beta_{yl} = 1.22 \frac{\rho_{yn}}{M_{h}} = 1.22 \frac{2.73}{81.1} = 0.041 \text{ кмоль/(m2·c)};$$

$$\beta_{xi} = 0.0282 \frac{\rho_x}{M_a} = 0.0282 \frac{796}{89.1} = 0.252$$
 кмоль/ ($M^2 \cdot c$);

$$\beta_{yl} = 1.6 \frac{\rho_{y_N}}{M'_n} = 1.6 \frac{2.85}{87.8} = 0.052 \text{ Kmojb}/(\text{m}^2 \cdot \text{c}).$$

Коэффициенты массоотдачи, рассчитанные по средним значениям скоростей и физических свойств паровой и жидкой фаз, постоянны для верхней и нижней частей колонны. В то же время коэффициент массопередачи — величина переменная, зависящая от кривизны линии равновесия, т. е. от коэффициента распределения. Поэтому для определения данных, по которым строится кинетическая линия, необходимо вычислить несколько значений коэффициента массопередачи в интервале изменения состава жидкости от x_W до x_P . Ниже дан пример расчета для определения координат одной точки кинетической линии.

Пусть x = 0,6. Коэффициент распределения компонента по фазам (тангенс угла наклона равновесной линии в этой точке) m = 0,77

Коэффициент массопередачи K_{yi} вычисляем по коэффициентам массоотдачи в верхней части колонны:

$$K_{ul} = 1/(1/0.041 + 0.77/0.124) = 0.033$$
 кмоль/(м²·с).

Общее число единиц переноса на тарелку n_{0y} находим по уравнению (6.33):

$$n_{0y} = 0.033 \cdot 81.1 / (0.91 \cdot 2.73) = 1.1.$$

Локальная эффективность по уравнению (6.34) равна:

$$E_y = 1 - 2.72^{-1.1} = 0.62$$

Для определения эффективности по Мэрфри E_{My} необходимо рассчитать также фактор массопередачи λ , долю байпасирующей жидкости θ , число ячеек полного перемешивания S и межтарельчатый унос e.

Фактор массопередачи для верхней части колонны:

$$\lambda = m (R+1)/R = 0.77 (2.1+1)/2.1 = 1.137$$

Долю байпасирующей жидкости θ для различных конструкций тарелок можно найти в монографии [5] Для ситчатых тарелок при факторе скорости $F = \omega_{\tau} \sqrt{\rho_y} = 1.5$ принимают $\theta = 0.1$.

Число ячеек полного перемешивания S для ситчатых тарелок в колоннах диаметром до 600 мм можно рассчитать по уравнению [11]:

$$S = A \operatorname{Re}_{y}^{m} \operatorname{Re}_{x}^{n} (h_{u}/d_{0})^{p} F_{c}^{q}, \qquad (6.40)$$

где $\operatorname{Re}_{y} = w_{\tau} d_{0} \rho_{y} / (F_{c} \mu_{y})$ — критерий Рейнольдса для пара в отверстиях тарелки; $\operatorname{Re}_{x} = L d_{0} / (S_{\tau} \mu_{x})$ — критерий Рейнольдса для жидкости.

Значения коэффициентов и показателей степеней в уравнении (6.40) приведены ниже:

Гидродинамический режим	Α	m	п	р	4
Пузырьковый	52,6	-0,36	0.26	-0,35	0,20
Пенный	45,4	-0,52	0,60	-0,5	0,28
Инжекционный	38,5	-0,65	0,16	-0,2	0,08

Для колонн диаметром более 600 мм с ситчатыми, колпачковыми и клапанными тарелками отсутствуют надежные данные по продольному перемешиванию жидкости, поэтому с достаточной степенью приближения можно считать, что одна ячейка перемешивания соответствует длине пути жидкости *l*=300-400 мм.

Примем l = 350 мм и определим число ячеек полного перемешивания S как отношение длины пути жидкости на тарелке l_{τ} к длине l. Определим длину пути жидкости l_{τ} как

расстояние между переливными устройствами:

$$l_{\rm T} = \sqrt{d^2 - b^2} = \sqrt{1.8^2 - 1.05^2} = 1.46$$
 M.

Тогда число ячеек полного перемешивания на тарелке $S = 1,46/0,35 \approx 4$.

Для провальных тарелок можно принять S = 1.

Унос жидкости для тарелок различных конструкций можно найти по закономерностям, приведенным в разд. 5.2.6.

Относительный унос жидкости *е* в тарельчатых колоннах определяется в основном скоростью пара, высотой сепарационного пространства и физическими свойствами жидкости и пара. В настоящее время нет надежных зависимостей, учитывающих влияние физических свойств потоков на унос, особенно для процессов ректификации. Для этих процессов унос можно оценить с помощью графических данных, представленных на рис. 6.7 [5] По этим данным унос на тарелках различных конструкций является функцией комплекса $w_{\tau}/(mH_c)$. Коэффициент *m*, учитывающий влияние на унос физических свойств мидкости и пара, определяют по уравнению

$$m = 1,15 \cdot 10^{-3} \left(\frac{\sigma_x}{\rho_y}\right)^{0.295} \left(\frac{\rho_x - \rho_y}{\mu_y}\right)^{0.425}$$
(6.41)

откуда

$$m = 1,15 \cdot 10^{-3} \left(\frac{20 \cdot 10^{-3}}{2,73}\right)^{0.295} \left(\frac{796 - 2,73}{0,00915 \cdot 10^{-3}}\right)^{0.425} = 0,629$$

Высота сепарационного пространства *H*_c равна расстоянию между верхним уровнем барботажного слоя и плоскостью тарелки, расположенной выше:

$$H_{\rm c} = H - h_{\rm n},\tag{6.42}$$

где H — межтарельчатое расстояние, м; $h_n = h_0/(1-\varepsilon)$ — высота барботажного слоя (пены), м.

Рис. 6.7. Зависимость относительного уноса жидкости e от комплекса $w_{\tau}/(mH_c)$ для тарелок различных конструкций:

I — колпачковой; 2 — ситчатой; 3 — провальной решетчатой; 4 — клапанной балластной

Рис. 6.8. Определение числа действительных тарелок:

I — линия равновесия; 2 — кинетическая линия; 3 — рабочие линии

В соответствии с каталогом [10] для колонны диаметром 1800 мм расстояние H = 0.5 м. Высота сепарационного пространства в нижней части колонны меньше, чем в верхней, поэтому определим h_n для низа колонны:

$$h_n = 0.0275 / (1 - 0.64) = 0.076 \text{ M}.$$

Тогда

$$H_c = 0.5 - 0.076 = 0.424;$$
 $w_{\tau} / (mH_c) = 0.91 / (0.629 \cdot 0.424) = 3.41.$

При таком значении комплекса $w_{\tau}/(mH_c)$ унос e = 0.12 кг/кг. Унос жидкости в верхней части колонны мало отличается от уноса в нижней части и в нашем примере e = 0.11 кг/кг.

Подставляя в уравнения (6.30) — (6.33) вычисленные значения m, E_y, θ, S и e, определяем к. п. д. по Мэрфри E_{My} :

$$B = \frac{1,137 (0,67 + 0,12/0,77)}{(1 - 0,1) (1 + 0,12 \cdot 1,137/0,77)} = 0,886.$$

$$E''_{My} = \frac{0,67}{0,886} \left[\left(1 + \frac{0,886}{4} \right)^4 - 1 \right] = 0,927;$$

$$E'_{My} = \frac{0,927}{1 + 1,137 \cdot 0,1 \cdot 0,927/(1 - 0,1)} = 0,83.$$

$$E_{M_y} = \frac{0,83}{1 + 0,12 \cdot 1,137 \cdot 0.83/[0,77 (1 - 0,1)]} = 0,71.$$

Зная эффективность по Мэрфри, можно определить концентрацию легколетучего компонента в паре на выходе из тарелке y_{κ} по соотношению

$$E_{M\mu} = (y_{\rm s} - y_{\rm n}) / (y^{\rm s} - y_{\rm n}), \tag{6.43}$$

где $y_{\tt H}$ и $y^{\tt *}$ — концентрация соответственно легколетучего компонента в паре на входе в тарелку и равновесная с жидкостью на тарелке.

Отсюда

$$y_{\kappa} = 0.725 + 0.71 (0.79 - 0.725) = 0.77$$

Аналогичным образом подсчитаны ук для других составов жидкости. Результаты расчета параметров, необходимых для построения кинетической линии, приведены ниже:

Параметр	Нижня	ня часть ко	олонны	B	Верхняя часть колонны					
x	0,05	0,15	0,30	0,45	0,60	0,75	0,90			
m	2,25	1,73	1,30	0,90	0,77	0,60	0,47			
Kut	0.039	0,041	0,043	0,034	0,033	0,036	0,036			
nov	1.314	1,384	1.449	1,097	1,110	1,159	1,185			
E,	0,732	0,750	0,765	0,667	0,670	0,686	0,694			
B	1.20	0.96	0,74	1,0	0,89	0,74	0,62			
Е%,	1,13	1,07	0,98	0,97	0,93	0,90	0,87			
E'.	0.95	0.92	0,90	0.84	0.83	0,83	0,81			
ĒM.	0.88	0.85	0.83	0.72	0.71	0,71	0.70			
Uy Uy	0.11	0.28	0.49	0.66	0,77	0,86	0,95			

Взяв отсюда значения x и y_{κ} , наносят на диаграмму x - y точки, по которым проводят кинетическую линию (рис. 6.8). Построением ступеней между рабочей и кинетической линиями в интервалах концентраций от x_P до x_F определяют число действительных тарелок для верхней (укрепляющей) части $N_{\rm B}$ и в интервалах от x_F до x_W — число действительных тарелок для верхней для нижней (исчерпывающей) части колонны $N_{\rm H}$. Общее число действительных тарелок

$$N = N_{\rm B} + N_{\rm H} = 17 + 14 = 31$$
.

Высоту тарельчатой ректификационной колонны определим по формуле

$$H_{\rm s} = (N-1)h + z_{\rm s} + z_{\rm s}, \tag{6.44}$$

где h — расстояние между тарелками, м; z_в, z_н — расстояние соответственно между верхней тарелкой и крышкой колонны и между днищем колонны и нижней тарелкой, м. Выбор значений z_в и z_н см. в разд. 5.1.7 и 6.1.3. Подставив, получим:

$$H_{\kappa} = (31-1)^{\circ}0.5 + 1.0 + 2.0 = 18$$
 M.

6.2.5. Гидравлическое сопротивление тарелок колонны

Гидравлическое сопротивление тарелок колонны ΔP_{κ} определяют по формуле

$$\Delta P_{\rm s} = \Delta P_{\rm s} N_{\rm s} + \Delta P_{\rm s} N_{\rm s}, \qquad (6.45)$$

где ΔP_{B} и ΔP_{II} — гидравлическое сопротивление тарелки соответственно верхней и нижней частей колонны, Па.

Полное гидравлическое сопротивление тарелки складывается из трех слагаемых (см. разд. 5.2.7).

Гидравлическое сопротивление сухой ситчатой тарелки по уравнению (5.57) равно

$$\Delta P_{\rm c} = 1.85 \cdot 0.91^2 \cdot 2.79 / (2 \cdot 0.188^2) = 60.5 \ \Pi a.$$

Гидравлическое сопротивление газожидкостного слоя на тарелках различно для верхней и нижней частей колонны:

$$\Delta P_{\pi s} = g \rho_x h_{os} = 9.8 \cdot 796 \cdot 0.0229 = 178.6 \ \Pi a;$$

 $\Delta P_{\pi s} = g \rho_x h_{os} = 9.8 \cdot 796 \cdot 0.0275 = 214.5 \ \Pi a.$

Гидравлическое сопротивление, обусловленное силами поверхностного натяжения, равно

$$\Delta P_{\sigma} = 4\sigma/d_{\sigma} = 4 \cdot 20 \cdot 10^{-3}/0,008 = 10 \ \Pi a.$$

Тогда полное сопротивление одной тарелки верхней и нижней частей колонны равно:

$$\Delta P_{\rm B} = 60,5 + 178,6 + 10 = 249,1$$
 Па; $\Delta P_{\rm H} = 60,5 + 214,5 + 10 = 285,0$ Па.

Полное гидравлическое сопротивление ректификационной колонны

$$\Delta P_{\kappa} = 249, 1 \cdot 17 + 285 \cdot 14 = 8225 \ \Pi a.$$

*

В дальнейшем расчету и подбору подлежат следующие параметры и аппараты: объем и размеры емкостей для исходной смеси и продуктов разделения [17]; напор и марка насосов (см. гл. 1); конструкция и поверхность теплообменной аппаратуры (см. гл. 2); диаметры трубопроводов и штуцеров (см. гл. 1); конденсатоотводчики (см. гл. 2); распределители жидкости и перераспределители потоков (см. гл. 5, Приложение 5.2); расчет толщины теплоизоляционного покрытия (см. гл. 4).

Определение оптимальных конструкций и режимов работы ректификационных колонн рационально выполнять, используя электронно-вычислительную технику. Методика проведения таких расчетов приведена в литературе [18].

Расчет ректификации многокомпонентных смесей выполняют, как правило, с помощью ЭВМ. Оптимальное проектирование и расчет таких установок подробно изложены в литературе [12, 19, 20].

6.3. ВЫБОР ОПТИМАЛЬНОГО ВАРИАНТА Ректификационной установки

Использование ЭВМ для расчета ректификационной установки, включающей колонну, теплообменники, другое вспомогательное оборудование, позволяет просчитать два или несколько вариантов с последующим выбором наилучшего из них или даже оптимального в технико-экономическом отношении. При поиске наилучшего или оптимального варианта можно изменять флегмовое число, а также конструктивные характеристики колонны (ее диаметр, межтарельчатое расстояние, тип и параметры контактных устройств) в соответствии с дискретными значениями нормализованных размеров и пределами устойчивой и эффективной работы. Возможны также некоторые изменения технологической схемы, например с целью утилизации тепла. В качестве критерия оптимизации можно принять минимум приведенных затрат, которые рассчитывают по формуле [17]

$$\Pi = \mathsf{E}\mathsf{K} + \Im, \tag{6.46}$$

где *Е* — нормативный коэффициент эффективности капиталовложений, который можно принять равным 0,15 год⁻¹ [21]; К — капитальные затраты; Э — эксплуатационные затраты.

Капитальные затраты складываются из стоимости колонны Ц_к, стоимости трубопроводов, арматуры, КИП, фундаментов, затрат на доставку и монтаж установки и стоимости вспомогательного оборудования (испарителя Ц_и, дефлегматора Ц_а, подогревателя исходной смеси Ц_и, холодильников дистиллята и кубового остатка Ц_{ха}, Ц_{хк}, насосов Ц_и1, Ц_и2, ...):

$$K = 1,7 \amalg_{\kappa} + \sum \amalg_{\text{Bern of}}$$
(6.47)

Если при поиске оптимального варианта не предусмотрено изменение технологической схемы, то в стоимость вспомогательного оборудования ($\sum \prod_{B cn o 6}$) достаточно включить только стоимости испарителя и дефлегматора, поскольку другое оборудование остается практически неизменным при изменении флегмового числа или конструкции колонны. В этом случае

$$K = 1.7 \amalg_{\kappa} + \amalg_{\mu} + \amalg_{\mu}. \tag{6.48}$$

Стоимость колонны зависит от типа, материала, диаметра и массы конструкции и определяется в соответствии с табл. 6.1, 6.2 [22]

Стоимость колонны (кроме колонн с клапанными тарелками) определяется как произведение массы колонны на цену за единицу массы. Масса колонны равна сумме массы корпуса и всех тарелок:

$$M_{\kappa o \pi} = M_{\kappa o p} + N M_{\tau a p}. \tag{6.49}$$

Масса корпуса складывается из масс цилиндрической части, крышки, днища:

$$M_{\rm kop} = M_{\rm HM,2} + M_{\rm kp} + M_{\rm JH}. \tag{6.50}$$

Масса цилиндрической части колонны определяется ее высотой, зависящей от числа тарелок N и межтарельчатого расстояния H, а также диаметром колонны d и толщиной стенки обечайки δ:

$$M_{u_{NA}} = \pi d \left[(N - 1) H_{NT} + z_{B} + z_{H} \right] \delta \cdot \rho, \qquad (6.51)$$

где р — плотность материала колонны; гв и гн — расстояния от верхней тарелки до крышки и от нижней тарелки до днища.

Массы крышки и днища можно приближенно рассчитать по формуле

$$M_{\kappa p} + M_{\mu H} \approx 2d^2 \delta \rho. \tag{6.52}$$

Масса тарелки М_{тар} зависит от ее конструкции и диаметра (см. Приложение 5.2. к гл. 5).

		Цена в руб. за 1 т при диаметре колонны, м										
1 ИЛ КОЛОННЫ [*]	0,4	0,4-0,5	0,5—0,8	0,8-1,2	1,2—1,6	1,6-2,2	2,2-2,6	2,6—3,2	3,2-4,0	4,0		
		Мат	ериал —	углерод	истая ст	аль ВСт	-3cn5					
А Б В Г	1315 1430 1550 1700	1195 1295 1405 1540	1070 1160 1255 1375	945 1020 1105 1210	855 920 990 1080	780 845 910 985	735 786 845 920	680 735 785 850	740 805 860 925	795 855 930 1000		
	Материал — легированная сталь марки 12X18Н10Т или 08X22Н6Т											
А Б В Г	2845 3000 3115 3 3 85	2660 2805 2905 3155	2470 2600 2685 2915	2275 2385 2455 2665	2120 2225 2280 2460	2000 2095 2145 2310	1920 2005 2045 2210	1845 1925 1960 2110	1910 2005 2050 2195	1935 2025 2085 2235		
	М	атериал -	— легиро	ованная	сталь м	арки 10)	(17H13M	12T				
А Б В Г	3720 3910 4020 4350	3505 3675 3770 4080	3285 3430 3510 3805	3045 3175 3240 3505	2860 2980 3030 3260	2710 2825 2865 3080	2615 2710 2750 2955	2525 2620 2650 2845	2600 2710 2750 2940	2605 2715 2765 2965		
	Мате	риал — б	Эвуслойн	ая стал	ь марки	ВСт3сп	5 + 12X 18	8 <i>H 10T</i>				
А Б В Г	2835 2990 3105 3375	2645 2790 2890 3140	2440 2570 2660 2895	2215 2345 2425 2635	2050 2160 2225 2430	1915 2020 2075 2260	1825 1915 1965 2140	1740 1830 1875 2035	1820 1915 1975 2135	1845 1950 2020 2190		

Таблица 6.1. Цены на колонные аппараты (кроме колонн с клапанными прямоточными тарелками)

* А — насадочные без стоимости насадки; Б — с решетчатыми или ситчатыми тарелками; В — с колпачковыми тарелками; Г — с тарелками, снабженными дополнительными устройствами (для отвода тепла, сепарации брызг и т. д.).

				Цена тарелок, руб. за I т						
Диаметр колонны, м	лри ма	ассе корпус стали В(а из углеро Ст3сп5, т	прим ст	ассе корпу али ВСт3с	са из двусл п5 + 08Х13	из стали ВСт3сп5+	из стали		
	12	12-20	20-35	35	12	12-20	20-35	35	+08X13	UUNIS
	610	555	530	500	1475	1375	1330	1280	2105	3360
1,0	595	540	515	485	1455	1355	1305	1260	1980	3165
1,2	590	535	505	480	1440	1340	1290	1250	1875	3010
1.6	575	525	495	470	1420	1320	1270	1225	1795	2870
1.8	565	515	490	460	1400	1310	1265	1220	1720	2745
2.0	550	500	475	455	1380	1290	1245	1205	1640	2630
2,2	545	495	470	445	1365	1280	1230	1200	1585	2550
2,4	530	485	455	435	1345	1260	1210	1180	1590	2480
2,6	520	475	450	430	1325	1245	1205	1165	1580	2450
2.8	505	465	440	420	1305	1230	1190	1150	1580	2340
3.0	500	455	435	415	1290	1215	1185	1145	1580	2315
3.2	510	470	450	430	1310	1235	1200	1160	1595	2320
3.4	530	485	460	• 440	1340	1255	1220	1180	1605	2340
3.6	550	500	475	450	1375	1285	1240	1200	1620	2360
3.8	575	520	495	465	1410	1320	1265	1220	1640	2390
4.0	600	545	520	490	1450	1355	1310	1255	1665	2430
40	640	580	545	520	1505	1400	1350	1300	1690	2630

Таблица 6.2. Цены на клапанные прямоточные тарелки и корпуса колонн с этими тарелками

Размер, мм	Цена, ру	б.заІт	Размер, мм	Цена, руб. за 1 т		
(FOCT 17612-78)	керамика	імика фарфор (ГОСТ 17612—		керамика	фарфор	
15×15 25×25 35×35 50×50 60×60	90 66,8	325,0 216,7 382,1 143,9 225,2	80×80 100×100 120×120 150×150	75,4 72,5 74,5 65,5	160,9 159,2 163,1 141,2	

Таблица 6.3. Цены на насадку из колец Рашига

Стоимость колонны с клапанными прямоточными тарелками равна сумме стоимостей корпуса и тарелок.

К стоимости насадочной колонны, определенной по табл. 6.1, следует прибавить стоимость насадки. Для колец Рашига ее можно определить из табл. 6.3 [23].

Стоимость кожухотрубчатых теплообменников приведена в табл. 6.4. Стоимость теплообменников других типов см. в табл. 2.17 и 2.18.

Стоимость насосов незначительна по сравнению со стоимостью колонны и теплообменников, и при расчете общих капитальных затрат ее можно не учитывать.

Эксплуатационные расходы Э можно разделить на две группы, пропорциональные капитальным затратам и не зависящие от капитальных затрат. К первой относятся амортизационные отчисления, определяемые коэффициентом пропорциональности К_а, и расходы на текущий ремонт оборудования, определяемые коэффициентом К_р. Для химической промышленности эти коэффициенты можно определить по средним нормам [17] К_а=0,1 год⁻¹, К_р=0,05 год⁻¹ Ко второй группе относятся расходы на пар,

Macca	Цена (руб. за I т) при общей массе теплообменника, т											
% %	0,35	0,35—0,75	0,75—1,4	1,4-2,3	2,3—3,8	3,8—5,9	5,9-12,0	12,0-20,0	20,0—35,0	35,0		
Кожух — ВСт3сп5, трубы — Ст20												
10-20	1625	1360	1165	1030	940	855	770	695	635	575		
30	1510	1280	1115	1005	920	855	780	715	665	610		
40	1410	1215	1085	890	915	850	790	730	690	640		
50	1330	1170	1055	975	915	860	810	755	710	670		
60	1270	1135	1040	970	915	870	815	775	740	700		
70	1225	1110	1025	970	920	885	840	800	770	730		
80	1200	1110	1030	985	935	905	860	825	795	760		
			Кожух –	- 12X18i	Н1 0 Т, тр	убы — I	2X 18H 10T	•				
10-20	3215	2895	2660	2505	2385	2295	2185	2095	2020	1940		
30	3155	2885	2685	2555	2450	2370	2280	2200	2140	2075		
40	3105	2875	2710	2605	2510	2435	2360	2285	2235	2180		
50	3075	2880	2745	2655	2580	2520	2455	2385	2330	2280		
60	3060	2900	2790	2705	2640	2585	2520	2475	2435	2385		
70	3070	2935	2830	2765	2705	2670	26 + 5	+565	2535	2485		
80	3095	2980	2890	2835	2780	2740	2700	2650	2620	2580		

Таблица 6.4. Цены на кожухотрубчатые теплообменники типа ТН и ТЛ

• Относительная масса труб в общей массе аппарата. Общую массу теплообменников определяют по соответствующим каталогам — см. библиографический список к гл. 2 (масса некоторых типов теплообменников приведена в табл. 2.10, 2.13, 2.15, 2.16).

Массу труб рассчитывают по уравнению

$$M_{rp} = \pi d_{cp} H n \delta \rho \approx 15,7F$$
,

где d_{ср} — средний диаметр труб; H — длина труб; n — число труб; δ — толщина стенок труб (0,002 м); ρ — плотность материала труб (≈7850 кг/м³); F — номинальная поверхность теплопередачи, м². электроэнергию и воду. В результате годовые эксплуатационные расходы определяют по формуле

$$\Im = 0.15\mathrm{K} + (G_{\mathrm{B}}\mathrm{L}_{\mathrm{B}} + G_{\mathrm{B}}\mathrm{L}_{\mathrm{B}} + G_{\mathrm{B}}\mathrm{L}_{\mathrm{B}}), \tau,$$

где G_n — расход пара, т/ч; G_3 — расход электроэнергии, кВт·ч; $G_в$ — расход воды, м³/ч; Ц_n — стоимость пара, руб/т; Ц₃ — стоимость электроэнергии, руб/(кВт·ч); Ц_a — стоимость воды, руб/м³; т = 800 ч/год — продолжительность работы оборудования (в ч) за год.

Стоимости пара, электроэнергии и воды изменяются в широких пределах, в зависимости от их параметров и региона потребления [24] Для ориентировочных расчетов можно принять: Ц_п = 4,5 руб/т; Ц_э = 0,015 руб/(кВт·ч); Ц_в = 0,03 руб/м³

6.4. РАСЧЕТ РЕКТИФИКАЦИОННОЙ УСТАНОВКИ Периодического действия

Периодически действующие ректификационные установки применяют для разделения однородных жидких смесей в малотоннажных производствах, когда необходимо предварительно накопить продукт, подлежащий разделению. Особевно рационально применение периодической ректификации в тех случаях, когда на разделение поступает смесь переменного состава или когда необходимо разделить многокомпонентные смеси или несколько различных смесей на одной и той же установке. В этом случае во всех процессах используют одну и ту же колонну, поэтому рассчитывают не размеры колонны, а время, необходимое для разделения каждой смеси. Вследствие того, что состав продуктов в колонне непрерывно меняется во времени, в расчетах появляется дополнительная переменная — количество удерживаемой в системе жидкости (в насадке, на тарелках, в дефлегматоре, в трубопроводах и др.). Влияние этой переменной на процесс разделения особенно существенно при глубоком исчерпывании кубовой жидкости. Учет задержки жидкости в расчетах рассмотрен в [2]

Периодическую ректификацию осуществляют на установке, схема которой показана на рис. 6.9. Исходную смесь загружают в куб-испаритель 1, снабженный нагревателем 2, в который подается какой-либо теплоноситель, например насышенный водяной пар. Здесь жидкость доводится до кипения и испаряется. Образующиеся пары направляются в ректификационную колонну 3, где взаимодействуют с противоточно стекающей жидкостью (флегмой), поступающей из дефлегматора 4, в котором конденсируются выходящие из колонны пары, обогашенные легколетучим компонентом. Часть конденсата, предварительно охлажденная в холодильнике 5, отводится в виде готового продукта в сборники 6. Число сборников определяется потребным числом отбираемых фракций дистиллята. Разделение конденсата на флегму и дистиллят осуществляют делителем потока 7

Периодическая ректификация может осуществляться двумя способами.

По первому способу в процессе поддерживают постоянный состав дистиллята x_p = const, при этом количество флегмы, поступающей в колонну, по мере уменьшения содержания легколе-

Рис. 6.9. Принципиальная схема установки периодической ректификации: 1 — куб-испаритель; 2 — нагреватель; 3 — ректификационная колонна; 4 — дефлегматор; 5 — холодильник; 6 — сборники; 7 — делитель потока

Рис. 6.10. Вариант организации процесса разделения при постоянном флегмовом числе

тучего компонента в кубе постепенно увеличивается. Реализация процесса по этому способу затруднительна ввиду необходимости одновременного регулирования подачи флегмы в колонну, теплоносителя в испаритель и хладоагента в дефлегматор. Однако в связи с широким внедрением управляющих автоматизированных систем этот способ начал находить применение в промышленности.

По второму способу в процессе поддерживают постоянное флегмовое число (R = const); при этом состав получаемого дистиллята меняется во времени. Этот способ более широко применяют в производстве. Фракционирование (отбор *n*-го числа фракций) отбираемого дистиллята позволяет получать продукты практически любого состава. Один из возможных вариантов схемы периодической ректификации при постоянном флегмовом числе показан на рис. 6.10. Из первоначальной загрузки состава x_F получают первую фракцию дистиллята заданного состава x_{W_R} . Далее этот остаток разделяют на дистиллят состава $x_{P2} = x_F$ (вторая фракция) и кубовый остаток конечного состава x_{W_R} . В следующем цикле ректификации вторую фракцию вновь загружают в испаритель вместе с исходной смесью. В случае необходимости первую фракцию (состава x_{P1}) можно еще раз разделять на более концентрированный по легколетучему компоненту продукт и остаток состава x_F , который вновь добавляют в исходную смесь. Таким образом можно достичь требуемой чистоты конечных продуктов.

Ниже приведен пример расчета процесса периодической ректификации, организованного по схеме, представленной на рис. 6.10.

Задание на проектирование. Рассчитать ректификационную колонну периодического действия для разделения бинарной смеси бензол — толуол по следующим данным: количество исходной смеси F = 5000 кг; содержание легколетучего компонента: в исходной смеси $\bar{x}_F = 40 \%$ [44 % (мол.)]; в кубовом остатке $\bar{x}_{WK} = 5 \%$ [6 % (мол.)]; давление в паровом пространстве дефлегматора P = 0,1 МПа.

Процесс провести при постоянном флегмовом числе R = const. Дистиллят получить в виде двух фракций: первой — состава \overline{x}_{P1} , который нужно рассчитать, и второй, равной по составу исходной смеси $(\overline{x}_{P2} = \overline{x}_F)$. Разделение провести в течение одной рабочей смены. С учетом подготовки к работе и выхода процесса на установившийся режим продолжительность работы составляет $\tau = 5$ ч.

Расчет ректификационной колонны периодического действия сводится к определению ее основных геометрических размеров — диаметра и высоты, зависящих от физических свойств фаз, типа и размеров контактных устройств, гидродинамических режимов работы колонн. При выборе гидродинамических режимов можно руководствоваться соображениями, изложенными в разд. 5.1.3 и 5.2 и в разд. 6.1.

6.4.1. Флегмовое число

Определение флегмового числа проводят технико-экономической оптимизацией. В первом приближении его можно оценить методом, изложенным в разд. 6.1.1. Однако при периодической ректификации, в отличие от непрерывной, состав дистиллята является определяемым параметром. Он зависит от условий работы колонны, в том числе и от состава дистиллята x_P в первоначальный момент времени. Поэтому расчет флегмового числа начинают с выбора состава дистиллята в начальный момент времени (состава первой капли дистиллята).

Примем x_P равным 95 % (масс.), или 96 % (мол.). Минимальное флегмовое число для этих условий

$$R_{\min} = (x_P - y_F^*) / (y_F^* - x_F) = (0.96 - 0.67) / (0.67 - 0.44) = 1.36,$$

где y^{*} — концентрация бензола в паре, равновесном с исходной жидкостью (рис. 6.11).

Задав несколько различных значений коэффициента избытка флегмы β , определим соответствующие им значения флегмовых чисел $R = \beta R_{min}$ и, используя x - y-диаграмму, — число теоретических ступеней изменения концентраций **N**. Данные расчетов представлены на рис. 6.12 и приведены ниже:

β	1,2	1,4	1,7	2,3	3,0	6,8
R	1,63	1,90	2,31	3,12	4,08	9,25
N	10,0	7,0	5,7	5,1	4,5	4,0
N(R+1)	26,3	20,3	18,8	21,0	22,8	41,0

Рис. 6.11. К определению числа теоретических ступеней изменения концентраций и составов кубовой жидкости и дистиллята в произвольный момент разделения

 x_{ρ}

Рис. 6.12. К определению рабочего флегмового числа

Рис. 6.13. Зависимость между составами кубовой жидкости и дистиллята

Как видим, минимум функции N/(R+1) = f(R) соответствует флегмовому числу R = 2,2.

При этом значении флегмового числа в x - y-диаграмме изображают рабочую линию и графическим построением определяют необходимое число теоретических ступеней. В данном случае N = 5,7 (см. рис. 6.11).

Принимая, что в процессе разделения при постоянном флегмовом числе высота, эквивалентная теоретической ступени, в проектируемой колонне практически постоянна, т. е. не зависит от изменения физических свойств фаз и гидродинамических условий, находим зависимость между текущей концентрацией легколетучего компонента в кубе и составом образующегося при этом дистиллята. Выбрав произвольно несколько значений x_p , строим рабочие линии при условии постоянства флегмового числа R = 2,2. Для каждого положения рабочей линии между ней и равновесной кривой вписываем майденное для начального момента ректификации число теоретических ступеней N = 5,7 и определяем соответствующие значения x_w . Примеры таких вычислений при $x_p = 0.96, x'_p = 0,7$ и $x''_p = 0,5$ показаны на рис. 6.11. Зависимость $x_p = f(x_w)$ представлена на рис. 6.13 и приведена ниже:

Хp	0,96	0,90	0,84	0,70	0,60	0,50	0,20
xw	0,44	0,32	0,27	0,20	0,14	0,11	0,04

Используя полученные данные, находим промежуточный состав кубовой жидкости х _{Шпр} (при котором заканчивают отбор первой фракции дистиллята) по уравнению

$$x_{P2} = \int_{x_{W,Rp}}^{x_{W,Rp}} x_P \, dx / (x_{W,Rp} - x_W) \tag{6.53}$$

с учетом того, что по условию средний состав второй фракции *х*_{Р2} равен составу исходной смеси *х*_F.

Уравнение (6.53) решают численными методами путем последовательного приближения, задавая несколько значений x_{Wnp} , больших x_{Wk} . Величина x_{Wnp} , вычисленная таким методом, оказалась равной $x_{Wnp} = 0,126 [\overline{x}_{Wnp} = 10,9\% (масс.)]$. Тогда средний состав первой фракции x_{Pi} , определенный по уравнению (6.53), в пределах интегрирования от x_{Wnp} до x_F равен:

$$x_{P1} = \int_{0.126}^{0.44} x_P \, dx / (0.44 - 0.126) = 0.82 \text{ кмоль/кмоль};$$

$$\overline{x}_{P1} = 79.4 \% \text{ (масс.)}.$$

6.4.2. Материальный баланс колонны

Количества получаемых при разделении исходной смеси продуктов (двух фракций дистиллята P₁ и P₂ и кубового остатка W) определяем из уравнений материального баланса для каждого периода ректификации.

Для первого периода (с отбором первой фракции дистиллята)

$$F = P_1 + W_{np}; \qquad \qquad F \overline{x}_F = P_1 \overline{x}_{P1} + W_{np} \overline{x}_{Wnp}.$$

Подставив, получим:

 $5000 = P_1 + W_{np}; \qquad 5000 \cdot 0, 4 = (5000 - W_{np}) \, 0,794 + W_{np} \cdot 0,109,$

откуда P₁=2120 кг; W_{пр}=2880 кг.

Оставшуюся кубовую жидкость W_{np} разделяют на вторую фракцию дистиллята (со средним содержанием бензола $x_{P2} = x_F$) и конечный кубовый продукт W_{κ} состава $x_{W\kappa}$.

Уравнение материального баланса для второго периода ректификации

$$W_{np} = P_2 + W_{\kappa}; \qquad \qquad W_{np} \overline{x}_{W,np} = P_2 \overline{x}_F + W_{\kappa} \overline{x}_{W,np}$$

Подставив, получим:

$$2880 = P_2 + W_{\kappa};$$
 $2880 \cdot 0.10$

$$2880 \cdot 0, 109 = P_2 \cdot 0, 4 + W_{\kappa} \cdot 0, 05,$$

откуда $P_2 = 485$ кг; $W_{\star} = 2395$ кг.

В процессе периодической ректификации происходит непрерывное изменение состава кубовой жидкости по легколетучему компоненту от x_F до x_{Wx} и, следовательно, изменение ее физических свойств и температуры кипения. При неизменных параметрах теплоносителя, подаваемого в испаритель ректификационной установки, переменным будет тепловой поток, а значит и производительность по испаряемой жидкости. Это существенно сказывается на устойчивости режимных параметров работы колонны, а в некоторых случаях может привести к выходу колонны из рабочего режима. Поэтому при ректификации с постоянным флегмовым числом стремятся организовать процесс таким образом, чтобы производительность установки оставалась практически постоянной в течение всего процесса разделения. Это осуществляют автоматическим изменением подачи теплоносителя в кипятильник в зависимости от мольной нагрузки колонны по пару.

В этом случае производительность установки по дистилляту G_P

$$G_P = (P_1/M_1 + P_2/M_2)/\tau$$

где M₁ и M₂ — средние мольные массы соответственно первой и второй фракций дистиллята [уравнение (6.6)]

$$M_1 = 78 \cdot 0.82 + 92 (1 - 0.82) = 80,5$$
 кг/кмоль; $M_2 = 78 \cdot 0.44 + 92 (1 - 0.44) = 85,8$ кг/кмоль;

$$G_P = (2120/80,5 + 485/85,5)/5 = 6,5$$
 кмоль/ч.

Далее расчет диаметра и высоты колонны проводят так же, как для колонн непрерывного действия. Расчет высоты ведут для начальных условий работы установки, т. е. при $x_w = x_r = 0.44$ кмоль/(кмоль.см) и $x_p = 0.96$ кмоль/(кмоль.см) Физические свойства пара и жидкости для расчета коэффициентов массоотдачи β_x и β_u определяют при средних концентрациях фаз в колонне в начальный момент времени и соответствующих им температурах.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Касаткин А. Г. Основные процессы и аппараты химической технологии. Изд. 9-е. М.: Химия, 1973, 750 c.
- 2. Перри Дж. Справочник инженера-химика: Пер. с англ. Т. І. Л.: Химия, 1969, 940 с.
- 3. Касаткин А. Г. Плановский А. Н., Чехов О. С. Расчет тарельчатых ректификационных и абсорбционных аппаратов. М.: Стандартгиз, 1961. 81 с.
- 4. Коган В. Б., Фридман В. М., Кафаров В. В. Равновесие между жидкостью и паром. Кн. 1-2. М. — Л.: Наука. 1966. 640 + 786 с.
- 5. Александров И. А. Ректификационные и абсорбционные аппараты. Изд. 3-е. М.: Химия, 1978. 280 с.
- 6. Кафаров В. В., Дытнерский Ю. И.//ЖПХ. 1957. Т 30, № 8. С. 1968—1972.
- Справочник химика. Т. І. М. Л.: Госхимиздат, 1963. 1071 с.
 Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1976. 552 с.
- 9. Cornell D., Knapp W G. et al.//Chem. Eng. Progr. 56, 1960, N 7. P. 68; N 8. P. 48.
- 10. Каталог. Колонные аппараты. Изд. 2-е. М.: ЦИНТИХИМНЕФТЕМАШ, 1978. 31 с.
- 11. Рамм В. М. Абсорбция газов. М.: Химия, 1976. 654 с.
- 12. Александров И. А. Массопередача при ректификации и абсорбции многокомпонентных систем. М.: Химия, 1975. 320 с.
- 13. Стабников В. Н. Расчет и конструирование контактных устройств ректификационных и абсорбционных аппаратов. Киев: Техніка, 1970. 208 с.
- 14. Мартюшин С. И., Карцев Е. В., Ковалев Ю. Н. Методические указания. К расчету ректификационных колонн для разделения бинарных смесей с применением ЭВМ. М., МХТИ им. Д. И. Менделеева. 1984. 38 с.
- 15. Bakowski S.//Brit. Chem. Eng. 1965. N 4. P. 256-257
- 16. Ульянов Б. А. Поверхность контакта фаз и массообмен в тарельчатых ректификационных аппаратах. Изд. Иркутского ун-та. 1982. 129 с.
- 17 Альперт Л. З. Основы проектирования химических установок. М.: Высшая школа. 1976. 272 с.
- Анисимов И. В., Бодров В. И., Покровский В. Б. Математическое моделирование и оптимизация ректификационных установок. М.: Химия, 1975. 215 с.
- 19. Платонов В. М., Берго Б. Г. Разделение многокомпонентных смесей. М.: Химия, 1965. 368 с.
- 20. Холланд Ч. Д. Многокомпонентная ректификация. М.: Химия, 1969. 348 с.
- 21. Лапидус А. С. Экономическая оптимизация химических производств. М.: Химия, 1986. 208 с.
- Прейскурант № 23-03. Оптовые цены на оборудование. Ч. П. Нефтехимическая аппаратура. М.: Стандартгиз, 1981. 65 с.
- 23. Прейскурант № 06-11-01. Оптовые цены на изделия из строительной керамики. М.: 1980. 86 с.
- Теплоэнергетика и теплотехника. Общие вопросы: Справочник/Под ред. В. А. Григорьева, В. М. Зорина. М.: Энергия, 1980, 529 с.

ГЛАВА 7

РАСЧЕТ ЭКСТРАКЦИОННОЙ УСТАНОВКИ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- а удельная поверхность контакта фаз;
- с концентрация распределяемого компонента в кг/м³;
- d размер капель;
- D диаметр аппарата, коэффициент диффузии;
- E коэффициент продольного перемешивания;
- *H*_o общая высота единицы переноса;
- *H* высота рабочей зоны колонны;
- *К* коэффициент массопередачи;
- n число отверстий в распределителе дисперсной фазы; частота вращения;
- n₀ общее число единиц переноса;
- V объемный расход;
- w фиктивная скорость:
- w₀ скорость свободного осаждения капель;
- β --- коэффициент массоотдачи;
- **μ** вязкость;
- ρ плотность;
- Δρ разность плотностей фаз;
- межфазное натяжение;
- Ф удерживающая способность.

Индексы:

- маза экстрагируемого раствора;
- y фаза экстрагента;
- с сплошная фаза;
- д дисперсная фаза;
- н начальный параметр (на входе в аппарат);
- к конечный параметр (на выходе из аппарата).

введение

Установки жидкостной экстракции применяют для очистки и разделения жидких смесей, а также для получения растворов. Наиболее распространены экстракционные установки с регенерацией экстрагента (для регенерации можно использовать любые массообменные процессы, применимые для разделения жидких растворов, а также выпаривание и другие процессы). Широко распространены установки, включающие две экстракционные стадии — экстракцию и реэкстракцию. Реэкстракция обеспечивает не только регенерацию экстрагента для стадии экстракции, но и более глубокую очистку извлекаемых веществ от примесей. Такие экстракционные процессы применяют, в частности, в технологии урана, редких металлов и в некоторых других областях химической технологии, например в производстве капролактама [1]. В последние годы значительное внимание привлекает применение в качестве экстрагентов в условиях, близких к критическим, или в сверхкритических, веществ, являющихся в обычных условиях газами (диоксид углерода, ннзшие углеводороды). Такого рода экстрагенты, обладающие уникальными растворяющими и селективными свойствами, отличаются простотой регенерации (за счет простого дросселирования) [2]

Экстракционные процессы могут быть и одностадийными. Такие установки, состоящие из одного основного аппарата — экстрактора, применяют в тех случаях, когда раствор в экстрагенте является готовым товарным продуктом. Одностадийными являются и такие простейшие экстракционные установки, как часто встречающиеся в промышленной практике установки для водной промывки различных органических продуктов.

Пример принципиальной схемы экстракционной установки показан на рис. 7.1. Плотность экстрагента, используемого в этой установке, меньше плотности экстрагируемого раствора; его регенерируют выпариванием в однокорпусной выпарной установке. Исходный раствор из сборника E_1 насосом H_1 подается в верхнюю часть экстракционной колонны КЭ. В нижнюю часть этой колонны из сборника E_3 насосом H_3 подается экстрагент.

Экстрактор в данном случае представляет собой распылительную колонну, в которой диспергируется более легкая фаза (экстрагент). Выходящие из распределителя дисперсной фазы капли поднимаются вверх и, пройдя рабочую зону экстрактора, поступают в верхнюю отстойную зону, где коалесцируют, образуя слой легкой фазы (экстракт). Противотоком экстрагенту движется сплошная фаза, из которой в данном случае извлекается экстрагируемое вещество. Очищенная исходная смесь (рафинат) собирается в нижней отстойной зоне (ниже распределителя дисперсной фазы), где отстаивается от капель экстрагента и самотеком через гидрозатвор поступает в сборник рафината Е2. Гидрозатвор переменной высоты для отвода более тяжелой фазы позволяет, с одной стороны, автоматически поддерживать постоянное положение границ раздела между фазами в верхней отстойной зоне, а с другой — изменять это положение для увеличения, например, высоты слоя легкой фазы и лучшего ее отстаивания.

Экстракт через подогреватель П поступает в выпарной аппарат AB с вышесенной греющей камерой, обогреваемой водяным паром. Концентрированный раствор экстрагируемого вещества стекает из выпарного аппарата в сборник E₄, откуда насосом H₄ подается на дальнейшую переработку. Часть вторичного пара из выпарного аппарата (парообразный экстрагент) конденсируется в подогревателе П, за счет чего экстракт нагревается перед поступлением в выпарной аппарат. Полная конденсация вторичного пара осуществляется в конденсаторе K, охлаждаемом

Рис. 7.1. Схема экстракционной установки:

КЭ — экстракционная колонна; АВ — выпарной аппарат: П — подогреватель; К — конденсатор; Х — холодильник; Е₁ — Е₄ — сборники; Н₁ — Н₄ — центробежные насосы; КО — конденсатоотводчик; *I* — вода; 2 — водяной пар; 3 — исходная смесь; 4 — рафинат; 5 — экстракт; 6 — жидкий экстрагент; 7 — концентрированный раствор экстрагнруемого вещества в экстрагенте; 8 — парообразный экстрагент; 9 конденсат; *IO* — оборотная вода водой. После охлаждения в водяном двухтрубном холодильнике λ сконденсированный экстрагент поступает в сборник E₃. В этот сборник подается некоторое количество свежего экстрагента для компенсации потерь экстрагента с упаренным раствором. На схеме показаны также конденсатоотводчик КО для отвода конденсата из выпарного аппарата и насос H₂ для подачи рафината на дальнейшую переработку.

Все аппараты и трубопроводы установки работают под атмосферным или небольшим избыточным давлением, создаваемым насосами и кипятильником выпарного аппарата. Регенерация экстрагента в данном случае осуществляется только из экстракта. Пример схемы экстракционной установки, в которой регенерация экстрагента производится ректификацией, приведен в третьей части «Графическое оформление курсового проекта».

При расчете и проектировании экстракционных установок могут решаться разные задачи. В общем случае, когда разрабатывается новый экстракционный процесс, требуется подобрать экстрагент, найти наиболее подходящий способ его регенерации, разработать технологическую схему процесса, выбрать тип экстрактора и рассчитать его размеры, спроектировать различное вспомогательное оборудование. Такого рода широкие и объемные задачи возникают редко. Гораздо чаще решаются более простые задачи, например проектирование для известного экстракционного процесса более совершенного экстрактора или проектирование экстрактора иной производительности, чем существующий промышленный аппарат. В данной главе из всего многообразия вопросов, которые могут возникать при проектировании экстракционных установок, рассмотрим лишь те, которые связаны с расчетом размеров экстракционных аппаратов.

7.1. РАСЧЕТ ЭКСТРАКЦИОННЫХ АППАРАТОВ

Из множества конструкций экстракционных аппаратов [1, 3, 4] наибольшее распространение получили противоточные колонны с механическим перемешиванием: вибрационные, роторно-дисковые, пульсационные и др. В тех случаях, когда требуется аппарат, эквивалентный большому числу теоретических ступеней, используют смесительноотстойные экстракторы. Аппараты этого типа позволяют строго контролировать или целенаправленно изменять состав экстрагента на отдельных ступенях. Для экстракционных процессов, в которых взаимодействуют плохо отстаивающиеся или склонные к эмульгированию фазы, применяют тарельчатые колонны. Если требуется малое время контакта в процессе экстракции, рекомендуется использовать центробежные аппараты. Наиболее простые и высокопроизводительные из всех известных видов экстракционных аппаратов — распылительные колонны — могут применяться в тех случаях, когда требуется аппарат, эффективность которого не больше одной теоретической ступени.

Общие принципы расчета массообменной (в том числе и экстракционной) аппаратуры даны в гл. 3. Здесь подробно рассмотрены некоторые вопросы, касающиеся работы аппаратов для жидкостной экстракции, причем как и в гл. 3, речь пойдет о простейших процессах, когда в массопереносе участвует только один компонент.

7.1.1. Скорость осаждения капель

Экстракционные аппараты работают в условиях диспергирования одной из фаз. Поэтому первая проблема, возникающая перед проектировщиком, — выбор дисперсной фазы. Обычно выгоднее диспергировать (если возможно) ту фазу, расход которой больше, так как при этом получается большая межфазная поверхность. Если в экстракторе взаимодействуют органическая и водная фазы, чаще диспергируют органическую, поскольку капли воды, как правило, проявляют большую склонность к коалесценции, в результате чего межфазная поверхность уменьшается.

В экстракционных колоннах капли дисперсной фазы движутся под действием сил тяжести вверх или вниз, в зависимости от того, какая из фаз — дисперсная или сплошная — имеет меньшую плотность. Для расчета экстракторов часто необходимо знать скорость осаждения капель. Зависимость скоростей свободного осаждения капель от их размера обычно имеет вид, показанный на рис. 7.2. Размер капель d принято характеризовать диаметром сферы равновеликого с каплей объема. Как видно из рисунка, зависимость скорость скорость скорость скорость скорость диаметром сферы равновеликого с каплей объема. Как видно из рисунка, зависимость скорость скорости свободного осаждения от размера капель имеет вид кривой с максимумом. Капли размером $d > d_{\rm кр}$ называют «осциллирующими».

цессе осаждения периодически претерпевает изменения. Скорости осаждения осциллирующих капель мало зависят от их размера.

Скорость свободного осаждения мелких капель можно рассчитать по уравнению Адамара [3]

$$\omega_{\rm o} = \frac{\Delta \rho g d^2 \left(\mu_{\rm a} + \mu_{\rm c}\right)}{6\mu_{\rm c} \left(2\mu_{\rm c} + 3\mu_{\rm a}\right)} \tag{7.1}$$

где w_o — скорость свободного осаждения; $\Delta \rho$ — разность плотностей фаз; μ_c и μ_{π} — вязкости соответственно сплошной и дисперсной фаз.

Уравнение (7.1) применимо при значении критерия Рейнольдса ($\text{Re} = \omega_o d\rho_c/\mu_c$) для капель меньше единицы.

Для расчета скоростей свободного осаждения крупных капель можно использовать следующую эмпирическую зависимость [5]

$$Q = (0,75T)^{0.78}$$
 при $2 < T \le 70;$ $Q = (22T)^{0.42}$ при $T > 70,$ (7.2)

где $Q = 0.75 + \text{Re}/P^{0.15}$; $T = 4\Delta\rho g d^2 P^{0.15}/3\sigma$; $P = \rho_c^2 \sigma^3/(\Delta\rho g \mu_c^4)$; σ — межфазное натяжение. Значение параметра T = 70 соответствует критическому размеру капель. Капли более крупного размера являются «осциллирующими».

Другой метод расчета скоростей осаждения капель описан в монографии [3]. Следует отметить, что в промышленных условиях капли дисперсной фазы, содержащие примеси различных загрязнений, часто ведут себя как твердые частицы. В них заторможено внутреннее движение, что приводит к уменьшению скоростей осаждения. Такие капли принято называть «жесткими». Скорости их осаждения следует рассчитывать по уравнениям для скоростей осаждения твердых частиц.

Рис. 7.2. Зависимость скорости свободного осаждения капель от их размера

«Скорости стесненного осаждения капель ω_{co} в экстракторах рассчитывают с помощью скоростей свободного осаждения, вводя поправочные коэффициенты. Чаще всего используют завнсимость следующего вида:

$$\omega_{\rm r,o} = \omega_{\rm o} (1 - \Phi), \tag{7.3}$$

где Ф — объемная доля дисперсной фазы в рабочей зоне экстрактора (удерживающая способность).

7.1.2. Скорости захлебывания в противоточных экстракционных колоннах

Расчет предельных скоростей фаз в экстракторах обычно проводят на основе следующего уравнения:

$$w_{\rm c}/(1-\Phi) + \omega_{\rm v}/\Phi = w_{\rm or} = w_{\rm xap}(1-\Phi), \qquad (7.4)$$

где ω_c и ω_a — фиктивные скорости соответственно сплошной и дисперсной фаз; $\omega_{o\tau}$ — относительная скорость между фазами; ω_{xap} — так называемая характеристическая скорость капель — предельное значение вертикальной составляющей скорости капель в экстракторе относительно сплошной фазы при расходах фаз, стремящихся к нулю.

Если рассматривать уравнение (7.4) как зависимость ($\omega_c + \omega_a$) от Φ , она имеет максимум, причем положение максимума обусловливает предельное значение суммарной фиктивной скорости фаз, при которой начинается захлебывание. Суммарная фиктивная скорость при захлебывании определяется уравнением

$$(w_{c} + w_{1})_{3} = (1 - 4\Phi_{3} + 7\Phi^{2} - 4\Phi_{3}^{3}) w_{xap},$$
(7.5)

в котором Φ_3 — удерживающая способность при захлебывании, равная

$$\Phi_{a} = \left(\sqrt{b^{2} + 8b - 3b}\right) / \left[4\left(1 - b\right)\right], \tag{7.6}$$

где $b = V_{\mu}/V_{c} = \omega_{\mu}/\omega_{c}$ — соотношение объемных расходов дисперсной и сплошной фаз.

Применение уравнений (7.4) — (7.6) требует знания характернстической скорости. Для распылительных колонн ее можно принять равной скорости свободного осаждения капель. В экстракторах других типов она обычно меньше скорости свободного осаждения. Так, для роторно-дисковых экстракторов характеристическую скорость рекомендуется [3] рассчитывать по уравнению

$$\boldsymbol{\omega}_{\mathrm{xap}} = \boldsymbol{\alpha} \, \boldsymbol{\omega}_{\mathrm{o}}. \tag{7.7}$$

Коэффициент α равен наименьшей из следующих величии:

$$\left(\frac{D_{\rm c}}{D}\right)^2; \qquad 1 - \left(\frac{D_{\rm p}}{D}\right)^2; \qquad \frac{(D_{\rm c} + D_{\rm p})}{D} \left[\left(\frac{D_{\rm c} - D_{\rm p}}{D}\right)^2 + \left(\frac{h}{D}\right)^2 \right]^{0.5}$$

где D, $D_{\rm p}$ и $D_{\rm c}$ — диаметр соответственно колонны, ротора и внутренний диаметр колец статора; h — высота секции.

Предложен [1, 3] ряд эмпнрических уравнений для расчета характеристической скорости. Например, для колонн с турбинными мешалками (экстракторы Ольдшу — Раштона) характеристическую скорость можно найти из уравнения

$$w_{xep} = 1.77 \cdot 10^{-4} \frac{\sigma}{\mu_c} \left(\frac{g}{n^2 D_x}\right) \left(\frac{\Delta \rho}{\rho_c}\right)^{0.9}$$
(7.8)

где *п* и *D*_м — частота вращения и диаметр мешалки.

В насадочных экстракторах капли дисперсной фазы двигаются в узких каналах внутри насадки, и стесненность осаждения обусловлена близостью стенок насадки, а не наличием других капель. Поэтому величину w_{or} в уравнении (7.4) можно считать незавнсящей от удерживающей способности. В этом случае фиктивные скорости фаз при захлебывании должны удовлетворять следующей зависимости:

$$\sqrt{w_a} + \sqrt{w_c} = \sqrt{w_{or}} \tag{7.9}$$

9 Пол ред. Ю. И. Дытнерского

Для насадочных колонн величину wor можно найти по уравнениям [4]

$$w_{or} = 0.438 \frac{\Delta \rho \epsilon^{1.5}}{\rho_c^{0.6} a_u^{0.5} \sigma^{0.6}} \operatorname{при} \frac{w_{or} \rho_c}{a_u \mu_c} > 50;$$

$$w_{or} = 0.02 \frac{\Delta \rho^{1.33} \epsilon^2}{\rho_c^{0.73} a_u \mu_c^{0.33} \sigma^{0.27}} \operatorname{при} \frac{w_{or} \rho_c}{a_u \mu_c} < 50,$$
(7.10)

где є — свободный объем насадки; $a_{\rm m}$ — удельная поверхность насадки; при подстановке $\rho_{\rm c}$ и $\Delta\rho$ в кг/м³; $a_{\rm H}$ — в м²/м³; $\mu_{\rm c}$ — в Па·с; о — в Н/м получают: $\omega_{\rm or}$ — в м/с.

7.1.3. Удерживающая способность

Для смесительно-отстойных экстракторов при достаточно интенсивном перемешивании удерживающую способность можно принять равной $\Phi = V_a/(V_a + V_c)$.

Для противоточных колонн удерживающую способность определяют из уравнения (7.4), которое можно представить в виде:

$$\Phi^3 - 2\Phi^2 + \left(1 + \frac{w_a}{w_{xap}} - \frac{w_c}{w_{xap}}\right)\Phi - \frac{w_a}{w_{xap}} = 0$$

или

$$\Phi^{2} - \left(1 + \frac{w_{\pi}}{w_{\text{or}}} - \frac{w_{\text{c}}}{w_{\text{or}}}\right) \Phi + \frac{w_{\pi}}{w_{\text{or}}} = 0.$$
(7.11)

Обычно экстракционные колонны работают в условиях, когда удерживающая способность равна наименьшему из положительных корней этих уравнений. Установлено, однако, что распылительные колонны могут работать при больших значениях Ф, соответствующих другим корням уравнения (7 11) (режим плотной упаковки капель).

7.1.4. Размер капель

В экстракторах для диспергирования одной из фаз ее либо пропускают через тонкие отверстия, либо перемешивают с помощью мешалок или созданием пульсаций. Первый способ применяют в распылительных, тарельчатых и насадочных колоннах, второй — в роторно-дисковых, пульсационных, вибрационных, смесительно-отстойных экстракторах.

Истечение дисперсной фазы из отверстия может быть капельным (когда капли образуются непосредственно у отверстия) или струйным (когда капли образуются при распаде струи). Переход от капельного истечения к струйному происходит при некоторой критической скорости в отверстии, которую можно рассчитать по уравнению [6]:

$$w_{N, \kappa p} = \sqrt{0.64 \left(\frac{g\mu_{a}d_{o}}{\sigma}\right)^{2} + \frac{3\sigma/(\rho_{a}d_{o})}{1 + d_{o}/\gamma}} - 0.8 \frac{g\mu_{a}d_{o}}{\sigma}, \qquad (7.12)$$

где d_{o} — диаметр отверстия; $\gamma = \sqrt{2\sigma/(g\Delta\rho)}$

При капельном истечении размер образующихся капель можно определить из следующей зависимости [7]

$$V = \pi R f(R) \left[1 + 2.39 R W e_1^{1/3} - 0.485 W e_1 + 19 R^{7/3} (\mu_c \omega_N / \sigma) \right].$$
(7.13)

где $V = \pi d^3/6\gamma^3$ — безразмерный объем капель; $R = d_o/2\gamma$ — безразмерный радиус отверстия; $We_1 = (\rho_c + \rho_{\pi}) d_o w^2/2\sigma$ — критерий Вебера; w_N — скорость в отверстии; функция f(R) приведена на рис. 7.3.

Следует отметить, что в уравнении (7.13) выражение в квадратных скобках, определяющее влияние скорости истечения на размер капель, часто не очень сильно отличается от единицы. Если скорость в отверстиях неизвестна, то приближенное значение размера капель можно наити по упрощенному уравнению

$$V = \pi R f(R). \tag{7.14}$$

При струйном истечении капли обычно имеют разные размеры, причем с увеличением скорости истечения распределение капель по размерам становится все более широким. Средний поверхностно-объемный диаметр капель с увеличением скорости истечения до некоторого предела падает, а затем начинает возрастать. Таким образом, при некоторой скорости струйного истечения размер капель минимален.

Средний размер капель при струйном истечении можно рассчитать лишь очень приближенно. При умеренной вязкости жидкостей соблюдается соотношение [3]:

$$d = 1,92d_i. (7.15)$$

Для ориентировочного определения размера капель диаметр конца струи d_i можно принять равным диаметру отверстия, из которого истекает струя. В действительности же происходит сужение струй, и размер капель меньше, чем следует из уравнения (7.15). Для определения средних размеров капель с учетом сужения струи можно использовать соотношение:

$$d = 1,675 d_{o} / (\alpha^{1/4} \beta^{1/3}), \qquad (7.16)$$

где

$$\alpha = 1 + 6750 \left(\frac{8R^2}{1.8 + We}\right)^{1.41} We^{0.706} \left(\frac{gd_0^3\rho_a^2}{\mu_a\mu_c}\right)^{-0.35}$$

$$\beta = 0.28 + 0.4 \exp\left[-0.56(\alpha - 1)\right]; \qquad We = \rho_a \omega_N^2 d_0 / \sigma.$$

Уравнение (7.16) приближенно описывает размер образующихся при струйном истечении капель в тех случаях, когда распад струи происходит в результате образования на ее поверхности возмущений, симметричных относительно оси.

Приведенные уравнения позволяют рассчитать средний размер капель, образующихся при истечении дисперсной фазы из отверстий тарелок или распределителя дисперсной фазы. Внутри колонны капли могут укрупняться вследствие коалесценции. Однако учесть количественно эффект коалесценции пока не представляется возможным. Поэтому приведенные уравнения применяют для расчета размеров капель в распылительных и тарельчатых экстракционных колоннах без учета коалесценции (которая в этих аппаратах обычно не очень интенсивна).

В насадочных колоннах капли движутся в узком пространстве внутри насадки, непрерывно сталкиваясь с материалом насадки и друг с другом. Это приводит к частой коалесценции и повторному редиспергированию капель. В результате устанавливается некоторый равновесный размер капель. Для его расчета можно использовать следующее эмпирическое уравнение [3]:

$$d = 0.92 \left(\frac{\sigma}{g \, \Delta \rho}\right)^{0.5} \left(\frac{w_{\rm or} e \Phi}{w_{\rm a} \, (1-\Phi)}\right), \tag{7.17}$$

где є — удельный свободный объем насадки; ш₀т — относительная скорость капель, рассчитываемая для насадочных колонн по уравнению

$$w_{\rm or} = w_{\rm a}/(\varepsilon \Phi) + w_{\rm c}/[\varepsilon(1-\Phi)]$$
(7.18)

Распределитель дисперсной фазы для насадочных колонн следует подбирать так, чтобы из него выходили капли того же размера (или немного крупнее), что и равновесный размер капель внутри насадки.

Размер элементов насадки для экстракционных колонн не должен быть слишком мал. Считается, что диаметр кольцевой насадки должен быть больше критического размера колец, определяемого по уравнению

$$d_{\text{HBC, Kp}} = 2.42\sqrt{\sigma/(g\Delta\rho)} \tag{7.19}$$

259

При меньшем размере элементов насадки колонны работают с низкой эффективностью. Вследствие сильной коалесценции капель дисперсная фаза в этом случае движется внутри насадки полностью или частично не в виде капель, а в виде сплошного каналообразного потока, что приводит к резкому уменьшению межфазной поверхности.

В экстракторах с механическим перемешиванием размеры капель также обусловливаются совокупностью процессов распада и коалесценции капель внутри аппарата. Среднне поверхностно-объемные диаметры капель рассчитывают на основе опытных данных. Так, для роторно-дисковых экстракторов можно применять следующее эмпирическое уравнение [8]:

$$d = 16.7 \frac{\mu_{\rm c}^{0.3} \sigma^{0.5}}{(nD_{\rm p})^{0.9} \rho_{\rm c}^{0.8} g^{0.2} N^{0.23}}, \qquad (7.20)$$

где D_p — диаметр дисков; N — число дисков в экстракторе.

Опубликован ряд других эмпирических уравнений для расчета средних размеров капель в роторно-дисковых и других экстракторах с подводом внешней энергии [1, 3, 4].

7.1.5. Массопередача в экстракционных аппаратах

Во многих работах [1, 3, 4, 9] приведены различные данные или эмпирические уравнения для величин, характеризующих скорости массопереноса в экстракторах. Однако эти многочисленные данные по поверхностным и объемным коэффициентам массоотдачи, по значениям высоты единицы переноса и эффективности тарелок получены в основном на аппаратуре лабораторных размеров. Применимость их для расчета экстракторов промышленных размеров в большйнстве случаев не установлена. Поэтому представляется целесообразным при отсутствии других, более надежных данных проводить расчет экстракторов на основе коэффициентов массоотдачи для свободно осаждающихся одиночных капель, мало зависящих от размеров аппарата. Коэффициенты массоотдачи как в сплошной, так и в дисперсной фазе зависят от размеров капель. Для мелких капель, ведущих себя подобно «жестким» сферам, внутри которых массоперенос осуществляется лишь за счет мөлекулярной диффузип, коэффициенты массоотдачи можно рассчитать по уравнениям [9, 10]:

$$\beta_{a} = -\frac{d}{6\tau} \ln[1 - [1 - \exp(-\pi^{2}Fo_{a}')]^{0.5}]; \qquad (7.21)$$

$$Nu_{c}^{\prime} = 0.998 Pe_{c}^{\prime 1/3};$$
 (7.22)

$$Nu_{c}^{\prime} = 0.74 Re^{1/2} Pr_{c}^{\prime 1/3}, \qquad (7.23)$$

где т — время пребывания капель в колонне; $Nu'_c = \beta_c d/D_c$, $Pe'_c = \omega_{ot} d/D_c$ и $Pr'_c = = \mu_c/\rho_c D_c$ — диффузионные критерии Нуссельта, Пекле и Прандтля для сплошной фазы; $Fo'_a = 4D_a\tau/d^2$ — диффузионный критерий Фурье для дисперсной фазы; D_c и D_a — коэффициенты диффузии соответственно в сплошной и дисперсной фазах; $Re = \rho_c \omega_{ot} d/\mu_c$ — критерий Рейнольдса для капель.

Уравнения (7.21) и (7.22) — теоретические, справедливые при малых значениях Re; уравнение (7.23) — эмпирическое, применимое при больших Re.

Коэффициенты массоотдачи для более крупных капель, в которых не заторможено циркуляционное движение, определяются следующими зависимостями [4, 9, 10]

$$\beta_{a} = -(d/6\tau) \ln |1 - [1 - \exp(-2.25\pi^{2}Fo_{a}')]^{0.5}; \qquad (7.24)$$

$$Nu_{c}^{\prime} = 0.65 Pe_{c}^{\prime 0.5} (1 + \mu_{a}/\mu_{c})^{-0.5}; \qquad (7.25)$$

$$Nu'_{a} = 31.4 (Fo'_{a})^{-0.34} (Pr'_{a})^{-0.125} We^{0.37};$$
(7.26)

$$Nu_{c}^{\prime} = 0.6 Re^{0.5} Pr_{c}^{\prime 0.5},$$
 (7.27)

где Nu_a'= $\beta_a d/D_a$ и Pr_a'= $\mu_a/(\rho_a D_a)$ — диффузионные критерии Нуссельта и Прандтля для дисперсной фазы; We = $\rho_c \omega_{or}^2 d/\sigma$ — критерий Вебера для капель.

Уравнения (7.24) и (7.25) применимы при малых Re (порядка единицы), а (7.26) и (7.27) — при больших Re.

Для осциллирующих капель можно использовать следующие уравнення [9]

$$Nu'_{a} = 0.32 (Fo'_{a})^{-0.14} Re^{0.68} [\rho_{c}^{2} \sigma^{3} / (g \Delta \rho \mu_{c}^{4})]^{0.1};$$
(7.28)

$$Nu'_{c} = 50 + 0.0085 \operatorname{Re}\left(\operatorname{Pr}'_{c}\right)^{0.7}$$
(7.29)

При расчете коэффициентов массоотдачи по приведенным выше уравнениям в безразмерные числа Re, Pe' и We подставляют относительную скорость капель, вычисленную по уравнению (7.4); время пребывания капель в колонне принимают равным $\tau = \Phi H / w_{\pi}$ (где H — высота рабочей зоны экстрактора).

Надежность расчета размеров экстрактора в значительной степени определяется правильным выбором модели, положенной в основу расчетов. В смесительных камерах смесительно-отстойных экстракторов обычно принимают модель идеального смешения для обеих фаз. При расчете распылительных колонн представляется наиболее целесообразным использование модели идеального смешения для сплошной фазы и модели идеального вытеснсния — для дисперсной. Такую же модель чаще всего применяют при расчете тарельчатых колонн. Экстракционные колонны с подводом внешней энергии обычно рассчитывают на основе диффузионной модели, используя опубликованные данные по коэффициентам продольного перемешивания [4, 11] Методы расчета размеров массообменных аппаратов на основе всех указанных моделей, применимые и к экстракторам, описаны в гл. 3.

7.1.6. Размер отстойных зон

Для разделения фаз экстракционные колонны имеют отстойные зоны, которые обычно примыкают к рабочей зоне колонны и располагаются выше и ниже ее (верхняя и нижняя отстойные зоны). Отстойная зона для сплошной фазы (при диспергировании более легкой фазы находится внизу) служит для отделения уносимых ею мелких капель. Отстойная зона для дисперсной фазы (при диспергировании легкой фазы находится вверху) предназначена для того, чтобы капли могли коалесцировать перед выходом из аппарата. Время, необходимое для коалесценции капель, можно рассчитать по уравнению [11]

$$\tau_{\text{kpan}} = 1.32 \cdot 10^5 \,(\mu_c d/\sigma) \,(H/d)^{0.18} \,(\Delta \rho g d^2/\sigma)^{0.32},\tag{7.30}$$

где *H* — высота падения капли перед ее попаданием на межфазную поверхность, где происходит коалесценция.

Расчет размеров отстойных зон лучше проводить на основе опытных данных, так как скорости отстаивания и коалесценции капель зависят от ряда трудно учитываемых факторов, например от присутствия примесей поверхностно-активных веществ.

7.2. ПРИМЕР РАСЧЕТА РАСПЫЛИТЕЛЬНОЙ КОЛОННЫ

Задание на проектирование. Определить размеры распылительной колонны для извлечения фенола из воды экстракцией бензолом при следующих условиях: расход исходной смеси — 0,001389 м³/с (5 м³/ч); начальная концентрация фенола в воде — 0,3 кг/м³; конечная концентрация фенола в воде — 0,06 кг/м³; начальная концентрация фенола в экстрагенте -- 0,01 кг/м³; температура в экстракторе — 25 °C.

Равновесие между фазами. При выражении концентраций в кг/м³ коэффициент распределения фенола между бензолом и водой при малых концентрациях фенола является практически постоянной величиной, при 25 °C равной 2,22 [12] Следовательно, равновесне между фазами в данном случае определяется уравнением (3.23), причем m = 2,22, $m_0 = 0$.

Расход экстрагента. Ввиду малой концентрации фенола изменением плотностей фази их расходов в процессе экстракции можно пренебречь. Так как в соответствии с уравнением (3.28) конечная концентрация в экстрагенте не может превышать концентрации, равновесной с концентрацией исходной смеси, то минимальный расход экстрагента, как следует из уравнения (3.4), будет равен

$$V_{y\min} = \frac{V_x (c_{x,N} - c_{x,N})}{c_y^* (c_{x,N} - c_{y,N})} = \frac{0.001389 (0.3 - 0.06)}{2.22 \cdot 0.3 - 0.01} = 0.000508 \text{ m}^3/\text{c}.$$

Реальный расход экстрагента должен быть больше минимального. Эффективность полых распылительных колонн обычно невелика (ввиду большого продольного перемешивания в сплошной фазе) и, как правило, не превышает одной теоретической ступени. Поэтому в данном случае определим расход экстрагента, исходя из условия, что необходимое число теоретических ступеней должно быть близко к единице. Ввиду малых концентраций фенола изменением расходов фаз в экстракторе можно пренебречь и, следовательно, число теоретических ступеней можно рассчитать по уравнению (3.22). Например, если расход экстрагента в два раза больше минимального (0,001016 м³/с), то конечная концентрация фенола в нем в соответствии с уравнением (3.4) составит:

 $c_{y,\kappa} = c_{y,\kappa} + (V_x/V_y) (c_{x,\kappa} - c_{x,\kappa}) = 0,01 + (0,001389/0,001016) (0,3 - 0,06) = 0,338 \text{ kg/m}^3.$

Подставляя это значение в уравнение (3.22), написанное для концентраций в кг/м³, при $m_0 = 0$ получим:

$$N_{\tau} = \frac{\ln\left(\frac{c_{y,k} - mc_{x,k}}{c_{y,k} - mc_{x,k}}\right)}{\ln(mV_{y}/V_{x})} = \frac{\ln\left(\frac{0.338 - 2.22 \cdot 0.3}{0.01 - 2.22 \cdot 0.06}\right)}{\ln(2.22 \cdot 0.001016/0.001389)} = 2.02.$$

Результаты расчетов при других расходах экстрагента приведены ниже:

V_y/V_{ymin}	3	4	5	6	7
<i>у</i> к, кг/м ³	0,229	0,174	0,141	0,119	0,104
N.	1,42	1,18	1,04	0,94	0,87

Как видно, требуемая эффективность колонны составит около одной теоретической ступени при расходе экстрагента в 5—6 раз больше минимального. Примем расход экстрагента равным 0,002778 м³/с (или 10 м³/ч), т. е. примерно в 5,5 раз больше минимального расхода и в 2 раза больше расхода исходной смеси. При таком расходе бензола конечная концентрация фенола составит $c_{g,\kappa} = 0,13$ кг/м³ Поскольку расход бензола больше расхода воды, будем проводить расчет колонны, считая бензол дисперсной фазой. Ввиду малых концентраций фенола необходимые для расчета физические свойства фаз примем равными соответствующим свойствам воды и бензола при 25 °C: $\rho_c = 997$ кг/м³; $\mu_c = 0,894$ мПа·с; $\sigma = 0,0341$ Н/м; $\rho_a = 874$ кг/м³; $\mu_a = 0,6$ мПа·с; $\Delta \rho = 123$ кг/м³

Д и аметр колонны. Основная трудность расчета диаметра распылительных колонн заключается в том, что для определения скоростей захлебывания нужно знать размеры капель и скорости их осаждения. Размеры капель зависят от скорости дисперсной фазы в отверстиях распределителя. Последняя же зависит от числа этих отверстий, а число отверстий, необходимое для равномерного распределения дисперсной фазы, зависит от диаметра колонны.

Поэтому был принят следующий порядок расчета распылительных колонн (рис. 7.4). Исходя из диаметра отверстий распределителя дисперсной фазы сначала определим ориентировочный размер капель по уравнению (7.14) или (7.15). Затем после расчета скоростей осаждения капель этого размера и предельных нагрузок, при которых наступает захлебывание, находим удовлетворяющий требованиям стандарта диаметр колонны, пригодный для проектируемого процесса. Определив размеры распределителя (шаг между отверстиями и их число), уточним размер капель с помощью уравнений (7.13) или (7.16) и проверим правильность выбора диаметра колонны. Затем рассчитаем требуемую высоту рабочей части колонны.

Проведем расчет размеров распылительной колонны, приняв диаметр отверстий распределителя дисперсной фазы равным $d_0 = 4$ мм.

Приближенный размер капель. Определим приближенный размер капель при капельном истечении бензола в воду по уравнению (7.14).

$$\gamma = \sqrt{\frac{2\sigma}{g \Delta \rho}} = \sqrt{\frac{2 \cdot 0.0341}{9.81 \cdot 123}} = 0.00752 \text{ m} (7.52 \text{ mm});$$

$$R = d_0/2\gamma = 4/(2 \cdot 7.52) = 0.266.$$

По графику на рис. 7.3 находим f(R) = 0.72. Следовательно,

 $V = \pi R f(R) = 3,14 \cdot 0,266 \cdot 0,72 = 0,601.$

Таким образом, ориентировочный диаметр капель при капельном истечении равен:

 $d = \gamma (6V/\pi)^{1/3} = 7.52 (6 \cdot 0.601/3, 14)^{1/3} = 7.9$ MM.

При струйном истечении приближенный размер капель должен иметь, в соответствии с уравнением (7.15), близкое значение:

$$d = 1,92d_0 = 1,92 \cdot 4 = 7,68$$
 MM

Скорость свободного осаждения капель. Для капель бензола днаметром 7,9 мм из уравнения (7.2) находим:

$$P = \frac{\rho_c^2 \sigma^3}{g \,\Delta\rho\mu_c^4} = \frac{997^2 \cdot 0.0341^3}{9.81 \cdot 123 \,(0.894 \cdot 10^{-3})^4} = 5.12 \cdot 10^{10};$$

$$P^{0.15} = (5.12 \cdot 10^{10})^{0.15} = 40.4;$$

$$T = 4 \,\Delta\rho g d^2 P^{0.15} / (3\sigma) = 4 \cdot 123 \cdot 9.81 \,(7.9 \cdot 10^{-3})^2 \cdot 40.4 / (3 \cdot 0.0341) = 119;$$

$$Q = (22T)^{0.42} = (22 \cdot 119)^{0.42} = 27.4;$$

$$Re = (Q - 0.75) \,P^{0.15} = (27.4 - 0.75) \,40.4 = 1070;$$

$$w_0 = \operatorname{Re}_{\mu_c} / (\rho_c d) = 1070 \cdot 0.894 \cdot 10^{-3} / (997 \cdot 7.9 \cdot 10^{-3}) = 0.121 \,\mathrm{m/c}.$$

Для капель диаметром 7,68 мм получается практически такое же значение скорости свободного осаждения (0,122 м/с).

Суммарная фиктивная скорость фаз при захлебывании. Удерживающая способность при захлебывании в данном случае ($b = V_a/V_c = 2$) в соответствии с уравнением (7.6) равна:

$$\Phi_{a} = \frac{\sqrt{b^{2} + 8b} - 3b}{4(1-b)} = \frac{\sqrt{2^{2} + 8 \cdot 2} - 3 \cdot 2}{4(1-2)} = 0,382.$$

263

Принимая характеристическую скорость капель в распылительной колоние равной скорости свободного осаждения, из уравнения (7.5) находим:

 $(w_a + w_c)_3 = (1 - 4\Phi_3 + 7\Phi_3^2 - 4\Phi_3^3) w_{xap} = (1 - 4 \cdot 0.382 + 7 \cdot 0.382^2 - 4 \cdot 0.382^3) 0.121 = 0.0328 \text{ m/c}.$

Таким образом, минимально возможный диаметр колонны равен:

$$D_{\min} = \sqrt{\frac{4 (V_{\text{A}} + V_{\text{c}})}{\pi (\omega_{\text{A}} + \omega_{\text{c}})_{\text{A}}}} = \sqrt{\frac{4 (0.002778 + 0.001389)}{3.14 \cdot 0.0328}} = 0.402 \text{ M}$$

Выбираем внутренний диаметр колонны равным 0,5 м. Фиктивные скорости фаз в такой колонне равны: $w_x = w_c = 0,707$ см/с; $w_y = w_a = 1,414$ см/с. Колонна будет работать при нагрузке, составляющей 65 % от нагрузки при захлебывании. В данном случае днаметры колонны, определяемые из приближенных размеров капель для капельного и струйного истечения, одина-ковы. Если бы они различались, то окончательный выбор диаметра колонны должен был бы проводиться после расчета распределителя и определения режима истечения дисперсной фазы.

Расчет распределяются ди сперсной фазы. Работа распылительных колонн во многом определяется конструкцией распределителя дисперсной фазы. Он должен подавать в рабочую зону колонны достаточно малые капли, по возможности близкие по размерам, и обеспечить равномерное распределение капель по объему аппарата. При близких размерах капель время пребывания их в колонне не должно сильно различаться, и режим движения дисперсной фазы близок к режиму идеального вытеснения. Поэтому предпочтительнее капельный режим истечения, при котором образуются одинаковые капли (иногда наряду с однородными крупными каплями образуются капли-спутники значительно меньшего размера).

Капельный режим работы распределителя дисперсной фазы не всегда осуществим, так как может потребоваться слишком большое число отверстий, которые невозможно разместить по его поперечному сечению. Для равномерного распределения капель по сечению аппарата необходимо, чтобы диаметр распределителя был равен диаметру рабочей зоны экстрактора (в месте установки распределителя колонна должна иметь расширение для свободного прохода сплошной фазы в отстойную зону). Число отверстий распределителя при размещении их по треугольникам примерно определяется соотношением

$$n = 0.905 (D/s)^2$$
. (7.31)

Максимальное число отверстий соответствует минимальному шагу *s* между отверстиями, который определяется конструкцией распределителя и не должен быть меньше размера капель (во избежание их слияния при выходе из распределителя). В основу расчета числа отверстий распределителя дисперсной фазы может быть положен принцип минимального размера капель. Зависимость среднего размера капель от скорости истечения обычно имеет вид, показанный на рис. 7.5. Примерное положение минимума определяется следующими соотношениями:

$$We = 0.59/R$$
 при $R \le 0.317$; $We = 1.8$ при $R > 0.317$

Рассчитаем число отверстий распределителя дисперсной фазы так, чтобы размер капель был минимальным. Так как в данном случае R = 0.266, то критерий Вебера должен быть равен Wc = 0.59/0.266 = 2.22. Скорость в отверстиях распределителя, соответствующая этому значению критерия Вебера, равна:

$$w_N = \sqrt{\sigma \operatorname{We}/(\rho_a d_0)} = \sqrt{0.0341 \cdot 2.22/(874 \cdot 0.004)} = 0.147 \ \mathrm{m/c}.$$

Необходимое для такой скорости истечения число отверстий составляет:

 $n = 4V_a/(\pi w \sqrt{d_0^2}) = 4 \cdot 0.002778/(3.14 \cdot 0.147 \cdot 0.004^2) = 1500.$

В соответствии с уравнением (7.31) шаг между отверстиями должен быть равен:

 $s = D \sqrt{0.905/n} = 0.5 \sqrt{0.905/1500} = 0.0123$ M.

Это значение заметно больше и размера отверстий, и ориентировочного размера капель. Следовательно, по сечению распределителя можно разместить 1500 отверстий. Найдем критическую скорость истечения по уравнению (7.12):

$$w_{N \, \text{kp}} = \left[0.64 \left(\frac{9.81 \cdot 0.6 \cdot 10^{-5} \cdot 0.004}{0.0341} \right)^2 + \frac{3 \cdot 0.0341}{874 \cdot 0.004 (1 + 4/7.52)} \right]^{0.5} - 0.8 \frac{9.81 \cdot 0.6 \cdot 10^{-3} \cdot 0.004}{0.0341} = 0.12 \text{ m/c.}$$

При числе отверстий n = 1500 скорость истечения (0,147 м/с) немного превышает критическую. Следовательно, распределитель будет работать в начальной стадии струйного режима, когда размеры образующихся капель отличаются незначительно.

264

Размер капель. Уточненный расчет размеров капель проводим по уравнению (7.16) для струйного истечения:

$$\alpha = 1 + 6750 \left(\frac{8 \cdot 0.266^2}{1.8 + 2.22}\right)^{1.41} 2.22^{0.706} \left(\frac{9.81 \cdot 0.004^3 \cdot 874^2}{0.6 \cdot 10^{-3} \cdot 0.894 \cdot 10^{-3}}\right)^{-0.35} = 7.17;$$

$$\beta = 0.28 + 0.4 \exp[-0.56(7,17-1)] = 0.293;$$
 $d = 1.675 \cdot 4/[7,17^{1/4}(0.293)^{1/3}] = 6.16$ MM.

Скорость свободного осаждения для капель этого диаметра составляет 0,126 м/с, а суммарная предельная нагрузка при такой характеристической скорости практически равна предельной нагрузке, полученной в предварительных расчетах на основе приближенной оценки размеров капель. Следовательно, нет оснований вносить изменения в выбранный диаметр колонны.

У держивающая способность. Уравнение (7.11) при характеристической скорости w_{хар}=0,126 м/с и фиктивных скоростях фаз w_с=0,707 см/с и w_д=1,414 см/с принимает внд:

$$\Phi^3 - 2\Phi^2 + 1,06\Phi - 0,117 = 0.$$

Для решения этого уравнения используем аналитический метод решения кубических уравнений в тригонометрической форме [13] Решение сводится к тому, что уравнение вида

$$x^{3} + ax^{2} + bx + c = 0$$

путем подстановки x = z - a/3 приволят к виду: $z^3 + pz + q = 0$. Коэффициенты p и q равны: $p = -a^2/3 + b$; $q = 2(a/3)^3 - ab/3 + c$.

Коэффициенты a, b, c уравнения (7.11) имеют следующие значения:

$$a = -2;$$
 $b = 1 + \frac{w_{a}}{w_{xap}} - \frac{w_{c}}{w_{xap}};$ $c = -\frac{w_{a}}{w_{xap}}$

Подстановкой $\Phi = z + 2/3$ преобразуем это уравнение к виду

$$z^{3} + \left(\frac{w_{a} - w_{c}}{w_{xap}} - \frac{1}{3}\right) z + \left(\frac{2}{27} - \frac{w_{a} + 2w_{c}}{3w_{xap}}\right) = 0.$$
(7.11a)

Коэффициенты р и q в данном случае равны:

Уравнение (7.11) таково, что всегда соблюдается условие $(p/3)^3 + (q/2)^2 < 0$. В этом случае уравнение (7.11а) имеет три действительных корня:

$$z_1 = 2\cos(\alpha/3)\sqrt{(-p/3)};$$

$$z_{2,3} = -2\cos(\alpha/3 \pm \pi/3)\sqrt{(-p/3)}$$

где $\alpha = \arccos \left[-\frac{q}{2} \sqrt{-(p/3)^3} \right].$

Корни кубического уравнения (7.11) равны $\Phi = z + 2/3$. Для решаемой задачи $w_c/w_{xap} = 0.0561$; $w_a/w_{xap} = 0.1122$. Следовательно, p = -0.2775; q = -0.000926; p/3 = -0.0925. Тогда

 $\alpha = \arccos [0,000926/2 (0,0925)^{3/2}] = 89,06^{\circ}; \qquad \alpha/3 = 29.7^{\circ}; \qquad \cos (\alpha/3) = 0,869;$

$$\cos (\alpha/3 + 60^\circ) = 0.0052;$$
 $\cos (\alpha/3 - 60^\circ) = 0.863.$

Таким образом

$$z_1 = 2 \cdot 0.869 \sqrt{0.0925} = 0.528;$$

 $z_2 = -2 \cdot 0.0052 \sqrt{0.0925} = -0.00316;$
 $z_3 = -2 \cdot 0.863 \sqrt{0.0925} = -0.525.$

Корни кубического уравнения (7.11) получаются равными: $\Phi_1 = z_1 + 2/3 = 1,19; \quad \Phi_2 = z_2 + 2/3 = 0,524; \quad \Phi_3 = z_3 + 2/3 = 0,142.$ Наименьшее значение, $\Phi = 0,142$, принимаем за величину удерживающей способности. В соответствии с уравнением (3.38) удельная поверхность контакта фаз

$$a = 6\Phi/d = 6.0,142/(6,16\cdot10^{-3}) = 138 \text{ m}^2/\text{m}^3$$

, Таким образом, при расчете гидродинамических параметров распылительной колонны нолучены следующие результаты:

Диаметр колонны (и распределителя дисперсной фазы), м	0,5
Фиктивная скорость, см/с:	
дисперсной фазы (бензола)	1,414
сплошной фазы (воды)	0,707
Число отверстий распределителя дисперсной фазы диаметром 4 мм	1500
Шаг между отверстиями, мм	12,3
Средний диаметр капель, мм	6,16
Удерживающая способность	0,142
Удельная поверхность контакта фаз, м ² /м ³	138

Коэффициенты диффузии. Вычислим коэффициенты диффузии по уравнению [13]:

$$D = 7.4 \cdot 10^{-12} (\varphi M)^{0.5} T / (\mu v^{0.6})$$

где *M* — молекулярная масса растворителя, равная для воды 18,02, для бензола — 78,2; φ — фактор ассоциации растворителя, равный для воды 2,6, для бензола 1 [13]; υ — мольный объем диффундирующего вещества, равный для фенола 103 см³/моль; вязкость раствора μ (в мПа·с) можно принять равной вязкости растворителей.

Рассчитаем коэффициент диффузии в разбавленном растворе фенола в воде:

$$D_{\rm c} = \frac{7.4 \cdot 10^{-12} (2.6 \cdot 18.02)^{0.5} 298}{0.894 \cdot 103^{0.6}} = 1.05 \cdot 10^{-9} \,{\rm m}^2/{\rm c}.$$

Аналогичный расчет коэффициента диффузии в бензоле дает: $D_a = 2 \cdot 10^{-9} \text{ m}^2/\text{c}.$ Коэффициенты массоотдачи. Параметр *T* в уравнении (7.2) равен

 $T = 4 \cdot 123 \cdot 9.81 (6.16 \cdot 10^{-3})^2 40.4 / (3 \cdot 0.0341) = 72.3.$

Так как в данном случае T > 70, размер капель больше критического (рис. 7.2), и капли должны осциллировать в процессе осаждения. Поэтому определение коэффициентов массоотдачи проводим по уравнениям для осциллирующих капель. Расчет по уравнению (7.29) дает:

$$w_{\text{or}} = \frac{w_{\text{c}}}{1 - \Phi} + \frac{w_{\text{a}}}{\Phi} = \frac{0.707}{1 - 0.142} + \frac{1.414}{0.142} = 10.8 \text{ cm/c};$$

$$\text{Re} = \frac{\rho_{\text{c}}w_{\text{or}}d}{\mu_{\text{c}}} = \frac{997 \cdot 0.108 \cdot 6.16 \cdot 10^{-3}}{0.894 \cdot 10^{-3}} = 742;$$

$$\text{Pr}_{\text{c}}' = \frac{\mu_{\text{c}}}{\rho_{\text{c}}D_{\text{c}}} = \frac{0.894 \cdot 10^{-3}}{997 \cdot 1.05 \cdot 10^{-9}} = 854;$$

$$\beta_{\text{x}} = \beta_{\text{c}} = \frac{D_{\text{c}}}{d} \text{ Nu}_{\text{c}}' = \frac{D_{\text{c}}}{d} (50 + 0.0085 \text{ Re } \text{Pr}_{\text{c}}^{\cdot 0.7}) =$$

$$= \frac{1.05 \cdot 10^{-9}}{6.16 \cdot 10^{-3}} (50 + 0.0085 \cdot 742 \cdot 854^{0.7}) = 1.3 \cdot 10^{-4} \text{ m/c}.$$

Для определения коэффициента массоотдачи в дисперсной фазе нужно знать время пребывания капель в колонне, зависящее от ее высоты. Зададимся высотой H = 5 м. Тогда

$$\tau = \Phi H/\omega_{a} = 0,142 \cdot 5/0,01414 = 50,2 \text{ c};$$

$$Fo_{a}' = 4D_{a}\tau/d^{2} = 4(2 \cdot 10^{-9}) \cdot 50,2/(6,16 \cdot 10^{-3})^{2} = 0,0106;$$

$$\rho_{c}^{2}\sigma^{3}/(g\Delta\rho\mu_{c}^{4}) = 5,12 \cdot 10^{10}; \qquad Nu_{a}' = 0,32(0,0106)^{-0.14}742^{0.68}(5,12 \cdot 10^{10})^{0.1} = 638;$$

$$\beta_{y} = \beta_{a} = Nu_{a}'D_{a}/d = 638 \cdot 2 \cdot 10^{-9}/6,16 \cdot 10^{-3} = 2,07 \cdot 10^{-4} \text{ m/c};$$

Коэффициент массопередачи по фазе бензола

$$K_y = \left(\frac{1}{\beta_y} + \frac{m}{\beta_x}\right)^{-1} = \left(\frac{1}{2.07 \cdot 10^{-4}} + \frac{2.22}{1.3 \cdot 10^{-4}}\right)^{-1} = 0.456 \cdot 10^{-4} \text{ m/c}.$$

Высота рабочей зоны. При расчете высоты рабочей зоны колонны примем следующую модель структуры потоков: для сплошной фазы — идеальное перемешивание, для дисперсной — идеальное вытеснение. Такой выбор основан на том, что степень продольного перемещивания в сплошной фазе распылительных колонн гораздо сильнее, чем в дисперсной (если капли не очень широко распределены по размерам) [4]. Для данной модели структуры потоков при постоянстве расходов фаз и линейной равновесной зависимости из уравнений (3.46) и (3.51) следует:

$$n_{0y} = \ln \frac{c_{y,H} - mc_{x,K} - m_0}{c_{y,K} - mc_{x,K} - m_0}$$

Вычислив по этому уравнению величину nou, рассчитанную по дисперсной фазе (экстрагент), находим рабочую высоту колонны:

$$n_{oy} = \ln \frac{0.01 - 2.22 \cdot 0.06 - 0}{0.13 - 2.22 \cdot 0.06 - 0} = 3,65;$$

$$H_{o,y} = \frac{w_y}{K_y a} = \frac{1.414 \cdot 10^{-2}}{0.456 \cdot 10^{-4} \cdot 138} = 2.25 \text{ m}; \qquad H = n_{oy} H_{oy} = 3,65 \cdot 2.25 = 8,21 \text{ m}.$$

Поскольку высота колонны получилась отличной от H = 5 м (которой задались при определении коэффициента массоотдачи в дисперсной фазе), расчет следует повторить. Принимая H = 8,21 м, получим: $\beta_y = 1,93 \cdot 10^{-4}$ м/с; $K_y = 0.449 \cdot 10^{-4}$ м/с; $H_{oy} = 2,28$ м; H = 8,32 м. При повторении расчета высота колонны не меняется. Принимаем H = 8,5 м.

Размер отстойных зон. Диаметр отстойных зон (принимаем их одинаковыми) определим, исходя из условия, что сплошная фаза должна двигаться в зазоре между краем распределителя дисперсной фазы н стенкой отстойной зоны с той же фиктивной скоростью, что и в колонне. Тогда диаметр отстойных зои можно найти из уравнения

$$D_{07} = \sqrt{D^2 + \frac{4V_c}{\pi w_c}} = \sqrt{0.5^2 + \frac{4 \cdot 0.001389}{3.14 \cdot 0.00707}} = 0.707 \text{ M}.$$

Принимаем диаметр отстойных зон равным 0,8 м.

Найдем по уравнению (7.30) время, необходимое для коалесценции капель бензола:

$$\tau_{\text{KORT}} = 1.32 \cdot 10^5 \cdot \frac{0.894 \cdot 10^{-3} \cdot 6.16 \cdot 10^{-3}}{0.0341} \left(\frac{8.5}{6.16 \cdot 10^{-3}} \right)^{0.18} \left(\frac{123 \cdot 9.81}{0.0341} \left(\frac{6.16 \cdot 10^{-3}}{0.0341} \right)^{0.32} = 86.1 \text{ c.}$$

Найденное время коалесценции является приближенным, так как размер капель в отстойной зоне вследствие коалесценции капель должен быть больше, чем в колонне (6,16 мм). Для расчета

Рис. 7.6. Эскиз распылительной колонны: 1, 3 — вход и выход сплошной фазы; 2, 4 — вход и выход дисперсной фазы

Рис. 7.7. Схема расчета размеров роторно-дисковых экстракторов

объема верхней отстойной зоны примем, что половина верхней отстойной зоны занята слоем чистого скоалесцировавшего бензола, а другая половина заполнена коалесцирующими каплями. Считая, что объемная доля бензола в коалесцирующей эмульсии составляет 80 %, получим объем верхней отстойной зоны:

$$v_{\text{ot}} = 2V_{\text{A}}\tau_{\text{KOA}}/0.8 = 2 \cdot 0.002778 \cdot 86.1/0.8 = 0.598 \text{ M}^3$$

Следовательно, высота отстойной зоны должпа быть равна

$$H_{\text{ot}} = 4v_{\text{ot}}/(\pi D_{\text{ot}}^2) = 4.0,598/(3,14.0,8^2) = 1,19 \text{ M}.$$

Принимаем отстойные зоны одинаковыми, высотой 1,2 м. На рис. 7.6 приведены основные размеры распылительной колонны, определенные в результате технологического расчета.

Низкая эффективность спроектированной колонны (высота, эквивалентная теоретической ступени, равна ≈8 м) обусловлена большим продольным перемешиванием в сплошной фазе (при расчете принято полное перемешивание). Если бы режим движения обеих фаз соответствовал идеальному вытеснению, необходимая высота рабочей зоны колонны составила бы около 1 м.

7.3. ПРИМЕР РАСЧЕТА РОТОРНО-ДИСКОВОГО ЭКСТРАКТОРА

В качестве примера расчета роторно-днскового экстрактора рассмотрим тот же процесс очистки воды от фенола экстракцией бензолом, но очистки более глубокой — до конечной концентрации фенола в воде 0,009 кг/м³ (степень извлечения 97 %). Остальные исходные параметры будем считать такими же, как и при расчете распылительной колонны:

$$V_{x} = V_{c} = 0.001389 \text{ m}^{3}/\text{c}; \qquad \tilde{V}_{y} = V_{a} = 0.002778 \text{ m}^{3}/\text{c}; \qquad c_{x,u} = 0.3 \text{ kr/m}^{3}; \\ c_{y,u} = 0.01 \text{ kr/m}^{3}; \qquad t = 25 \text{ °C}; \qquad m = 2.22; \qquad m_{0} = 0; \\ \rho_{c} = 997 \text{ kr/m}^{3}; \qquad \rho_{a} = 874 \text{ kr/m}^{3}; \qquad \Delta \rho = 123 \text{ kr/m}^{3}; \\ \mu_{c} = 0.894 \text{ mflac}; \qquad \mu_{a} = 0.6 \text{ mflac}; \qquad D_{c} = 1.05 \cdot 10^{-9} \text{ m}^{2}/\text{c}; \\ D_{a} = 2 \cdot 10^{-9} \text{ m}^{2}/\text{c}; \qquad \sigma = 0.0341 \text{ H/m}; \qquad \Phi_{1} = 0.382. \end{cases}$$

Конечная концентрация фенола в бензоле при такой степени извлечения равна

$$c_{y,\kappa} = c_{y,\mu} + (V_x/V_y) (c_{x,\mu} - c_{x,\kappa}) = 0.01 + 0.001389 (0.3 - 0.009) / 0.002778 = 0.1555 \text{ kr/m}^3$$

Для расчета роторно-дисковых экстракторов недостаточно определить диаметр и высоту рабочей части колонны. Необходимо подобрать также размеры внутренних устройств (диаметры дисков и статорных колец, расстояние между дисками) и частоту вращения дисков. Используем методику расчета, схема которой показана на рис. 7.7 В этой методике исходными данными являются соотношения размеров внутренних устройств экстрактора D_p/D , D_c/D , h/D (где D, D_p и D_c — диаметры соответственно колонны и дисков и внутренний диаметр статорных колец; h высота секции), а также величица nD_p (где n — частота вращения ротора).

Обычно диаметр дисков в роторно-дисковых экстракторах в 1,5—2 раза меньше диаметра колонны, высота секции (расстояние между дисками) в 2—4 раза меньше диаметра колонны, а внутренний днаметр колец статора составляет 70—80 % от диаметра колонны [3, 4] Примем следующие соотношения для размеров внутренних устройств: $D_p/D=2/3$; $D_c/D=3/4$; h/D==1/3 и рассчитаем размеры экстрактора, работающего при $nD_p=0.2$ м/с.

Средний размер капель. Для определения размеров капель по уравнению (7.20) необходимо знать число секций (дисков). Зададимся числом секций N = 20. Получим:

$$d = 16.7 \frac{(0.894 \cdot 10^{-3})^{0.3} (0.0341)^{0.5}}{0.2^{0.9}997^{0.8}9.81^{0.2}20^{0.23}} = 0.00203 \text{ m} (2.03 \text{ mm})$$

Суммарная фиктивная скорость фаз при захлебывании. Рассчитав скорость свободного осаждения капель бензола размером 2,03 мм в воде по уравнению (7.2), получим: $\omega_0 = 5,73$ см/с. Определим характеристическую скорость капель по уравнению (7.7):

$$(D_c/D)^2 = (3/4)^2 = 0.562;$$
 $1 - (D_p/D)^2 = 1 - (2/3)^2 = 0.556;$

$$\frac{(D_{\rm c}+D_{\rm p})}{D} \left[\left(\frac{D_{\rm c}-D_{\rm p}}{D}\right)^2 + \left(\frac{h}{D}\right)^2 \right]^{0.5} = \left(\frac{3}{4} + \frac{2}{3}\right) \left[\left(\frac{3}{4} - \frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2 \right]^{0.5} = 0.485.$$

Следовательно, $\alpha = 0.485$, и характеристическая скорость капель равна:

$$w_{xap} = \alpha w_0 = 0.485 \cdot 5.73 = 2.78$$
 см/с.

Фиктивную суммарную скорость фаз при захлебывании находим из уравнения (7.5):

 $(w_1 + w_2)_3 = (1 - 4 \cdot 0.382 + 7 \cdot 0.382^2 - 4 \cdot 0.382^3) 2.78 = 0.756 \text{ cm/c}.$

Диаметр колонны и размеры внутренних устройств. Минималько допустимый диаметр колонны в данном случае равен

$$D_{\min} = \sqrt{\frac{4(V_{a} + V_{c})}{\pi (w_{a} + w_{c})_{2}}} = \sqrt{\frac{4(0.001389 + 0.002778)}{3.14 \cdot 0.00756}} = 0.84 \text{ M}$$

Принимаем внутренний диаметр колонны равным 1 м. Фиктивные скорости фаз в такой колонне равны: $w_y = w_a = 0.354$ см/с; $w_x = w_c = 0.177$ см/с. Суммарная скорость фаз составит 69 % от суммарной скорости фаз при захлебывании.

Основные размеры внутренних устройств экстрактора:

$$D_{\rm p} = D (D_{\rm p}/D) = 1 \cdot 2/3 = 0.667$$
 M; $D_{\rm c} = D (D_{\rm c}/D) = 1 \cdot 3/4 = 0.75$ M;
 $h = D (h/D) = 1 \cdot 1/3 = 0.333$ M.

Частота вращения $n = (nD_p/D_p) = 0.2/0.667 = 0.3 \ \mathrm{c^{-1}}$ У дельная поверхность контакта фаз. Подставив значения фиктивных скоростей фаз и характеристической скорости в уравнение (7 11), получим кубическое уравнение:

$$\Phi^3 - 2\Phi^2 + 1,06\Phi - 0,127 = 0.$$

Решая это уравнение (см. пример расчета распылительной колонны), находим удерживающую способность Ф = 0,169. Следовательно, удельная поверхность контакта фаз равна

$$a = 6\Phi/d = 6.0,169/(2,03\cdot10^{-3}) = 500 \text{ m}^2/\text{m}^3$$

Высота рабочей зоны колонны. Рассчитаем высоту рабочей зоны колонны и, следовательно, число дисков с учетом продольного перемешивания на основе диффузионной модели по уравнениям (3.39) — (3.41). Коэффициенты продольного перемешивания в сплошной (*E*_c) и дисперсной (E_a) фазах вычислим из следующих эмпирических зависимостей [4]:

$$E_{c} = 0.5 \frac{w_{c}h}{1-\Phi} + 0.09 \left(\frac{D_{p}}{D}\right)^{2} \left[\left(\frac{D_{c}}{D}\right)^{2} - \left(\frac{D_{p}}{D}\right)^{2} \right] n D_{p}h;$$

$$E_{a} = 0.5 \frac{w_{a}h}{\Phi} + 0.09 \left(\frac{D_{p}}{D}\right)^{2} \left[\left(\frac{D_{c}}{D}\right)^{2} - \left(\frac{D_{p}}{D}\right)^{2} \right] n D_{p}h.$$

Расчет по этим уравнениям дает:

$$E_{x} = E_{c} = 0.5 \frac{0.177 \cdot 10^{-2} \cdot 0.333}{1 - 0.169} + 0.09 \left(\frac{2}{3}\right)^{2} \left[\left(\frac{3}{4}\right)^{2} - \left(\frac{2}{3}\right)^{2}\right] 0.2 \cdot 0.333 = 6.69 \cdot 10^{-4} \text{ m}^{2}/\text{c};$$

$$E_{y} = E_{a} = 0.5 \frac{0.354 \cdot 10^{-2} \cdot 0.333}{0.169} + 0.09 \left(\frac{2}{3}\right)^{2} \left[\left(\frac{3}{4}\right)^{2} - \left(\frac{2}{3}\right)^{2}\right] 0.2 \cdot 0.333 = 38 \cdot 10^{-4} \text{ m}^{2}/\text{c}.$$

Для определения коэффициентов массоотдачи необходимо знать относительную скорость капель в колонне и критерий Рейнольдса:

$$w_{\text{or}} = \frac{w_{\text{a}}}{\Phi} + \frac{w_{\text{c}}}{1 - \Phi} = \frac{0.177}{0.169} + \frac{0.354}{1 - 0.169} = 2.3 \text{ cm/c};$$

Re = $\frac{\rho_{\text{c}} w_{\text{or}} d}{\mu_{\text{c}}} = \frac{997 \cdot 0.023 \cdot 2.03 \cdot 10^{-3}}{0.894 \cdot 10^{-3}} = 52.2.$

Параметр Т в уравнении (7.2) равен

$$T = \frac{4 \cdot 123 \cdot 9.81 \cdot (2.03 \cdot 10^{-3})^2 \cdot 40.4}{3 \cdot 0.0341} = 7.85.$$

Так как T < 70, то капли не осциллируют.

Ввиду того что Re заметно больше единицы, для расчета коэффициентов массоотдачи используем уравнения (7.26) и (7.27). При определении размеров капель число секций экстрактора принято равным 20. Поэтому в качестве первого приближения для высоты экстрактора примем

значение H = Nh = 20.0,333 = 6,66 м. Рассчитаем коэффициенты массоотдачи:

$$Nu'_{c} = 0.6Re^{0.5} Pr'_{c}^{0.5} = 0.6 \cdot 52.2^{0.5} 854^{0.5} = 127;$$

$$\beta_{z} = \beta_{c} = Nu'_{c} \frac{D_{c}}{d} = 127 \frac{1.05 \cdot 10^{-9}}{2.03 \cdot 10^{-3}} = 0.657 \cdot 10^{-4} \text{ m/c};$$

$$\tau = \Phi H/w_{a} = 0.169 \cdot 6.66/0.00354 = 318 \text{ c};$$

$$Fo'_{a} = 4D_{a}\tau/d^{2} = 4 \cdot 2 \cdot 10^{-9} \cdot 318/(2.03 \cdot 10^{-3})^{2} = 0.617;$$

$$We = \frac{\rho_{c}w_{cr}^{2}d}{\sigma} = \frac{997 (2.3 \cdot 10^{-2})^{2} \cdot 2.03 \cdot 10^{-3}}{0.0341} = 0.0314;$$

$$Nu'_{a} = 31.4 (Fo'_{a})^{-0.34} (Pr'_{a})^{-0.125} We^{0.37} = 31.4 \cdot 0.617^{-0.34} 343^{-0.125} 0.0314^{0.37} = 4.96;$$

$$\beta_y = \beta_a = N u'_a \frac{D_a}{d} = 4.96 \frac{2 \cdot 10^{-9}}{2.03 \cdot 10^{-3}} = 0.0488 \cdot 10^{-4} \text{ m/c}.$$

Критерии Рг'_c == 854 и Рг'_a == 343 определены при расчете распылительной колонны. Находим коэффициент массопередачн и высоту единицы переноса по водной фазе, соответствующую режиму идеального вытеснения:

$$K_{x} = \left(\frac{1}{\beta_{x}} + \frac{1}{m\beta_{y}}\right)^{-1} = \left(\frac{1}{0.657 \cdot 10^{-4}} + \frac{1}{2.22 \cdot 0.0488 \cdot 10^{-4}}\right)^{-1} = 0.93 \cdot 10^{-5} \text{ m/c};$$
$$H_{0x} = \frac{w_{x}}{K_{x}a} = \frac{0.00177}{0.93 \cdot 10^{-5} \cdot 500} = 0.381 \text{ m}.$$

Так как расходы фаз в рассматриваемом процессе практически ие меняются, а равновесие между фазами характеризуется линейной зависимостью, для расчета общих чисел единиц переноса можно использовать уравнение (3.33), которое при выражении составов в кг/м³ может быть представлено в виде:

$$n_{0x} = \frac{mV_y/V_x}{mV_y/V_x - 1} \ln \frac{mc_{xy} + m_0 - c_{yy}}{mc_{xy} + m_0 - c_{yy}}.$$

Для рассматриваемого процесса $mV_y/V_x = 2,22 \cdot 2 = 4,44; m_0 = 0.$ Следовательно,

$$n_{ox} = \frac{4.44}{4.44 - 1} \ln \frac{2.22 \cdot 0.3 - 0.1555}{2.22 \cdot 0.009 - 0.01} = 5.08.$$

Таким образом, при режиме идеального вытеснения по обеим фазам высота рабочей зоны колонны $H = n_{ox} H_{ox} = 5,08 \cdot 0,381 = 1,93 м$. Для определения высоты колонны с учетом продольного перемешивания находим методом последовательного приближения «кажущуюся» высоту единицы переноса по уравнениям (3.40) и (3.41). Сначала определим значение критерия Пекле для продольного перемешивания в обеих фазах:

$$Pe_{y} = \frac{w_{y}H}{E_{y}} = \frac{0.00354 \cdot 6.66}{38 \cdot 10^{-4}} = 6.2;$$

$$Pe_{x} = \frac{w_{x}H}{E_{x}} = \frac{0.00177 \cdot 6.66}{6.69 \cdot 10^{-4}} = 17.6.$$

В первом приближении коэффицненты f_y и f_x вычисляем, пренебрегая в уравнениях (3.41) вторыми членами в правой части:

$$f_y = \left\{ 1 - \frac{\left[1 - \exp\left(-\operatorname{Pe}_y\right)\right]}{\operatorname{Pe}_y} \right\}^{-1} = \left\{ 1 - \frac{\left[1 - \exp\left(-6.2\right)\right]^{-1}}{6.2} \right\} = 1.192;$$

$$f_x = \left\{ .1 - \frac{\left[1 - \exp\left(-\operatorname{Pe}_x\right)\right]}{\operatorname{Pe}_x} \right\}^{-1} = \left\{ 1 - \frac{\left[1 - \exp\left(-17.6\right)\right]}{17.6} \right\}^{-1} = 1.06.$$

Подставляя эти значения в уравнение (3.40), находим первое приближение для кажущейся зысоты единицы переноса:

$$H_{0x}' = H_{0x} + \frac{E_x}{w_x f_x} + \left(\frac{V_x}{mV_y}\right) \left(\frac{E_y}{w_y f_y}\right) = \\ = 0.381 + \frac{6.69 \cdot 10^{-4}}{0.00177 \cdot 1.06} + 0.2252 \frac{38 \cdot 10^{-4}}{0.00354 \cdot 1.192} = 0.941 \text{ M},$$

где $V_x/(mV_y) = 1/(2,22 \cdot 2) = 0,2252.$

Значению $H'_{ox} = 0.941$ м соответствует высота колонны $H = H'_{ox} n_{ox} = 0.941 \cdot 5.08 = 4.78$ м. Полученные значения H и H'_{ox} используем для более точного определения критерия Пекле и коэффициентов f_{μ} и f_{λ} :

$$Pe_{y} = 0,00354 \cdot 4,78/38 \cdot 10^{-4} = 4,45;$$

$$Pe_{x} = 0,00177 \cdot 4,78/6,69 \cdot 10^{-4} = 12,6;$$

$$f_{y} = \left\{1 - \frac{\left[1 - \exp\left(-Pe_{y}\right)\right]}{Pe_{y}}\right\}^{-1} - \left(1 - \frac{V_{x}}{mV_{y}}\right) \frac{E_{y}}{w_{y}H'_{o,x}} =$$

$$= \left\{1 - \frac{\left[1 - \exp\left(-4,45\right)\right]}{4,45}\right\}^{-1} - (1 - 0,2252) \frac{38 \cdot 10^{-4}}{0,00354 \cdot 0,941} = 0,401;$$

$$f_{x} = \left\{1 - \frac{\left[1 - \exp\left(-Pe_{x}\right)\right]}{Pe_{x}}\right\}^{-1} + \left(1 - \frac{V_{x}}{mV_{y}}\right) \frac{E_{x}}{w_{x}H'_{o,x}} =$$

$$:= \left\{1 - \frac{\left[1 - \exp\left(-12,6\right)\right]}{12,6}\right\}^{-1} + (1 - 0,2252) \frac{6,69 \cdot 10^{-4}}{0,00177 \cdot 0,941} = 1,40.$$

Второе приближение для кажущейся высоты единицы переноса равно:

$$H'_{0x} = 0.381 + \frac{6.69 \cdot 10^{-4}}{0.00177 \cdot 140} + 0.2252 \frac{38 \cdot 10^{-4}}{0.00354 \cdot 0.401} = 1.25 \text{ M}.$$

При таком значении $H'_{o,x}$ требуемая высота колонны равна $H = 1.25 \cdot 5.08 = 6.35$ м.

Проводя расчет H'_{0x} и H несколько раз, до тех пор, пока значения этих величин в двух последовательных итерациях не станут практически равными, получим: $H'_{0x} = 1,15$ м; H = 5,84 м. Так как расстояние между дисками принято равным 0,333 м, колонна такой высоты должна иметь 5,84/0,333 = 17,5 дисков. Принимая число дисков равным 18, получим для высоты рабочей зоны значение $H = 18 \cdot 0.333 = 6$ м.

В начале расчета при определении размеров капель число секций в колонне было принято равным 20. Если в уравнение (7.20) подставить N = 18, получим средний размер капель d = 2.08 мм, что на 2,5 % отличается от значения d при N = 20. Поскольку такое отклонение находится в пределах точности уравнения (7.20), пересчет размеров капель и всех остальных гидродинамических параметров экстрактора не имеет смысла. Практически не изменится также и коэффициент массоотдачи в дисперсной фазе, зависящий от высоты колонны. Однако если бы полученая в результате расчета экстрактора сильно отличалась от значения, которым задались вначале, весь расчет следовало бы повторить, начиная с определения среднего размера капель.

Результаты расчета высоты колонны свидетельствуют о значительном продольном перемешивании в роторно-дисковых экстракторах. Вследствие продольного перемешивания необходимая высота рабочей зоны увеличивается в 3 раза.

Сравнивая результаты расчета роторно-дисковой и распылительной экстракционных колонн, можно отметить гораздо большую эффективность первой: число теоретических ступеней при заданных концентрациях фаз равно около 2,6 и, следовательно, ВЭТС ≈2,3 м, в то время как для распылительной колонны ВЭТС ≈8 м. Однако производительность распылительного экстрактора гораздо больше: диаметр его при тех же расходах вдвое меньше.

Энергетические затраты на перемешивание. Для вращающегося днска критерий мощности при достаточно больших значениях критерия Рейнольдса (Re_# > 10⁵) равен примерно $K_N = 0.03$ [3]. В данном случае

$$\operatorname{Re}_{M} = \rho_{c} n D_{p}^{2} / \mu_{c} = 997 \cdot 0.3 \cdot 0.667^{2} / (0.894 \cdot 10^{-3}) = 149\ 000.$$

Средняя плотность перемешиваемой срелы

$$ρ = Φρ_a + (1 - Φ)ρ_c = 0,169 \cdot 874 + (1 - 0,169) \cdot 997 = 976$$
 кг/м³.

Рис. 7.8. Эскиз роторно-дискового экстрактора:

I — вал; 2 — успоконтельная втулка; 3 — обечайка; 4 — кольцо; 5 — диск; 6, 7 — вход и выход тяжелой фазы; 8, 9 — вход и выход легкой фазы

Следовательно, затраты энергии на перемешивание одним диском составляют:

 $N = K_{N} \rho n^3 D_p^5 = 0.03 \cdot 976 \cdot 0.3^3 \cdot 0.667^5 = 0.1$ Bt.

Таким образом, затраты мощности на перемешивание очень невелики и для всех дисков составляют около 2 Вт. Мощность электродвигателя в данном случае следует подбирать на основе механического расчета. Она должна быть достаточной для преодоления пускового момента и сил трения в опорах.

Размер отстойных зон. В роторно-дисковых экстракторах диаметры рабочей зоны и отстойных зон обычно одинаковы. Если определить по уравнению (7.30) время, необходимое для коалесценции капель бензола в верхней отстойпой зоне, и исходя из этого времени рассчитать объем отстойной зоны (как при расчете распылительной колонны), то высота отстойной зоны получится равной около 0,2 м. Но в данном экстракторе отстойные зоны являются продолжением рабочей, в которой происходит интенсивное движение жидкостей. Поэтому отстойные зоны должны состоять из двух частей: собственно отстойных зон (где происходит разделение фаз) и промежуточных успокоительных зон высотой обычно не меньше диаметра колон-

ны (наличие которых создает лучшие условия для отстаивания). Исходя из этих соображений, принимаем полную высоту отстойных зон равной 1,2 м.

Основные размеры роторно-дискового экстрактора, полученные в результате технологического расчета, приведены на рис. 7.8. Приведенный пример расчета роторно-дискового экстрактора выполнен при условии, что произведение числа оборотов ротора на его диаметр составляет 0,2 м/с. При проектировании экстрактора следует провести его расчет при разных значениях $nD_{\rm p}$, сравнить результаты и выбрать оптимальный вариант.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Основы жидкостной экстракции/Под ред. Г Я. Ягодина. М.: Химия, 1981. 399 с.
- 2. McHugh M., Val Krukonis//Supercritical Fluid Extraction. N-Y, 1987.
- 3. Трейбал Р. Жидкостная экстракция: Пер. с англ. М.: Химия, 1966. 724 с.
- Laddha G. S., Degaleesan T. E. Transport phenomena in liquid extraction. New Delhi, 1976. 487 p.
 Hu S., Kintner R. C.//AlChE J. 1955. V 1. № 1. P. 42-48.
 Lehrer I. H.//Ind. Eng. Chem. Proc. Des. Devel. 1979. V 18. № 2. P. 297-300.

- 7. Каган С. З., Ковалев Ю. Н., Захарычев А. П.//ТОХТ 1973. Т. 7. № 4. С. 565—570. 8. Каган С. З., Аэров М. Э., Волкова Т. С., Труханов В. Г.//ЖПХ. 1964. Т 37. № 1. С. 58—65.
- 9. Skelland A. H. P. Diffusional Mass Transfer N.Y. 1974. Р 594. 10. Броунштейн Б. И., Фишбейн Г. А. Гидродинамика, массо- и теплообмен в дисперсных системах. М.: Химия, 1977 279 с.
- 11. Последние достижения в области жидкостной экстракции: Пер. с англ. М.: Химия, 1974. 448 c.
- 12. Справочник по растворимости. Т. 1. М.: Химия, 1968. 2097 с.
- 13. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1987. 575 с.

ГЛАВА 8 РАСЧЕТ АДСОРБЦИОННОЙ И ИОНООБМЕННОЙ УСТАНОВОК

- а удельная поверхность сорбента, м²/м³;
- В константа уравнения Дубинина. К⁻²;
- С концентрация вещества в жидкости (газе), кг/м³;
- $C_{\rm s}$ предельная концентрация в газовой фазе в данных условиях, кг/м 3 ;
- D диаметр аппарата, м;
- d, эквивалентный диаметр частицы сорбента, м;
- D_3 коэффициент эффективной диффузии, M^2/c ;
- D_и коэффициент диффузии в жидкости (газе), м²/с; G массовый расход фазы, кг/с;
- Н высота, м;
- К_р константа равновесия ионного обмена;
- *К_и* коэффициент массопередачи, м/с:
- n_{oy} общее число единиц переноса в жидкой (газовой) фазе; Р парциальное давление, Па или мм рт. ст.;
- R радиус частицы, м;
- S площадь поперечного сечения аппарата, м²;
- Т безразмерное время;
- V объемный расход жидкости (газа), м³/с;
- V_0 удельный объем ионита, см³/с;
- $V_{\rm r}$ объемный расход сорбента, м³/с;
- w скорость жидкости (газа). м/с:
- W₀ константа уравнения Дубинина, см³/г;
- X концентрация вещества в сорбенте, кг/кг;
- X° равновесная концентрация в сорбенте, кг/кг;
- z координата по высоте слоя сорбента, м;
- β коэффициент аффинности;
- β_{прод} фиктивный коэффициент массоотдачи, учитывающий продольное перемешивание, м/с; β_x — коэффициент внутренней массоотдачи, м/с;
- β_c, β_y коэффициент внешней массоотдачи. м/с:
 - ϵ порозность слоя сорбента, м³/м³;
 - µ_и вязкость жидкости (газа), Па-с;
 - рилс насыпная плотность сорбента, кг/м³;
 - о" плотность жидкости (газа), кг/м
 - р_х плотность частицы сорбента, кг/м³;
- $\rho(\tau)$ плотность распределения частиц ионита по времени пребывания, с⁻¹;
- τ время, с;
- Аг критерий Архимеда;
- Ві' массообменный критерий Био;
- Nu' массообменный критерий Нуссельта;
- Re критерий Рейнольдса.

введение

Процессы адсорбции и ионного обмена широко применяют в химической промышленности, биотехнологии и ряде других отраслей. Типичными примерами адсорбции и ионного обмена являются рекуперация растворителей, разделение смесей углеводородов, очистка и осушка газов, очистка сточных вод, деминерализация воды, выделение металлов из растворов их солей.

Процессы адсорбции и ионного обмена проводят в аппаратах с неподвижным, псевдоожиженным и плотным двнжущимся слоем адсорбента или ионита. Наиболее распространены в промышленности процессы сорбции в неподвижном слое. Непрерывные процессы адсорбции и ионного обмена проводят в аппаратах с псевдоожиженным или плотным движущимся слоем.

Приведенные в данной главе примеры расчета охватывают как периодические, так и непрерывные процессы в неподвижном и псевдоожиженном слое. Основной целью при расчете адсорбционной и ионообменной установок является определение равновесных зависимостей, расчет кинетических характеристик сорбции и определение основных размеров аппаратов на основе уравнений динамики процесса.

Для адсорбции равновесные данные могут быть получены на основе теории объемного заполнения пор по изотерме адсорбции стандартного вещества или аналитически [1]. Для

ионного обмена равновесные зависимости часто находят по уравнениям, полученным на основе закона действующих масс [2].

В случае активных углей обычно имеется достаточно данных для аналитического расчета по уравнению Дубинина [1] При отсутствии таких данных прибегают к равновесным зависимостям в табличной или графической форме, полученным экспериментальным путем.

Методики определения кинетических и динамических характеристик процессов ионного обмена и адсорбции во многом идентичны, поэтому методы расчета, показанные в примерах для случаев адсорбции и ионного обмена, могут рассматриваться в своей основе как относящиеся к обоим процессам.

В расчете адсорбера с неподвижным слоем использовались уравнения динамики сорбции; изложенные в гл. 3 (разд. 3.4).

Основные характеристики адсорберов и ионообменных аппаратов, адсорбентов и ионитов, необходимые для расчета, приведены в Приложениях 8.1 и 8.2.

8.1. РАСЧЕТ РЕКУПЕРАЦИОННОЙ АДСОРБЦИОННОЙ Установки с неподвижным слоем адсорбента

Адсорбционные установки с неподвижным слоем адсорбента, несмотря на периодичность работы каждого аппарата, наиболее распространены в промышленности ввиду трудности использования движущегося слоя из-за истирания адсорбента. Обработка сырья в таких установках многостадийна, так как после стадии адсорбции необходимо регенерировать и охладить адсорбент. В случае десорбции водяным паром может быть включена стадия сушки. Таким образом, цикл работы таких установок может включать четыре стадии: адсорбцию, десорбцию, сушку и охлаждение адсорбента. В трехстадийном цикле стадия охлаждения отсутствует, в результате чего начало стадии адсорбции идет в неизотермическом режиме, с постепенным снижением температуры адсорбента. Иногда исключают и стадию осушки. В этом двухстадийном случае сушку осуществляют обрабатываемым газом, подаваемым в начале стадии адсорбции в подогретом состоянии. Выбор числа стадий цикла осуществляется технико-экономическим расчетом, учитывающим в основном энергетические и капитальные затраты на проведение всего многостадийного процесса.

Рис. 8.1. Схема рекуперационной адсорбционной установки с неподвижным слоем адсорбента. A1, A2 — адсорберы; B1, B2 — воздуходувки; Ф — фильтр; Ог — огнепреградитель: X1, X2 — хололильники; Ц — циклон; К — конденсатор; Ка1 — калорифер; Е1 — емкость рекуператора; потоки: I — острый воляней пар; 2 — вода; З — технологический воздух; 4 — конденсат водяного

потоки: I — острый воляной пар. 2 — вода; 3 — технологический воздух; 4 — конденсат водяного пара с примесью адсорбата; 5 — оборотная вода: 6 — конденсат водяного пара

Для осуществления непрерывной работы всей установки она должна включать несколько адсорберов, причем их число определяется соотношением продолжительностей стадий цикла.

Если сырье обрабатывается в каждый момент только в одном адсорбере, то при двух аппаратах продолжительность стадий адсорбции равна сумме продолжительностей десорбции, сушки и охлаждения. При трех адсорберах длительность вспомогательных стадий в два раза превышает длительность адсорбции, при четырех адсорберах — в три раза.

Схема рекуперационной адсорбционной установки с неподвижным слоем адсорбента, работающей в четырехстадийном цикле, представлена на рис. 8.1. Газ, содержащий рекуперируемый растворитель, воздуходувкой В1 подается в адсорбер А1, заполненный активным углем, предварительно проходя фильтр Ф, служащий для удаления пыли, огнепреградитель Ог, необходимый для предотвращения распространения огня по трубопроводам в случае воспламенения очищаемой парогазовой смеси, и холодильник Х2. После насыщения слоя адсорбента адсорбер А1 переключается на стадию десорбции. Адсорбент регенерирустся острым водяным паром (давление 0,1-0,4 МПа), подаваемым внизу адсорбера.

Часть пара конденсируется, отдавая тепло на нагрев адсорбента, материала адсорбера и на компенсацию теплоты адсорбции. Оставшийся пар уносит пары адсорбата в конденсатор К, проходя через циклон Ц, задерживающий пылевидные частицы адсорбента. Конденсат, представляющий собой смесь воды и адсорбата, охлаждается в холодильнике X1 и подается в емкость E1, следуя затем на разделение.

Сушка адсорбента осуществляется горячим воздухом, подаваемым в адсорбер воздуходувкой В2 через калорифер Ка1. Охлаждение адсорбента производится атмосферным воздухом, подаваемым воздуходувкой В2 по обводной линии.

Задание на проектирование. Рассчитать адсорбционную установку периодического действия с неподвижным слоем адсорбента для улавливания паров метанола из воздуха, работающую по четырехстадийному циклу при следующих условиях: расход смеси — 7370 м³/ч; температура паровоздушной смеси — 20 °C; атмосферное давление — 0,1013·10⁶ Па; начальная концентрация метанола в газовой смеси — $C_{\mu} = 1,8 \cdot 10^{-3}$ кг/м³; проскоковая концентрация составляет 5 % от начальной; тип аппарата — вертикальный адсорбер; адсорбент — активный уголь.

Принимаем число адсорберов в установке, равное двум. В одном из аппаратов проходит стадия адсорбции, в то время как в другом протекают стадии регенерации активного угля.

Ввиду того, что целью проектируемой установки является рекуперация растворителя, в качестве адсорбента принимаем рекуперационный уголь AP-3 с эквивалентным диаметром гранулы 2 мм.

8.1.1. Изотерма адсорбции паров метанола на активном угле

Для активного угля АР-3, обладающего бипористой структурой, по теории объемного заполнения пор равновесная концентрация в твердом теле описывается уравнением Дубинина:

$$X = \frac{W_{01}}{v} \exp\left[\frac{-B_1 T^2}{\beta^2} \left(\lg \frac{P_s}{P}\right)^2\right] + \frac{W_{02}}{v} \exp\left[\frac{-B_2 T^2}{\beta^2} \left(\lg \frac{P_s}{P}\right)^2\right],$$
(8.1)

где X — равновесная концентрация в твердой фазе, моль/г; W_{01} , B_1 , W_{02} , B_2 — константы, характеризующие адсорбент; $W_{01} = 0.19 \text{ см}^3/\text{г}$; $B_1 = 0.74 \cdot 10^{-6} \text{ K}^{-2}$; $W_{02} = 1.8 \times \times 10^{-1} \text{ см}^3/\text{г}$; $B_2 = 3.42 \cdot 10^{-6} \text{ K}^{-2}$ (см. Приложение 8.2); β — коэффициент аффинности, $\beta = 0.4$ (см. Приложение 8.2); v — мольный объем поглощаемого компонента, см³/моль; $P_s = 12800$ Па — давление насыщенного пара метанола; P — парциальное давление паров метанола в газовой смеси.

Например. при P=0,1 равновесная концентрация метанола в АУ равна:

$$X = \frac{0.19}{40.46} \exp\left[\frac{-0.74 \cdot 10^{-6}293^2}{(0.4)^2} \left(\lg \frac{96}{0.1}\right)^2\right] + \frac{0.18}{40.46} \exp\left[\frac{-3.42 \cdot 10^{-6}293^2}{0.4^2} \left(\lg \frac{96}{0.1}\right)^2\right] = 0.1376 \cdot 10^{-3} \text{ моль/г, или } 4.4 \cdot 10^{-3} \text{ кг/кг.}$$

275

Вычисленные по уравнению (8.1) равновесные концентрации метаноя бактивноя угле (АУ) представлены ниже:

Парциальное давле паров метанола Р Па (мм рт. ст)	кне ция метанола в газе С 10 ³ , кг/м ³	Равновесная концентрация метанола в АУ X·10 ² , кг/кг	Парциальное давлені паров метанола <i>Р</i> , Па (мм рт. ст.)	ие Концентра- ция метанола в газе С · 10 ³ , кг/м ³	Равновесная концентрация метанола в АУ X·10 ² , кг/кг
$\begin{array}{cccc} 13,33 & (0,1) \\ 26,66 & (0,2) \\ 66,67 & (0,5) \\ 133,33 & (1,0) \end{array}$	0,175 0,351 0, 8 76	0,44 0,89 1,99 3,17	$\begin{array}{c} 666,67 & (5,0) \\ 1333,33 & (10,0) \\ 2666,67 & (20) \\ 3999,99 & (30) \end{array}$	8,76 17,53 35,10 52,6	8,51 12,64 18,59 22,53
266,67 (2,0)	3,51	5,0	6666,66 (50)	87,7	22,55

Исходная концентрация метанола в газовой смеси соответствует части изотермы, 5лизкой к линейной.

Согласно рекомендации [1], начальный участок изотермы может рассматризаться как линейный при условии (C/Cs)6 < 0,17 (по бензолу).

Отношение P/P_s для бензола, соответствующее исходной концентрации метанола з смеси ($C_{\rm H} = 1.8 \cdot 10^{-3} \, {\rm kr/m^3}$) может быть найдено по уравнению потенциальной теории здсорбции:

$$(C/C_s)_6 = (P/P_s)_6 = 10 \frac{-(\lg 0.168 - \lg 1.8 \cdot 10^{-3})}{0.4} = 1.2 \cdot 10^{-5} < 0.17,$$

-де (P/P_s)₆ — отношение парциального давления к давлению насыщенного пара для 5ензола.

Полученный результат показывает, что форма изотермы на рассматриваемом участке может быть принята линейной.

8.1.2. Диаметр и высота адсорбера

Допустимую фиктивную скорость газа можно рассчитать по формуле, полученной на основе технико-экономического анализа работы адсорберов [8]:

$$w = \sqrt{0.0167} \rho_{\text{mac}} d_{3g} / \rho_{y}. \tag{8.2}$$

сде $d_s = 2.0 \cdot 10^{-3}$ м; $\rho_{\text{инс}} = 550$ кг/м³ (для активного угля AP-3); плотность воздуха три 20 °C $\rho_{\mu} = 1.2$ кг/м³

Допустимая скорость газа в адсорбере:

$$w = \sqrt{0.0167 \cdot 550 \cdot 2.0 \cdot 10^{-3} \cdot 9.81/1.2} = 0.388 \text{ m/c}.$$

Рабочую скорость газа в адсорбере примем на 25 % ниже допустимой: $w = 0.75 \times 0.388 = 0.29$ м/с.

Диаметр аппарата:

$$D = \sqrt{4V/(\pi w)} = \sqrt{4 \cdot 7370/(3, 14 \cdot 0, 29 \cdot 3600)} = 3.0 \text{ m}.$$

Іринимаем вертикальный адсорбер типа ВТР (диаметр вертикального адсорбера не превышает 3 м)

Высоту слоя активного угля в аппарате для обеспечения достаточного времени аботы адсорбера примем равной 0,7 м (в вертикальных адсорберах ВТР высота лоя адсорбента составляет 0,5—1,2 м). Общую высоту цилиндрической.части приимаем равной 1,7 м. Дополнительная высота (под крышкой и нал днищем) необхоцима для размещения распределительного устройства для газа, штуцеров и датчиков

8,1.3. Коэффициент массопередачи

Находим коэффициент диффузни в газовой фазе в системе метанол — воздух.

При t=0 °C и P=98,1 кПа коэффициент диффузии равен 0,133 см²/с. Коэффициент диффузии в условиях адсорбера

$$D_y = D_{y0} \frac{P_0}{P} \left(\frac{T}{T_0}\right)^{3/2} = 0.133 \cdot 10^{-4} \frac{9.81 \cdot 10^4}{10.13 \cdot 10^4} \left(\frac{293}{273}\right)^{3/2} = 0.143 \cdot 10^{-4} \text{ m}^2/\text{c}.$$

Вязкость газовой фазы (воздуха) µ_и = 1,8 · 10⁻⁵ Па · с. Коэффициент массоотдачи в газовой фазе находим по уравнению

$$Nu' = 0.355 \text{Re}^{0.641} (\text{Pr}')^{0.333} / \epsilon, \qquad (8.3)$$

где ε — порозность слоя ($\varepsilon = 0,375$ [7]);

$$Re = wd_{3}\rho_{y}/\mu_{y} = 0.29 \cdot 2 \cdot 10^{-3} \cdot 1.2/(1.8 \cdot 10^{-5}) = 38.67;$$

$$Pr' = \mu_{y}/(\rho_{y}D_{y}) = 1.8 \cdot 10^{-5}/(1.2 \cdot 0.143 \cdot 10^{-4}) = 1.049.$$

Подставив в выражение (8.3) значения Re и Pr', получим:

 $Nu' = 0.355 \cdot 38.67^{0.641} 1.049^{0.333} / 0.375 = 10.01.$

Тогда коэффициент внешней массоотдачи равен

 $\beta_{\mu} = 10.01 D_{\mu}/d_{\mu} = 10.01 \cdot 0.143 \cdot 10^{-4}/(2 \cdot 10^{-3}) = 0.072 \text{ m/c}.$

Коэффициент эффективной диффузни метанола в адсорбенте находим по зависимости $D_3 = f(x)$ [9], для случая адсорбции метанола на активном угле, приближающемся по внутренней структуре к АУ марки АР-3 в интервале концентраций $X = 0 - -3,3 \cdot 10^{-2}$ кг/кг

$$D_3 = 3,00 \cdot 10^{-10} \text{ m}^2/\text{c}.$$

Коэффициент массоотдачи в адсорбенте (коэффициент внутренней массоотдачи) находим по уравнению (3.114):

$$\beta_{x} = \frac{10D_{y}}{d_{y}(1-\epsilon)} \frac{\rho_{\text{mac}}X^{*}(C_{\text{m}})}{C_{\text{m}}}$$

Тогда

$$\beta_{x} = \frac{10 \cdot 3.0 \cdot 10^{-10} \cdot 550 \cdot 3.3 \cdot 10^{-2}}{2 \cdot 10^{-3} (1 - 0.375) 1.8 \cdot 10^{-3}} = 0.0242 \text{ m/c}.$$

Коэффициент массопередачи

$$K_y = 1/(1/\beta_y + 1/\beta_x) = 1/(1/0.072 + 1/0.0242) = 0.018$$
 m/c.

Снижение движущей силы массопереноса в результате отклонения движения газа от режима идеального вытеснения учтем введением дополнительного диффузионного сопротивления продольного перемешивания. Коэффициент, учитывающий продольное перемешивание, определяем по уравнению (3.121):

$$\beta_{npog} = 0.0567 \frac{\omega}{1 - \varepsilon} \left(\frac{\rho_y \omega d_3}{\mu_y}\right)^{0.22} = 0.0567 \frac{0.29}{1 - 0.375} \left(\frac{1.2 \cdot 0.29 \cdot 2 \cdot 10^{-2}}{1.8 \cdot 10^{-5}}\right)^{0.22} = 0.059 \text{ m/c}.$$

Коэффициент массопередачи с учетом продольного перемешивания:

$$K'_y = (1/K_y + 1/\beta_{npog})^{-1} = (1/0.018 + 1/0.059)^{-1} = 0.0138 \text{ m/c}.$$

Удельная поверхность адсорбента

$$a = 6(1 - \epsilon)/d_3 = 6(1 - 0.375)/(2 \cdot 10^{-3}) = 1875 \text{ m}^2/\text{m}^3$$

$$K_{yv} = K'_{ya} = 0.0138 \cdot 1875 = 25.87 \text{ c}^{-1}$$

8.1.4. Продолжительность адсорбции. Выходная кривая. Профиль концентрации в слое адсорбента

Продолжительность адсорбции метанола определяется по выходной кривой, построение которой производится по уравнению Томаса (3.125) для безразмерной концентрации в потоке:

$$C/C_{u} = J(n_{oy}, n_{oy}T),$$

где $n_{oy} = K'_y az/w$ — общее число единиц переноса для слоя высотой z; $T = wC_{\mu}(\tau - -z\epsilon/w)/[\rho_{\mu ac}X^*(C_{\mu})z]$ — безразмерное время.

Выразим т через безразмерное время Т:

$$\tau = \frac{z \left[T \rho_{\mu a c} X^* \left(C_{\mu} \right) + C_{\mu} \varepsilon \right]}{w C_{\mu}} = \frac{0.7 \left(550 \cdot 3.3 \cdot 10^{-2} T + 1.8 \cdot 10^{-3} \cdot 0.375 \right)}{2.9 \cdot 1.8 \cdot 10^{-3}} = 24 \ 339 T + 0.905$$

Число единиц переноса:

$$n_{oy} = K'_{yv} z / w = 25,87 \cdot 0,7/0,29 = 62,24.$$

Результаты расчета выходной кривой адсорбции приведены ниже:

T	τ	C/C"	Т		C/C,
0.4	9736.5	0.0000	1.1	26773.8	0,7219
0.5	12170.4	0.00071	1.2	29207.7	0.8658
0.6	14604.3	0.00715	1.3	31641.6	0.9455
0.7	17038.2	0.03860	1.4	34075.5	0,9811
0.8	19472,1	0,1296	1.5	36509.4	0,9943
0,9	21906,0	0,2993	1,6	38943,3	0,9983
1.0	24339.9	0.5179	• -	- • -	

Время достижения концентрации метанола в газе, выходящем из адсорбера (она составляет 5 % от начальной, т. е. C/C_{κ} =0,05), равно длительности стадии адсорбции. В соответствии с выходной кривой (рис. 8.2) продолжительность стадии адсорбции θ составляет 1,73·10⁴ с.

Построение профиля концентраций ведется по уравнению Томаса (3.125), запи-

санному для безразмерной концентрации в адсорбенте:

$$X/X^{*}(C_{n}) = 1 - J(n_{oy}T, n_{oy}).$$

Выразим расстояние z от точки ввода смеси до точки с концентрацией X в виде функции от безразмерного времени:

$$z = \frac{\theta \omega C_{\mu}}{T \rho_{\mu e} X^{*} (C_{\mu}) + C_{\mu \epsilon}} = \frac{1.73 \cdot 10^{-4} \cdot 0.29 \cdot 1.8 \cdot 10^{-3}}{550 \cdot 3.3 \cdot 10^{-2} T + 1.8 \cdot 10^{-3} 0.375} = \frac{1}{2.01 T + 0.748 \cdot 10^{-5}}.$$

Расчет профиля концентраций метанола в слое угля представлен ниже:

1/7	Т	2, M	n _{oy} T	J (noyT, noy)	X/X*(C _*)
0.4	2.5	0.199	44.38	0.0012	0.9988
0.5	2,0	0.249	44.38	0.0039	0.9961
0,6	1,667	0,299	44.38	0.0204	0.9796
0,7	1,429	0,348	44.38	0.0704	0,9296
0,8	1,25	0,398	44,18	0,1749	0,8251
0,9	1111	0,448	44.38	0.3344	0,6656
1,0	1.0	0,498	44,38	0.5213	0,4787
1,1	0,9091	0.547	44.38	0.6954	0.3046
1,2	0,8333	0,597	44.38	0.8283	0,1717
1.3	0,7692	0.647	44.38	0.9139	0.0861
1,4	0,7143	0.697	44.38	0.9662	0.0338
1,5	0,6666	0,746	44,38	0,9841	0,0159
1,6	0,625	0,796	44.38	0,9946	0.0054

8.1.5. Материальный баланс

Материальный баланс по метанолу стадии адсорбции выражается уравнением

$$wC_{H}\theta S = \rho_{HB\varepsilon}S\int_{0}^{H} (X_{\tau=0} - X_{H})dz + wS\int_{0}^{\theta} C_{z=H}dz + \varepsilon S\int_{0}^{H} (C_{\tau=0} - C_{\tau=0})dz.$$

Записывая уравнение материального баланса для концентраций в безразмерной форме, а также учитывая, что $X_{\mu} = 0$ и $C_{\tau=0} = 0$, получим:

$$wC_{\mathsf{H}}\Theta S = \rho_{\mathsf{Hac}}SX^*(C_{\mathsf{H}}) \int_{0}^{H} X/X^*(C_{\mathsf{H}})dz + wSC_{\mathsf{H}} \int_{0}^{\Theta} C/C_{\mathsf{H}}d\tau + eSC_{\mathsf{H}} \int_{0}^{H} [(C/C_{\mathsf{H}})_{\tau=0}]dz.$$

Значение интегралов уравнения материального баланса определяют графическим интегрированием выходной кривой (см. рис. 8.2) и профиля концентрации в адсорбенте (рис. 8.3):

$$\int_{0}^{0} C/C_{n}d\tau = 74.2 \text{ c}; \qquad \int_{0}^{H} X/X^{*}(C_{n})dz = 0.495 \text{ M}$$

Количество метанола, поступающего в адсорбер,

$$V\tau C_{\rm H} = 7370 \cdot 1,73 \cdot 10^4 \cdot 1,8 \cdot 10^{-3}/3600 = 63,75$$
 Kr.

Количество метанола, поглощенного углем (адсорбата),

$$\rho_{\text{HBC}}SX^{*}(C_{\kappa})\int_{0}^{0.7} X/X^{*}(C_{\kappa}) dz = 550 \cdot 0.785 \cdot 3^{2} \cdot 3.3 \cdot 10^{-2} = 63.47 \text{ kr}.$$

Количество метанола, уходящего из аппарата с газовой фазой,

 $VC_{\pi} \int_{0}^{1.73 \cdot 10^4} (C/C_{\pi}) d\tau = 7370 \cdot 1.8 \cdot 10^{-3} \cdot 74.2/3600 = 0.273 \text{ kr.}$

Ввиду малого количества адсорбтива, остающегося в аппарате в газовой фазе, для расчета массы метанола. оставшейся в свободном объеме адсорбера, примем концентрацию метанола, равную начальной.

Количество метанола, остающегося в газовой фазе адсорбера:

 $eV_{an}C_{\mu} = 0.375 \cdot 0.0785 \cdot 3^2 \cdot 0.7 \cdot 1.8 \cdot 10^{-3} = 0.0033$ Kr.

Проверим сходимость материального баланса: 63,75=63,47+0,273+0,0033.

8.1.6. Вспомогательные стадии цикла

Ввиду того, что по заданию установка включает два адсорбера, суммарная продолжительность вспомогательных операций (десорбция, сушка, охлаждение) должна быть равна продолжительности адсорбции, т. е. 4,8 ч.

Десорбция водяным паром — сложный тепломассообменный процесс, протекающий при переменных температуре и расходе паровой фазы. Надежных методик расчета продолжительности десорбции для этого случая не разработано. Продолжительность десорбции в рекуперационных установках ориентировочно составляет 0,5—1,0 ч при условии использования острого пара давлением 0,1—0,4 МПа [7].

При десорбции вешеств с небольшой молекулярной массой давление ближе к минимальному значению указанного интервала. С учетом сказанного принимаем продолжительпость десорбции 1 ч, давление водяного пара 0,2 МПа. Тогда продолжительность стадий сушки и охлаждения равна 3,8 ч, причем периоды сушки и охлаждения могут быть приняты равными [7]. В связи с этим условия сушки и охлаждения должны быть выбраны исходя из указанного времени.

Расчет параметров стадии сушки в рекуперационных адсорбционных установках приведен в [7]

График работы адсорбционной установки может быть представлен в виде циклограммы (рис. 8.4).

Рнс. 8.4. Циклограмма работы адсорбционной установки:

1 продолжительность адсорбции; 2 — суммарная продолжительность сушки и охлаждения; 3 — продолжительность десорбции

8.2. РАСЧЕТ ИОНООБМЕННОЙ УСТАНОВКИ

Схема ионообменной установки представлена на рис. 8.5. Исходный раствор из емкости E1 подастся в катионообменную колонну K1. Очищенный от катионов Na⁺ раствор направляется в емкость E2. Отработанный ионит с помощью эрлифта через приемную емкость E3 подается в регенерационную колонну K2, питаемую регенерирующим раствором из емкости E4. Отрегенерированный ионит гидрогранспортом вновь подается из приемника E5 в нонообменную колонну. Воздух для эрлифтов нагнетается воздуходувкой B1. Подача растворов осуществляется насосами H1—H2.

Задание на проектирование. Рассчитать ионообменную установку непрерывного действия с псевдоожиженным слоем ионита для удаления ионов натрия из раствора,

содержащего хлорид натрия, если производительность по исходному раствор: $V = 10 \text{ м}^3/4$; исходная концентрация раствора $C_{\parallel} = 4,35$ моль экв/м³; концентрация очищенного раствора составляет 5 % от исходной; температура в аппарате t = 20 °C марка катионита КУ-2; регенерация проводится в плотном, движущемся под дейст вием силы тяжести слое ионита 1 н. раствором HCl.

8.2.1. Расчет односекционной катионообменной колонны

Согласно Приложению 8.2 принимаем следующие параметры катионита КУ-2: полна: обменная емкость $X_0 = 4,75$ ммоль экв/г; удельный объем $v_0 = 3,0$ см³/г; средний диаметранулы d = 0,9 мм; насыпная плотность $\rho_{nac} = 800$ кг/м³

Уравнение изотермы сорбции. Константа равновесия в системе катионит КУ-2 ионы K_p=1,2 [2]. Уравнение изотермы сорбции для обмена равнозарядных ионов Н на Na⁺ на основе закона действующих масс записывается следующим образом:

$$X^* = \frac{KX_0 C/C_{\mu}}{1 + (K - 1) C/C_{\mu}}, \qquad (8.4)$$

где $X_0 = 4,75 \cdot 22,98 \cdot 10^{-3} = 0,11$ кг/кг; $C_{\rm H} = 4,35 \cdot 22,98 \cdot 10^{-3} = 0,1$ кг/м³

С учетом приведенных значений концентраций и константы равновесия получим

$$X^* = 1,32C/(1+2C). \tag{8.5}$$

Скорость потока жидкости. Фиктивную скорость жидкости в псевдоожиженном слое находят из уравнения, связывающего критерии Re, Ar с порозностью слоя г [11]

$$Re = Are^{4.75} / (18 + 0.61 \sqrt{Ar}e^{4.75})$$
(8.6)

Порозность слоя в ионообменных аппаратах с псевдоожиженным слоем можни определить из данных эксплуатации промышленных ионообменных установок, согласни которым высота псевдоожиженного слоя в 1,5—2 раза превышает высоту неподвижного слоя. С учетом этих данных, принимая порозность неподвижного слоя $\varepsilon_0 = 0.4$, получик интервал изменения порозности $\varepsilon = 0,6 - 0,7$ Принимаем порозность слоя в этом интер вале: $\varepsilon = 0,65$.

Плотность частицы набухшего катионита:

$$\rho_x = \rho_{\text{Hac}}/(1-\varepsilon_0) = 800/(1-0.4) = 1333.3 \text{ Kr/m}^3$$

Критерий Архимеда:

$$\operatorname{Ar} = d^{3}\rho_{y}(\rho_{x} - \rho_{y})g/\mu^{2} = (0.9 \cdot 10^{-3})^{3}1000(1333.3 - 1000)9.81/[(10^{-3})^{2}] = 2384.$$

Из уравнения (8.6) находим критерий Re:

 $\operatorname{Re} = 2384\,(0,65)^{4.75}/(18+0.61\sqrt{2384\cdot0.65^{4.75}}) = 10.73.$

Скорость жидкости

$$w = \operatorname{Re}\mu_y/(d\rho_y) = 10.73 \cdot 10^{-3}/(0.90 \cdot 10^{-3} \cdot 1000) = 0.012 \text{ m/c}.$$

Диаметр аппарата

$$D = \sqrt{V/(0.785w)} = \sqrt{10/(3600 \cdot 0.785 \cdot 0.012)} = 0.54 \text{ M}.$$

Принимаем D = 0.6 м.

Уточним значение скорости и Re:

$$\omega = 10/(3600 \cdot 0.785 \cdot 0.6^2) = 0.0098 \text{ M/c};$$

Re = 0.0098 \cdot 0.9 \cdot 10^{-3} \cdot 1000/10^{-3} = 8.82.

Значение порозности, соответствующее уточненному значению Re, получим из уравнения [11]:

$$\varepsilon = (18\text{Re} + 0.36\text{Re}^2/\text{Ar})^{0.21} = (18 \cdot 8.82 + 0.36 \cdot 8.82^2/2384)^{0.21} = 0.59.$$
(8.7)

Определение лимитирующего диффузионного сопротивления. Фазу, в которой сосредоточено лимитирующее диффузионное сопротивление, можно определить по значению критерия Био:

$$\operatorname{Bi}' = \beta_c R / (\rho_n D_s \Gamma),$$

где R — радиус частицы, м; β_c — коэффициент внешней массоотдачи, м/с; D_3 — эффективный коэффициент диффузии в частице, м²/с; Γ — тангенс угла наклона равновесной линии, м³/кг; $\rho_{\rm H}$ — плотность ионита, кг/м³.

При Ві'≥20 общая скорость массопереноса определяется внутренней диффузией, тогда как при Ві'≤1,0 преобладающим является внешнее диффузионное сопротивление.

Коэффициент внешней массоотдачи β_с определяем по критериальному уравнению [9]:

$$Nu' = 2.0 + 1.5 (Pr')^{0.33} [(1 - e) Re]^{0.5}, \qquad (8.8)$$

где

$$\Pr' = \mu_{\nu} / \rho_{y} \cdot D_{y} = 10^{-3} / (1000 \cdot 1, 17 \cdot 10^{-3}) = 854,7;$$
$$D_{\mu} = 1, 17 \cdot 10^{-9} \text{ m}^{2}/\text{c} [2]$$

Тогда

$$Nu' = 2.0 + 1.5 \cdot 854.7^{0.33} [(1 - 0.59) \cdot 8.82]^{0.5} = 28.5.$$

Коэффициент внешней массоотдачи:

$$\beta_c = Nu' D_u/d = 28.5 \cdot 1.17 \cdot 10^{-9} / (0.9 \cdot 10^{-3}) = 37 \cdot 10^{-6} \text{ m/c}.$$

В области сравнительно низких концентраций равновесная зависимость близка к линейной. Приближенно можно принять изотерму сорбционного обмена линейной с тангенсом угла наклона, равным

 $X^{\bullet}(C_{\rm cp})/C_{\rm cp},$

где С_{ср} — средняя концентрация ионов Na⁺ Среднюю концентрацию ионов Na⁺ в потоке можно найти как среднюю логарифмическую [13]

$$C_{\rm cp} = \frac{C_{\rm s} - C_{\rm s}}{\ln (C_{\rm u}/C_{\rm s})} = \frac{0.1 - 0.005}{\ln (0.1/0.005)} = 0.032 \ {\rm kr/m^3}$$

Концентрация ионов Na⁺ в смоле, находящейся в равновесии с жидкостью, имеющей концентрацию С_{ср}, равна

 $X^*(C_{cr}) = 1.32 \cdot 0.032 / (1 + 2 \cdot 0.032) = 0.040 \text{ kg/kg}.$

Средний тангенс угла наклона равновесной зависимости:

 $\Gamma = X^* (C_{cp}) / C_{cp} = 0.040 / 0.032 = 1.25.$

Критерий Био:

$$\mathrm{Bi}' = \frac{\beta_{\mathrm{c}}R}{\rho_{\mathrm{H}}D_{\mathrm{s}}\Gamma} = \frac{37 \cdot 10^{-6} \cdot 0.45 \cdot 10^{-3}}{555.5 \cdot 2.3 \cdot 10^{-10} \cdot 1.25} = 0.104,$$

где $D_3 = 2,3 \cdot 10^{-10} \text{ м}^2/\text{c};$

 $\rho_{\rm H} = v_0^{-1} / (1 - \epsilon_0) = 333.3 / (1 - 0.4) = 555.5 \ {\rm kr} / {\rm M}^3.$

Полученное значение критерия Ві показывает, что процесс ионного обмена протекает во внешнедиффузионной области.

Среднее время пребывания частиц ионита в аппарате. Степень отработки зерна ионита сферической формы, находящегося в течение времени т в жидкой среде концентрацией C_{cp} при Bi $\rightarrow 0$, определяется следующим выражением [13]

$$\frac{X_{\star}}{X^{\star} (C_{\rm cp})} = 1 - \exp\left(\frac{-3\beta_{\rm c}\tau}{\rho_{\rm H}\Gamma R}\right),\tag{8.9}$$

где X_к — конечная концентрация ионов Na⁺ в катионите, кг/кг.

Ввиду того что в цилиндрических аппаратах с псевдоожиженным слоем твердая фаза полностью перемешана, плотность распределения частиц ионита по времени пребывания определяется соотношением [13]

$$\rho(\tau) = \frac{1}{\tau_{cp}} \exp\left(-\frac{\dot{\tau}}{\tau_{cp}}\right). \tag{8.10}$$

Считая, что равновесная концентрация в ионите соответствует средней концентрации в потоке жидкости ($C_{\rm cp}$), найдем среднюю по всему слою степень отработки ионита:

$$\frac{X_{\kappa}}{X^{*}(C_{cp})} = \int_{0}^{\infty} \left[1 - \exp\left(\frac{-3\beta_{c}\tau}{\rho_{u}\Gamma R}\right) \right] \frac{1}{\tau_{cp}} \exp\left(\frac{-\tau}{\tau_{cp}}\right) d\tau = 1 - \frac{R\rho_{u}\Gamma}{3\beta_{c}\tau_{cp} + R\rho_{u}\Gamma}$$
(8.11)

Конечную концентрацию ионов Na⁺ в катионите найдем из материального баланса, определив предварительно минимальный и рабочий расход ионита. Минимальный расход находим из условия равновесия твердой фазы с раствором, покидающим аппарат:

$$G_{x\min} = \frac{V(C_{\kappa} - C_{\kappa})}{X^{*}(C_{\kappa})} = \frac{10(0, 1 - 0.005)}{0,0065} = 146.2 \text{ kr/y},$$

где $X^{\bullet}(C_{\kappa}) = 1,32 \cdot 0,005/(1+2 \cdot 0,005) = 0,0065$ кг/кг.

Рабочий расход сорбента по опытным данным в 1,1—1,3 раза превышает минимальный [19]. Приняв соотношение рабочего и минимального расходов, равное 1,2, получим рабочий расход катионита:

 $G_x = 1.2G_{x\min} = 1.2 \cdot 146.2 = 175.4 \text{ kr/y}.$

Конечная концентрация катионита

$$X_{\kappa} = 10(0, 1 - 0,005)/175, 4 = 0,0054 \text{ kr/kr}$$

Из уравнения (8.11) найдем среднее время пребывания частиц катионита:

$$\tau_{\rm cp} = \frac{R \rho_n \Gamma X_\kappa / X^* (C_{\rm cp})}{3\beta_{\rm c} \left[1 - X_\kappa / X^* (C_{\rm cp})\right]} \tag{8.12}$$

283

Подставив известные величины в уравнение (8.12), получим:

$$\tau_{\rm cp} = \frac{0.45 \cdot 10^{-3} \cdot 555, 5 \cdot 0.0054/0.04}{3 (1 - 0.0054/0.04) 3.7 \cdot 10^{-6}} = 439,34 \text{ c}$$

Высота псевдоожиженного слоя ионита. Объемный расход ионита

$$V_x = G_x/\rho_u = 175, 4/(3600 \cdot 555, 5) = 8,77 \cdot 10^{-5} \text{ m}^3/\text{c}.$$

Объем псевдоожиженного слоя

$$V_{\rm c} = V_{\rm x} \tau_{\rm cp} / (1 - \varepsilon) = 8.77 \cdot 10^{-5} \cdot 439.34 / (1 - 0.59) = 0.094 \, {\rm m}^3.$$

Высота псевдоожиженного слоя

$$H_{\rm c} = V_{\rm c}/0.785D^2 = 0.094/(0.785 \cdot 0.6^2) = 0.33$$
 M.

Высота сепарационной зоны должна быть выше предельной, при которой возможно существование псевдоожиженного слоя. Предельная высота псевдоожиженного слоя определяется уносом самых мелких частиц смолы КУ-2. Минимальный размер частиц смолы КУ-2 составляет 0,3 мм. Скорость уноса определяется из уравнения [11]:

$$Re = Ar / (18 + 0.61\sqrt{Ar}).$$
 (8.13)

При *d* = 0,3 мм

$$Ar = \left[\left(0.3 \cdot 10^{-3} \right)^3 1000 \left(1333.3 - 1000 \right) 9.81 \right] / \left(10^{-3} \right)^2 = 88.28$$

Скорость уноса найдем из уравнения (8.13):

$$\omega = \frac{88,28}{(18+0.61\sqrt{88,29})} \cdot \frac{10^{-3}}{0.3 \cdot 10^{-3} \cdot 1000} = 0,0124 \text{ m/c}$$

Скорость уноса больще рабочей скорости: 0,0124>0,0098.

Значение Re, рассчитанное при d = 0.9 и соответствующее скорости уноса, равно:

 $Re = 0.0124 \cdot 0.9 \cdot 10^{-3} \cdot 1000/10^{-3} = 11.2.$

Порозность слоя, соответствующая Re = 11,2, равна:

$$\varepsilon = [(18 \cdot 11, 2 + 0, 36 \cdot 11, 2^2)/2384]^{0.21} = 0,62.$$

Высота слоя, соответствующая началу уноса:

 $H_y = 0.33(1 - 0.59) / (1 - 0.62) = 0.35$ M.

Для достаточной сепарации частиц примем высоту слоя на 30 % больше H_g , т. е. $H = 1,3 \cdot 0,35 = 0,46$ м.

Объем псевдоожиженного слоя и его высоту можно также определить интегрированием уравнения массопередачи, записанного для псевдоожиженного слоя бесконечно малой высоты. Такой подход дает следующую расчетную формулу для объема псевдоожиженного слоя [19]:

$$V_{s} = \frac{V}{K_{cc}} \ln \frac{C_{u} - C^{*}(X_{k})}{C_{k} - C^{*}(X_{k})}, \qquad (8.14)$$

где K_{vc} — объемный коэффициент массопередачи, c^{-1}

С учетом того, что лимитирующее сопротивление массопередачи сосредоточено в жидкой фазе, получим:

$$K_{vc} = \beta_c a = \beta_c (1 - \varepsilon) 6/d = 37 \cdot 10^{-6} (1 - 0.59) 6/(0.9 \cdot 10^{-3}) = 0.101 \text{ c}^{-1}$$
(8.15)

Величину $C^*(X_{\kappa})$ определим из уравнения изотермы:

 $C^{*}(X_{\kappa}) = 0.0054/(1.32 - 2.0.0054) = 0.0041 \text{ kr/m}^{3}$

С учетом найденных величин K_{vc} и $C^*(X_k)$ получим на основе уравнения массопередачи объем псевдоожиженного слоя ионита:

$$V_{\rm c} = \frac{10}{3600 \cdot 0,101} \ln \frac{0,1-0,0041}{0,005-0,0041} = 0,126 \text{ m}^3$$

Эта величина на 30 % превышает найденный ранее объем псевдоожиженного слоя (0,094 м³).

В случае односекционной колонны следует отдать предпочтение первому методу, учитывающему различие времени пребывания частиц ионита в аппарате, хотя и у этого метода есть недостаток, заключающийся в том, что концентрация жидкой фазы принимается средней по всему объему слоя.

8.2.2. Расчет многосекционной катионообменной колонны

Односекционные сорбционные аппараты с псевдоожиженным слоем требуют значительного расхода сорбента ввиду того, что конечная концентрация в твердой фазе ионита должна быть меньше $X^*(C_\kappa)$, что является следствием перемешивания частиц в аппарате. Поэтому аппараты со сплошным псевдоожиженным слоем ионита используют для обработки малоконцентрированных растворов.

Для снижения расхода ионита обычно используют многосекционные аппараты, где влияние неравномерности времен пребывания частиц значительно меньше.

Многосекционные аппараты требуют значительно меньшего расхода ионита, поскольку перемешивание твердых частиц наблюдается лишь внутри каждой секции, а весь аппарат при достаточном числе секций приближается по структуре потоков к МИВ.

Адсорбционные аппараты с псевдоожиженным слоем, предназначенные для очистки жидких смесей, обычно включают небольшое число секций [5], что не позволяет воспользоваться методикой [19], применяемой при расчете многосекционных газофазных адсорберов, где число секций позволяет принять модель идеального вытеснения. Поэтому при расчете многосекционных ионообменных колонн необходимо определять концентрацию раствора, покидающего каждую секцию.

Рис. 8.6. Схема изменения концентраций в многосекционной катионообменной колонне

Выражение для концентрации раствора, покидающего *п*-ю секцию, можно получить решением уравнения материального баланса для участка ионообменного аппарата от его начала до *n*-й секции включительно (рис. 8.6)

$$V(C_{n}-C_{n-1}) = G_{x}(X_{k}-X_{n}).$$
(8.16)

Уравнение (8.16) решают совместно с уравнением изотермы ионного обмена

$$X_n = [aC^*(X_n)] / [1 + bC^*(X_n)]$$
(8.17)

и интегральным уравнением кинетики массопередачи

$$[C_{n-1} - C^*(X_n)] / [C_n - C^*(X_n)] = e^{X_{cr}V_c/V}$$
(8.18)

где V_с — объем псевдоожиженного слоя в каждой секции.

Решение системы уравнений (8.16) — (8.18) дает следующее уравнение:

$$C_{n} = \frac{C_{n-1}}{A} + \frac{\left[\frac{V}{G_{x}}(C_{n-1} - C_{n}) + X_{x}\right](A-1)}{A\left[a + b\frac{V}{G_{x}}(C_{n} - C_{n-1}) - X_{x}b\right]},$$
(8.19)

где $A = e^{K_{x}, V_{x}/V}$ — константа.

Ввиду того что уравнение (8.19) нелинейно, получить его решение в виде связи концентрации с номером секции трудно, что вынуждает к последовательному расчету концентраций потоков, покидающих каждую секцию.

Проведем расчет числа секций многоступенчатого катионообменного аппарата, принимая те же исходные данные, что были взяты при расчете односекционного аппарата, и пользуясь полученными при его расчете значениями диаметра (D=0,6 м) и коэффициента массопередачи ($K_{vc}=0,101$ с⁻¹).

Примем высоту псевдоожиженного слоя на каждой секции $H_c = 0.25$ м.

Минимальный расход ионита определим по уравнению [19]:

$$Gx_{\min} = V(C_{\mu} - C_{\kappa}) / X^{*}(C_{\mu}).$$
(8.20)

Концентрацию Na⁺ в ионите, находящемся в равновесии с исходным раствором, найдем из уравнения изотермы ионного обмена:

$$X^{*}(C_{u}) = 1,32 \cdot 0,1/(1+2 \cdot 0,1) = 0,11$$
 кг/кг.

Подставив значение $X^*(C_{\mu})$ в уравнение (8.20), получим:

$$G_{x,\min} = 10(0, 1 - 0,005)/0, 11 = 8,64 \text{ kr/y}$$

Приняв коэффициент избытка ионита равным 1,3 (в интервале 1,1—1,3) найдем рабочий расход ионита и конечную концентрацию Na⁺ в ионите:

$$G_x = 1,3G_{x\min} = 1,3 \cdot 8,64 = 11,2 \text{ kr/4};$$

 $X_{\kappa} = 10(0,1-0,005)/11,2 = 0,085 \text{ kr/kr}.$

Найдем объем псевдоожиженного слоя и константу А:

$$V_c = 0.785 \cdot 0.6^2 \cdot 0.25 = 0.071 \text{ m}^3;$$
$$A = e^{K_{cr}V_c/V} = e^{0.101 \cdot 0.071 \cdot 3600/10} = 13.2$$

Константы уравнения изотермы сорбции: a = 1,32; b = 2.

Подставляя полученные данные в уравнение (8.19) при n = 1, 2 и т. д., получим значения концентрации раствора, покидающего 1-ю, 2-ю и т. д. ячейку.

При n = 1

$$C_{1} = \frac{C_{\text{n}}}{A} + \frac{X_{\text{k}} (A-1)}{A (a-X_{\text{k}}b)} = \frac{0,1}{13,2} + \frac{0,085 \cdot 12,2}{13,2 (1,32-0,085 \cdot 2)} = 0,076 \text{ kg/m}^{3}.$$

При n=2

$$C_{2} = \frac{0.076}{13.2} + \frac{\left[\frac{10}{11.2} (0.076 - 0.1) + 0.085\right] (13.2 - 1)}{\left[1.32 + 1.78 (0.1 - 0.076) - 0.085 \cdot 2\right] 13.2} = 0.055 \text{ Ke/m}^{3}$$

Аналогичные вычисления для остальных секций дают такие результаты: $C_3 = 0,0377 \text{ кг/m}^3$; $C_4 = 0,0244 \text{ кг/m}^3$; $C_5 = 0,0144 \text{ кг/m}^3$; $C_6 = 0,0071 \text{ кг/m}^3$; $C_7 = 0,0020 \text{ кг/m}^3$.

Таким образом, для достижения необходимой конечной концентрации раствора пребустся 7 секций.

С учетом того, что высота псевдоожиженного слоя в каждой секции равна 0,25 м, найдем высоту слоя с учетом сепарационной зоны:

$$H = 0.25 \frac{(1-0.59)}{1-0.62} 1.3 = 0.35$$
 M.

Полная высота тарельчатой части катионообменной колонны

$$H_{\tau} = 7H = 7.0,35 = 2,45$$
 м.

Приведем сравнительные результаты расчетов односекционного и многосекционного катионообменных аппаратов:

Аппарат	<i>D</i> , м	Н, м	Расход ионнта, кг/ч
Односекционный	0,6	0,46	175,4
Многосекционный	0,6	2,45	11,2

ПРИЛОЖЕНИЯ

Приложение 8.1. Конструкции и области применения аппаратов для адсорбции и ионного обмена

При периодической адсорбции из газовой фазы в стационарном слое поглотителя применяют вертикальные, горизонтальные и кольцевые адсорберы, изготовляемые в различных модификациях.

Для ионного обмена используют аппараты с неподвижным, плотнодвижущимся и псевдоожиженным слоем сорбента, конструкции которых в основном аналогичны конструкциям адсорбционных аппаратов.

Конструкции вертикального, горизонтального и кольцевого адсорберов системы ВТР представлены на рис. ниже. Конструкции адсорберов других типов с неподвижным слоем адсорбента приведены в литературе [7]. Конструкции менее применяемых в промышленности адсорбционных аппаратов с плотным движущимся и псевдоожиженным слоем описаны в литературе [7, 17]. Аппаратура для ионообменных процессов описана в литературе [15—16].

Адсорбер системы ВТР	Высота цилинд- рической части адсорбера	Высота слоя ад- сорбента	Высо- та слоя гра- вия	Днаметр корпуса аппарата, м	Тол- щина стенки корпу- са, мм	Форма днища и крышки	Области применения	
Вертикальный	2,2	0,5—1,2	0,1	2; 2,5; 3	8-10	Коническая	Рекуперационные уста- новки производитель- ностью до 30 000 м³/ч	
Горизонтальный	3—9	0,5—0, 8	_	1,8; 2	8-10	Сферическая	Рекуперационные и газо-	
Кольцевой	7	—		3	8-12	Эллиптическая	очистительные установ большой производител ности (более 30 000 м ³ /	

Основные характеристики и области применения некоторых адсорберов периодического действия системы BTP

Производительность и области применения промышленных ионообменных аппаратов

Конструкция аппарата	Максимальная производительность, м ³ /ч	Области применения		
С неподвижным сплошным слоем	300-500	Для чистых растворов различных кон- пентраций		
Со сплошным движущимся слоем	0,1	То же		
Со сплошным взвешенным слоем иони-	100	Для малоконцентрированных раство- ров и взвесей		
С секционированным слоем нонита	20—30	Для концентрированных растворов и разбавленных взвесей		
С движущимся слоем и иневмогидрав- лической выгрузкой ионита	20	Для копцентрированных растворов		
С пульсирующим слоем ионита	300	Для растворов различных концентра- ций, в том числе загрязненных при- месями		
С цнркулирующим слоем ионита	200-300	Для взвесей с различным содержани- ем твердой фазы		
Типа «Асахи», «Хиггино», «Пермутит»	200 - 500	Для растворов малых концентраций		

Вертикальный адсорбер:

I — гравий; 2 — разгрузочный люк; 3, 6 — сетка; 4 — загрузочный люк; 5 — штуцер для подачи исходной смеси, сушпльного и охлаждающего воздуха через распределительную сетку; 7 — штуцер для отвода паров при десорбции; 8 — штуцер для предохранительного клапана; 9 — крышка; 10 — грузы; 11 — кольцо жесткости; 12 — колосникован решетка; 16 — штуцер для отвода очищенного газа; 17 — балки; 18 — смотровой люк, 19 — штуцер для отвода конденсата н подачи воды; 20 — барботер; 21 — днище; 22 — опоры балок; 23 — штуцер для ствода смищенного газа; 17 — балки; 18 — смотровой люк, 19 — штуцер для ствода конденсата н подачи воды; 20 — барботер; 21 — днище; 22 — опоры балок; 23 — штуцер для стводяного пара через барботер

Горизонтальный адсорбер ВТР:

I =корпус; 2 =штуцер для подачи паровоздушной смеси при адсорбции и воздуха при сушке и охлаждении; 3 =распределительная сетка; 4 =загрузочный люк с предохранительной мембраной; 5 =грузы; 6 =сетки; 7 =штуцер для предохранительного клапана; 8 =штуцер для отвода паров на стадии десорбции; 9 =слой адсорбента; 10 =люк для выгрузки адсорбента; 11 =штуцер для отвода очищенного газа на стадии адсорбции и отработанного воздуха при сушке и охлаждении; 12 =смотровой люк; 13 =штуцер для отвода конденсата и подачи воды; 14 =опоры для балок; 15 =балки; 16 =разборная колосниковая решетка; 17 =барботер

Кольцевой адсорбер ВТР:

I -установочная лапа; 2 — штуцер для подачи паровоздушной смеси, сушильного и охлаждающего воздуха; 3 — опора для базы под цилиндры; 4 — корпус; 5, 6 — внешний и внутренний перфорированные цилиндры; 7 — крышка; 8 — смотровой люк; 9 — загрузочный люк; 10 — бункер-компенсатор; 11 — штуцер для предохранительного клапана; 12 — слой активного угля; 13 — база для цилиндров; 14 — разгрузочный люк; 15 — днише; 16 — штуцер для отвода очнщенного и отработанного воздуха и для подачи водяного пара; 17 — штуцер для отвода паров и конденсата при десорбции и для подачи воды

Приложение 8.2. Характеристики промышленных сорбентов

Характеристики некоторых промышленных цеолитов [3]

Марка	Ионная форма	Эффективный диа- метр пор, нм	Насыпная плот- ность, г/см ³ , не менее	Размер зерна, мм
KA	ĸ	3	0,62	0,1-0,32
NaA	Na	4	0.65	0,1-0,6
CaA	Ca	5	0,65	0,1-0,6
CaX	Ca	8	0,60	0,1-0,6
NaX	Na	9—10	0,60	0,1-0,6

Характеристики некоторых промышленных ионитов [3]

	Полная обм	енная емкость	Улельный объем Насыпная плот		Размер зерна	
Марка	ммоль экв/г	ммоль экв/см ³	см ³ /г	ность, г/см ³	мм	
КУ-2	4,7-5,1	1.3-1.8	2,5-3,6	0.70-0.90	0.3-1.5	
КУ-1	4,0	1,4	2,6-3,0	0,60-0,75	0,32,0	
AB-17-8	3,8-4,5	_	≤3,0	0,66-0,74	0,4-1,2	
ЭДЭ-10П	9,0-10,0		2,8-4,5	0,60-0,72	0, 4 - 1, 8	
AH-1	4,0-4,5	1,9	2,2-2,3	0,700,90	0,3—2,0	

10 Под ред. Ю. И. Дытнерского

		Объем,	см ³ /г		Конста	нения Дубинина			
Марка угля	пор сум- марный	микропор	мезопор	макропор	₩ ₀₁ , см ³ /г	₩ ₀₂ , см ³ /г	$B_1 \cdot 10^6, K^{-2}$	$B_2 \cdot 10^6, K^{-2}$	
БАУ	1,50	0,25—0,39	0,080	1,19—1,21	0,22—0,26	_	0,55—0,7		
AP-A	0,83	0,384	0,064	0,382	0,253	0,13 9	1,2	4,4	
АР-Б	0,67	0,31	0,038	0,32	0,34	-	1,0	_	
AP-B	0,46	0,24	0,023	0,19	0,23	_	0,7	_	
АР-3 АГ-3	0,70 0,8—1,06	0,33 0,320,42	0,07 0,1 2 —0,16	0,30 0,41—0,52	0,19 0,30	0,18	0,74 0,7—0,8	3,42 —	
СКТ-3	0,80	0,46	0,09	0,25	0,48	_	0,73	-	
ҚАД-иодный	1,0	0,34	0,15	0,51	0,23	0,13	0,7	3,1	

Характеристики и области применения некоторых активных углей [3, 4, 5]

Коэффициенты аффинности в различных веществ для активных углей [6,7]

Вещество	β	Вещество	β
Метанол Этанол Муравьиная кислота	0,40 0,61 0,61	Циклогексан Тетрахлорид углерода Пентан	1,03 1,05 1,12
Пропан Ацетон Бензол	0,78 0,88 1,00	Толуол Гептан	1,25 1,50

Характеристики некоторых промышленных силикагелей [3]

Марка силикагеля	Размер зерна, мм	Средний размер пор, Å	Удельный объем пор, см ³ /г	Удельная поверхность (по ВЭТ), м²/г	Насыпная плотность, г/см ³
КСМ кусковой	2,7—7	20	0,35	700	0,67
гранулированный					
KCM № 5	_	32	0,58	715	0,66
КСМ № 6п		22	0.30	527	0,87
KCM № 6c	_	23	0.36	624	0.87
ШСМ кусковой	1,5-3,5	10	0,25	900	0,67
гранулированный					
KCK ×	_	120	1.08	350	0.4-0.5
ШСК »	_	120	0.90	300	0.4-0.5
МСК кусковой	—	150	0,80	210	0,4—0,5

	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Фракционный состав		
 Область применения			фракция, мм	%	
Адсорбция из растворов	-	240	5,0-3.6 3,6-1,0	2,5 35,5	
Рекуперация паров растворителей с t _{кии} > > 100 °C	65	550	5,0 5,0-2,8	1,0 82,0	
Рекуперация паров растворителей с t _{кип} = = 60-100 °C	70	580	5,0 5,0-2,8 2,8-1,0	1,0 83,0 15,0	
Улавливание паров веществ с /кпп <60 °C	75	600	1,0 5,0 5,0	1,0 1,0 83,0 15,0	
Рекуперация паров растворителей Адсорбция газов и жидкостей	65—75 75	550 400—500	1,0 3,6 3,62,8 2,81,5	1,0 0,4 3,0 86,0	
Рекуперация паров органических растворите-	70	380	1,51,0 2,73,5 2,03,7	10,0 25	
Извлечение иода из водных растворов и раз- личных веществ из жидких и газовых смесей	60	450	5,0 5,02,0 2 01 0	5 70 25	

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1987. 567 с.
- 2. Шерауд Т., Пигфорд Р., Уилки Ч. Массопередача: Пер. с англ. М.: Химия, 1982. 696 с.
- 3. Лурье А. А. Сорбенты и хроматографические носители. М.: Химия, 1978. 320 с.

- Колышкин Д. А., Михайлов К. К. Активные угли. Л.: Химия, 1972. 56 с.
 Смирнов А. Д. Сорбционная очистка воды. Л.: Химия, 1982.
 Николаевский К. М. Проектирование рекуперации летучих растворителей с адсорберами периодического действия. М.: Оборонгиз, 1961. 238 с.
- Серпионова Е. Н. Промышленная адсорбция газов и паров. М.: Высшая школа, 1969. 414 с.
- 8. Коиль А., Розенфельд С. Очистка газов. М.: Недра, 1969. 289 с.
- 9. Рудобашта С. П. Массоперенос в системах с твердой фазой. М.: Химия, 1980. 189 с.
- 10. Сенявин М. М. Ионный обмен в технологии и анализе неорганических веществ. М.: Химия, 1980. 184 c.
- 11. Касаткин А. Г Основные процессы и аппараты химической технологии. Изд. 9-е. М.: Химия, 1973. 752 c.
- 12. Справочник химика. Т. V. М. Л.: Химия, 1966. 974 с.
- Романков П. Г., Рашковская Н. Б., Фролов В. Ф. Массообменные процессы химической технологии. Л.: Химия, 1975.
- 14. Перри Д. Справочник инженера-химика. Т. 1: Пер. с англ. М.: Химия, 1969. 640 с.
- 15. Никольский Б. П., Романков П. Г. Иониты в химической технологии. Л.: Химия, 1982. 256 с. 16. Горшков В. И., Сафонов М. С., Воскресенский Н. М. Ионный обмен в противоточных колоннах. М.: Наука, 1981.
- 17 Романков П. Г. Лепилин В. Н. Непрерывная адсорбция паров и газов. Л.: Химия, 1968. 228 c.
- 18. Кокотов Ю. А., Золотарев П. П., Елькин Г Э. Теоретические основы ионного обмена. Л.: Химия, 1986. 300 с.
- 19. Мухленов И. П., Сажин Б. С., Фролов В. Ф. Расчеты аппаратов кипящего слоя. Л.: Химия, 1986. 351 c.
- 20. Батунер Л. М., Позин М. Е. Математические методы в химической технике. Л.: Химия, 1963. 639 c.
- 21. Кельцев Н. В. Основы адсорбционной техники. М.: Химия, 1976. 512 с.

РАСЧЕТ СУШИЛЬНОЙ УСТАНОВКИ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- A. напряжение по влаге, кг/(м³·ч);
- c теплоемкость, $Дж/(кг \cdot K);$ D коэффициент диффузии, м²/с;
- d диаметр сушилки, м; диаметр частиц материала, м;
- H, h -высота, м;
- I. i энтальпия, кДж/кг;
 - K -коэффициент теплопередачи, $BT/(M^2 \cdot K)$;
 - L расход сушильного агента, кг/с;
 - I удельный расход сушильного агента, кг/кг;
 - *п* частота вращения барабанной сушилки, м⁻¹;
- Р. р. давление, МПа;
 - \hat{Q} расход тепла, кВт;
 - q удельный расход тепла, кВт/кг;
- *Т. t* температура;
- W производительность сушилки по испаренной влаге, кг/с;
- w скорость сушильного агента, м/с;
- к влагосодержание сушильного агента, кг/кг;
- α коэффициент избытка воздуха; коэффициент теплоотдачи, BT/($M^2 \cdot K$);
- в коэффициент массоотдачи, м/с;
- г порозность слоя, м³/м³;
- µ вязкость, Па∙с;
- $\rho = плотность, кг/м^3;$
- ш влажность материала, %;
- Re критерий Рейнольдса;
- Nu, Nu' критерий Нуссельта;

Рг, Рг' — критерий Прандтля;

Аг — критерий Архимеда.

Индексы:

- 0 параметры свежего воздуха;
- 1 и 2 параметры сушильного агента на входе в сушилку и на выходе из нее;
 - в влага:
 - м параметры мокрого термометра;
 - п пар;
- с. в параметры сухого воздуха;
- с. г параметры сухого газа:
- см параметры смеси:
- ср средняя величина;
- т параметры топлива.

ВВЕДЕНИЕ

В технике сушке подвергается множество материалов, различающихся химическим составом, дисперсностью и структурой, адгезионными свойствами и термочувствительностью, содержанием и формой связи влаги с материалом и другими свойствами. В химической промышленности процессы массо и теплопереноса при сушке иногда осложняются протекающими одновременно химнческими реакциями.

В связи с этим выбор рационального способа сушки, типа сушильной установки и конструкции сушильного аппарата представляет собой сложную технико-экономическую задачу и пока еще не может быть включен в студенческий курсовой проект. Поэтому в настоящем пособии приводятся примеры расчета только конвективных сушилок заданного типа. В примерах не дано обоснование выбора сушильного агента, а также параметров материала и сушильного агента. С этими вопросами проектанты могут ознакомиться в специальной литературе, ссылки на которую приведены в библиографии.

Желание дать общий пример расчета, основанного на кинетических закономерностях массо- и теплообмена, определило выбор высушиваемого материала, с которым влага связана механическими силами. Процесс в этом случае протекает в первом периоде сушки при постоян-

Рис. 9.1. Принципиальная схема барабанной сушилки:

1 — бункер; 2 — питатель; 3 — сушильный барабан; 4 — топка; 5 — смесительная камера; 6, 7, 11 — вентиляторы; 8 — промежуточный бункер; 9 — транспортер; 10 — циклон; 12 — зубчатая передача

ной температуре влажного материала, равной температуре мокрого термометра, и скорость сушки определяется внешней диффузией.

Расчет различных вариантов сушильного процесса (с промежуточным подогревом теплоносителя, с дополнительным подводом тепла в сушильную камеру, с частичной рециркуляцией сушильного агента) принципиально не отличается от приведенного в качестве примера расчета сушилки, работающей по основному (нормальному) сушильному варианту.

Принципиальная схема прямоточной барабанной сушильной установки показана на рис. 9.1. Влажный материал из бункера / с помощью питателя 2 подается во вращающийся сушильный барабан 3. Параллельно материалу в сушилку подается сушильный агент, образующийся от сгорания топлива в топке 4 и смешения топочных газов с воздухом в смесительной камере 5. Воздух в топку и смесительную камеру подается вентиляторами 6 и 7 Высушенный материал с противоположного конца сушильного барабана поетупает в промежуточный бункер 8, а из него на транспортирующее устройство 9.

Отработанный сушильный агент перед выбросом в атмосферу очищается от пылн в циклоне 10. При необходимости производится дополнительное мокрое пылеулавливание.

Транспортировка сушильного агента через сушильную установку осуществляется с помощью вентилятора // При этом установка находится под небольшим разрежением, что исключает утечку сушильного агента черсз неплотности установки.

Барабан приводится во вращение электродвигателем через зубчатую передачу 12.

9.1. РАСЧЕТ БАРАБАННОЙ СУШИЛКИ

Задание на проектирование. Рассчитать барабанную сушилку с подъемно-лопастными перевалочными устройствами для высушивания песка топочными газами при следуюших условиях:

производительность сушилки по высушенному материалу $G_{\kappa} = 5,56$ кг/с; содержание фракций частиц в материале: диаметром от 2,0 до 1,5 мм — 25 %; диаметром от 1,5 до 1,0 мм — 75 %; влажность песка: начальная $\omega_{\rm H} = 12$ %; конечная $\omega_{\kappa} = 0,5$ %; температура влажного материала $\theta_1 = 18$ °C; топливо — природный газ; температура топочных газов: на входе в барабан $t_{\rm CM} = 300$ °C; на выходе из барабана $t_2 = 100$ °C; удельные потери тепла в окружающую среду на 1 кг испаренной влаги $q_n = 22,6$ кДж/кг (что соответствует примерно 1 % тепла, затрачиваемого на испарение 1 кг воды); лараметры свежего воздуха: температура $t_0 = 18$ °C; относительная влажность $q_0 = 72$ %; давление в сушилке — атмосферное.

9.1.1. Параметры топочных газов, подаваемых в сушилку

В качестве топлива используют природный сухой газ следующего состава [в % (об.)]:92,0 СН₄; 0,5 С₂Н₆; 5 Н₂; 1 СО; 1,5 N₂.

Теоретическое количество сухого воздуха L₀, затрачиваемого на сжигание 1 кг топлива, равно:

$$L_0 = 138 \left[0.0179 \text{CO} + 0.24 \text{H}_2 + \sum \left(m + (n/4) C_m H_n \right) / (12m + n) \right], \tag{9.1}$$

где составы горючих газов выражены в объемных долях. Подставив соответствующие значения, получим:

 $L_0 = 138 [0,0179 \cdot 0,01 + 0,248 \cdot 0,09 + (1 + (4/4)0,92/(12 \cdot 1 + 4) + (2 + (6/4)0,005/(12 \times 1 + 4))] + (2 + (6/4)0,005/(12 \times 1 + 4))]$

Для определения теплоты сгорания топлива воспользуемся характеристиками горения простых газов:

Газ	Реакция	Тепловой эффект реакции, кДж/м ^э
Водород Оксид углерода Метан Ацетилен Этилен Этан Пропан Бутан Сероводород	$\begin{array}{l} H_2 + 0.5O_2 = H_2O\\ CO + 0.5O_2 = CO_2\\ CH_4 + 2O_2 = CO_2 + 2H_2O\\ C_2H_2 + 2.5O_2 = 2CO_2 + H_2O\\ C_2H_4 + 3O_2 = 2CO_2 + 2H_2O\\ C_2H_6 + 3.5O_2 = 2CO_2 + 3H_2O\\ C_3H_8 + 5O_2 = 3CO_2 + 4H_2O\\ C_4H_{10} + 6.5O_2 = 4CO_2 + 5H_2O\\ H_2S + 1.5O_2 = SO_2 + H_2O \end{array}$	10810 12680 35741 58052 59108 63797 91321 118736 23401

Количество тепла Q_v , выделяющегося при сжигании 1 м³ газа, равно: $Q_v = 0.92 \cdot 35741 + 0.005 \cdot 63797 + 0.05 \cdot 10810 + 0.01 \cdot 12680 = 33868 \ \kappa \Box \varkappa / (м^3 \cdot \tau)$.

Плотность газообразного топлива ρ_τ:

$$\rho_{\tau} = \frac{\sum C_m H_n M_i}{v_0} \cdot \frac{T_0}{T_0 + t_{\tau}}, \qquad (9.2)$$

где M_i — мольная масса топлива, кмоль/кг; t_{τ} — температура топлива, равная 20 °C; v_0 — мольный объем, равный 22,4 м³/кмоль. Подставив, получим:

$$\rho_{\tau} = \frac{(0.92 \cdot 16 + 0.005 \cdot 30 + 0.05 \cdot 2 + 0.01 \cdot 28 + 0.015 \cdot 28) \ 273}{22.4 \ (273 + 20)} = 0.65 \ \kappa \Gamma / m^3$$

Количество тепла, выделяющегося при сжигании 1 кг топлива:

Масса сухого газа, подаваемого в сушильный барабан, в расчете на 1 кг сжигаемого топлива определяется общим коэффициентом избытка воздуха α, необходимого для сжигания топлива и разбавления топочных газов до температуры смеси ι_{см} = 300 °C. Значение α находят из уравнений материального и теплового балансов.

Уравнение материального баланса:

$$1 + L_0 = L_{c.r} + \sum \frac{9n}{12m + n} C_m H_n, \tag{9.4}$$

где $L_{c,r}$ — масса сухих газов, образующихся при сгорании 1 кг топлива; $C_m H_n$ — массовая доля компонентов, при сгорании которых образуется вода, кг/кг.

Уравнение теплового баланса:

$$Q\eta + c_{\tau}t_{\tau} + \alpha L_0 I_0 = [L_{c,\tau} + L_0 (\alpha - 1)] i_{c,\tau} + \left[\alpha L_0 x_0 + \sum \frac{9n}{12m + n} C_m H_n\right] i_n, \qquad (9.5)$$

где η — общий коэффициент полезного действия, учитывающий эффективность работы топки (полноту сгорания топлива и т. д.) и потери тепла топкой в окружающую среду, принимаемый равным 0,95; c_{τ} — теплоемкость газообразного топлива при температуре $t_{\tau}=20$ °C, равная 1,34 кДж/(кг·K); I_0 — энтальпия свежего воздуха, кДж/кг; $i_{c.r}$ — энтальпия сухих газов, кДж/кг; $i_{c.r}=c_{c.r}t_{c.r}$; $c_{c.r}$, $t_{c.r}$ — соответственно теплоемкость и температура сухих газов: $c_{c.r}=1,05$ кДж/(кг·K), $t_{c.r}=300$ °C; x_0 — влагосодержание свежего воздуха, кг/кг сухого воздуха, при температуре $t_0=18$ °C и относительной влажности $\varphi_0=72$ %; i_n — энтальпия водяных паров, кДж/кг; $i_n=r_0+c_nt_n$; r_0 — теплота испарения воды при температуре 0 °C, равная 2500 кДж/кг; c_n — средняя теплоемкость водяных паров, равная 1,97 кДж/(кг·K); t_n — температура водяных паров; $t_n=t_{c.r}=t_{cm}=300$ °C.

Решая совместно уравнения (9.4) и (9.5), получим:

$$Q\eta + ct_{\tau} - i_{c.\tau} \left(1 - \sum \frac{9n}{12m+n} C_m H_n \right) - \alpha = \frac{-i_n \sum \frac{9n}{12m+n} C_m H_n}{L_0 (i_{c.\tau} + i_n x_0 - I_0)}$$
(9.6)

Пересчитаем компоненты топлива, при сгорании которых образуется вода, из объемных долей в массовые:

$$\begin{aligned} CH_4 &= 0.92 \cdot 16 \cdot 273 / \left[22.4 \cdot 0.652 \left(273 + 20 \right) \right] = 0.939; \\ C_2H_6 &= 0.005 \cdot 30 \cdot 273 / \left[22.4 \cdot 0.652 \left(273 + 20 \right) \right] = 0.0096; \\ H_2 &= 0.05 \cdot 2 \cdot 273 / \left[22.4 \cdot 0.652 \left(273 + 20 \right) \right] = 0.0064. \end{aligned}$$

Количество влаги, выделяющейся при сгорании 1 кг топлива, равно:

$$\sum \frac{9n}{12m+n} C_m H_n = \frac{9 \cdot 4}{12 \cdot 1 + 4} 0.939 + \frac{9 \cdot 6}{12 \cdot 2 + 6} + 0.0096 + 0.0064 = 2.19 \text{ kr/kr}.$$

Коэффициент избытка воздуха находим по уравнению (9.6):

$$\alpha = \frac{51\ 945 \cdot 0.95 + 1.34 \cdot 20 - 1.05 \cdot 200\ (1 - 2.19) - (2500 + 1.97 \cdot 300)\ 2.19}{17.68\ [1.05 \cdot 300 + (2500 + 1.97 \cdot 300)\ 0.0092 - 41.9]} = 8.06.$$

Общая удельная масса сухих газов, получаемых при сжигании 1 кг топлива и разбавлении топочных газов воздухом до температуры смеси 300 °C, равна:

$$G_{c} = 1 + \alpha L_0 - \sum 9n C_m H_n / (12m + n); \qquad (9.7)$$

 $G_{c.r} = 1 + 8,06 \cdot 17,68 - 2,19 = 141,3 \text{ kg/kg}.$

Удельная масса водяных паров в газовой смеси при сжигании 1 кг топлива:

$$G_{n} = \sum 9nC_{m}H_{n}/(12m+n) - \alpha x_{0}L_{0}; \qquad (9.8)$$

$$G_n = 2,19 + 8,06 \cdot 0,0092 \cdot 17,68 = 3,5 \text{ kr/kr}$$

Влагосодержание газов на входе в сушилку (x1 = xсм) на 1 кг сухого воздуха равно:

 $x_1 = G_{\rm m}/G_{\rm c.r.}$

откуда x₁=3,5/141,3=0,0248 кг/кг.

Энтальпия газов на входе в сушилку:

$$I_{1} = (Q\eta + c_{\tau}t_{\tau} + \alpha L_{0}I_{0}) / G_{c,\tau};$$
(9.9)

 $I_1 = (51945 \cdot 0.95 + 1.34 \cdot 20 + 8.06 \cdot 17.68 \cdot 41.9) / 141.3 = 392 кДж/кг.$

295

Поскольку коэффициент избытка воздуха α велик, физические свойства газовой смеси, используемой в качестве сушильного агента, практически не отличаются от физических свойств воздуха. Это дает возможность использовать в расчетах диаграмму состояния влажного воздуха l - x.

9.1.2. Параметры отработанных газов. Расход сушильного агента

Из уравнения материального баланса сушилки определим расход влаги *W*, удаляемой из высушиваемого материала:

$$W \doteq G_{\kappa} \left(\omega_{n} - \omega_{\kappa} \right) / \left(100 - \omega_{n} \right); \tag{9.10}$$

$$W = 5.56(12 - 0.5)/(100 - 12) = 0.726 \text{ kr/c}.$$

Заиишем уравнение внутреннего теплового баланса сушилки:

$$A = \widehat{(q_1 + q_3)} - (q_1 + q_3 + q_3), \qquad (9.11)$$

где Δ — разность между удельными приходом и расходом тепла непосредственно в сушильной камере, с — теплоемкость влаги во влажном материале при температуре θ_1 , кДж/(кг·K); q_{100} — удельный дополнительный подвод тепла в сушильную камеру, кДж/кг влаги; при работе сушилки по нормальному сушильному варианту $q_{100} = 0$; q_1 — удельный подвод тепла в сушилку с транспортными средствами, кДж/кг влаги; в рассматриваемом случае $q_1 = 0$; $q_2 = 0$; $q_3 = 0$ дельный подвод тепла в сушильный барабан с высушиваемым материалом, кДж/кг влаги; $q_3 = G_{\rm s}(q_2 - \theta_1)/W$; $c_3 =$ теплоемкость высушенного материала, равная $\theta_0 8$ кДж/(кг·K) [1]; θ_2 — температура

Рис. 9.2. Диаграмма состояния влажного воздуха *I — х* при высоких температурах и влагосодержаниях

высушенного материала на выходе из сушилки, °С. При испарении поверхностной влаги θ_2 принимают приблизительно равной температуре мокрого термометра $t_{\rm M}$ при соответствующих параметрах сушильного агента. Принимая в первом приближении процесс сушки адиабатическим, находим θ_2 по I - x диаграмме по начальным параметрам сушильного агента: $\theta_2 = 57$ °C; $q_{\rm n}$ — удельные потери тепла в окружающую среду, кДж/кг влаги.

Подставив соответствующие значения, получим:

Запишем уравнение рабочей линии сушки:

$$\Delta = l - l_1 / (x - x_1)$$
, или $l = l_1 + \Delta (x - x_1)$. (9.12)

Для построения рабочей линии сушки на диаграмме l - x необходимо знать координаты (x и l) минимум двух точек. Координаты одной точки известны: $x_1 = 0,0248$, $l_1 = 392$. Для нахождения координат второй точки зададимся произвольным значением x и определим соответствующее значение l Пусть x = 0,1 кг влаги/кг сухого воздуха. Тогда l = 392 - 141(0,1 - 0,0248) = 381 кДж/кг сухого воздуха.

Через две точки на диаграмме l - x (рис. 9.2) с координатами x_1 , l_1 и x, l проводим линию сушки до пересечения с заданным конечным параметром $t_2 = 100$ °C. В точке пересечения линии сушки с изотермой t_2 находим параметры отработанного сушильного агента: $x_2 = 0,107$ кг/кг, $l_2 = 365$ кДж/кг.

Расход сухого газа:

$$L_{c-t} = W/(x_2 - x_1); \qquad (9.13)$$

$$L_{c,r} = 0.726/(0.107 - 0.0248) = 8.83 \text{ kr/c}.$$

Расход сухого воздуха:

$$L = W/(x_2 - x_0); \qquad (9.14)$$
$$L = 0.726/(0.107 - 0.0092) = 7.42 \text{ kr/c}.$$

Расход тепла на сушку:

$$Q_{\rm c} = L_{\rm c.r} \left(I_{\rm I} - I_{\rm 0} \right); \tag{9.15}$$

*Q*_c = 8,83 (392 - 41,9) = 3091 кДж/с или 3091 кВт.

Расход топлива на сушку:

$$G_{\rm r} = Q_{\rm c}/Q = 3091/51945 = 0.0595 \, {\rm kr/c}.$$

9.1.3. Определение основных размеров сушильного барабана

Основные размеры барабана выбирают по нормативам и каталогам-справочникам [2, 3] в соответствии с объемом сушильного пространства. Объем сушильного пространства V складывается из объема V_n , необходимого для прогрева влажного материала до температуры, при которой начинается интенсивное испарение влаги (до температуры мокрого термометра сушильного агента), и объема V_c , требуемого для проведения процесса испарения влаги, т. е. $V = V_c + V_n$. Объем сушильного пространства барабана может быть вычислен по модифицированному уравнению массопередачи [4, 5]:

$$V_{\rm c} = W/(K_{\rm c}\Delta x_{\rm cp}^{\prime}), \qquad (9.16)$$

где Δ*x*_{cp} — средняя движущая сила массопередачи, кг влаги/м³; *K_v* — объемный коэффициент массопередачи, 1/с. При сушке кристаллических материалов происходит удаление поверхностной влаги, т. е. процесс протекает в первом периоде сушки, когда скорость процесса определяется только внешним диффузионным сопротивлением. При параллельном движении материала и сушильного агента температура влажного материала равна температуре мокрого термометра. В этом случае коэффициент массопередачи численно равен коэффициенту массоотдачи $K_v = \beta_v$.

Для барабанной сушилки коэффициент массоотдачи β. может быть вычислен по эмпирическому уравнению [5]:

$$\beta_{v} = 1.62 \cdot 10^{-2} (\omega \rho_{cp})^{0.9} n^{0.7} \beta^{0.54} P_{0} / [c \rho_{cp} (P_{0} - P)], \qquad (9.17)$$

где ρ_{cp} — средняя плотность сушильного агента, кг/м³; с — теплоемкость сушильного агента при средней температуре в барабане, равная 1 кДж/(кг·К) [1]; β — оптимальное заполнение барабана высушиваемым материалом, %; P_0 — давление, при котором осуществляется сушка, Па; p — среднее парциальное давление водяных паров в сушильном барабане, Па.

Уравнение (9.17) справедливо для значений $w\rho_{cp} = 0.6 - 1.8 \text{ кг/(m^2 \cdot c)}, n = 1.5 - 5.0 \text{ об/мин}, \beta = 10 - 25 \%.$

Рабочая скорость сушильного агента в барабане зависит от дисперсности и плотности высушиваемого материала. Для выбора рабочих скоростей (w, м/с) при сушке монодисперсных материалов можно руководствоваться данными, приведенными в табл. 9.1.

Для полидисперсных материалов с частицами размером от 0,2 до 5 мм и насыпной плотностью $\rho_{\rm M} = 800 - 1200$ кг/м³ обычно принимают скорость газов в интервале 2—5 м/с. В данном случае размер частиц высушиваемого материала от 1 до 2 мм, насыпная плотность 1200 кг/м³ [1]. Принимаем скорость газов в барабане $\omega = 2,4$ м/с. Плотность сушильного агента при средней температуре в барабане $t_{\rm cp} = (300 + 100)/2 = 200$ °C практически соответствует плотности воздуха при этой температуре:

$$\rho_{\rm cp} = \frac{M}{v_0} \cdot \frac{T_0}{T_0 + t} = \frac{29}{22.4} \cdot \frac{273}{273 + 200} = 0.747 \ {\rm kr/m^3}.$$

При этом $\omega \rho_{cp} = 2,4 \cdot 0,747 = 1,8$ кг/(м²·с), что не нарушает справедливости уравнения (9.17).

Частота вращения барабана обычно не превышает 5—8 об/мин; принимаем n=5 об/мин.

Оптимальное заполнение барабана высушиваемым материалом β для разных конструкций перевалочных устройств различно. Наиболее распространенные перевалочные устройства показаны на рис. 9.3. Для рассматриваемой конструкции сушильного барабана $\beta = 12$ %.

Процесс сушки осуществляется при атмосферном давлении, т. е. при $P_0 = 10^5$ Па. Парциальное давление водяных паров в сушильном барабане определим как среднеарифметическую величину между парциальными давлениями на входе газа в сушилку и на выходе из нее.

Парциальное давление водяных паров в газе определим по уравнению

$$p = (x/M_{\rm B}) P_0 / (1/M_{\rm c B} + x/M_{\rm B}).$$
(9.18)

Размер частиц,		Значен	ние w, м/с, при р	а, кг/м ³	
M M	350	1000	1400	1800	2200
0,3—2 Более 2	0,5-1 1-3	25 35	3—7,5 4—8	4—8 6—10	5—10 7—12

Таблица 9.1 К выбору рабочей скорости газов в сушильном барабане w

Тогда на входе в сушилку

$$p_1 = (0.0248/18) 10^5 / (1/29 + 0.0248/18) = 3842 \ \Pi a_1$$

на выходе из сушилки

$$\rho_2 = (0,107/18) 10^5 / (1/29 + 0,107/18) = 14700 \ \Pi a.$$

Отсюда $p = (p_1 + p_2)/2 = (3842 + 14700)/2 = 9271$ Па. Таким образом, объемный коэффициент массоотдачи равен:

$$\beta_{\nu} = 1.62 \cdot 10^{-2} \frac{1.8^{0.9} \cdot 5^{0.7} \cdot 12^{0.54} \cdot 10^5}{1 \cdot 0.747 (10^5 - 9271)} = 0.478 \text{ c}^{-1}$$

Движущую силу массопередачи $\Delta x'_{cp}$ определим по уравнению

$$\Delta x'_{cp} = \frac{\Delta x'_{\delta} - \Delta x'_{\mathsf{M}}}{\ln \left(\Delta x'_{\delta} / \Delta x'_{\mathsf{M}}\right)} = \frac{\Delta P_{cp} M_{\bullet}}{P_0 v_0 \left(T_0 + t_{cp}\right) / T_0},$$
(9.19)

где $\Delta x'_6 = x'_1 - x'_1 - движущая сила в начале процесса сушки, кг/м²; <math>\Delta x'_{\mu} = x'_2 - x'_1 -$ движущая сила в конце процесса сушки, кг/м³; x'_1 , x'_2 - равновесное содержание влаги на входе в сушилку и на выходе из нее, кг/м³.

Средняя движущая сила ΔP_{cp} , выраженная через единицы давления (Па), равна

$$\Delta P_{\rm cp} = (\Delta P_6 - \Delta P_{\rm w}) / \ln \left(\Delta P_6 / \Delta P_{\rm w} \right). \tag{9.20}$$

Для прямоточного движения сушильного агента и высушиваемого материала имеем: $\Delta P_6 = p_1^* - p_1 - d$ вижущая сила в начале процесса сушки, Па; $\Delta P_{M} = p_2^* - p_2 - d$ вижущая сила в конце процесса сушки, Па; p_1^* , $p_2^* - d$ авление насыщенных паров над влажным материалом в начале и в конце процесса сушки, Па.

Значения p_1 и p_2 определяют по температуре мокрого термометра сушильного агента в начале (t_{m1}) и в конце (t_{m2}) процесса сушки. По диаграмме I - x найдем: $t_{m1} = 57$ °C, $t_{m2} = 56$ °C; при этом $p_1 = 17302$ Па, $p_2 = 16500$ Па [1]. Тогда

$$\Delta P_{\rm cp} = \frac{(17\ 302 - 3842) - (16\ 500 - 14\ 700)}{\ln\left[(17\ 302 - 3842)/(16\ 500 - 14\ 700)\right]} = 5795\ \Pi a.$$

Выразим движущую силу в кг/м³ по уравнению (9.19):

$$\Delta x'_{cp} = \frac{5795 \cdot 18}{10^5 \cdot 22.4 (273 + 200)/273} = 0.0269 \text{ kr/m}^3$$

Объем сушильного барабана, необходимый для проведения процесса испарения влаги, без учета объема аппарата, требуемого на прогрев влажного материала, находим по уравнению (9.16):

$$v_{\rm c} = 0.726 / (0.478 \cdot 0.0269) = 56.5 \text{ m}^3$$

I — подъемно лопастного $\beta = 12$ %; 2 — то же, $\beta = 14$ %; 3 — распределительные, $\beta = 20,6$ %; 4 — распределительные с закрытыми ячейками, $\beta = 27,5$ %

Объем сушилки, необходимый для прогрева влажного материала, находят по модифицированному уравнению теплопередачи:

$$V_{\rm n} = Q_{\rm n} / (K_{\rm c} \Delta t_{\rm cp}), \qquad (9.21)$$

где Q_n — расход тепла на прогрев материала до температуры $t_{\text{м1}}$, кВт; K_v — объемный коэффициент теплопередачи, кВт/(м³·K); Δt_{cp} — средняя разность температур, град.

Расход тепла Q_п равен:

$$Q_{n} = G_{\kappa} c_{\kappa} (t_{\kappa 1} - \theta_{1}) + W_{B} c_{B} (t_{c \kappa 1} - \theta_{1}); \qquad (9.22)$$
$$Q_{n} = 5,56 \cdot 0,8(57 - 18) + 0,726 \cdot 4,19(57 - 18) = 292 \text{ kBt}.$$

Объемный коэффициент теплопередачи определяют по эмпирическому уравнению [5]

$$K_{z} = 16 (\omega \rho_{cp})^{0.9} n^{0.7} \beta^{0.54}; \qquad (9.23)$$

$$K_v = 16 \cdot 1.8^{0.9} \cdot 5^{0.7} \cdot 12^{0.54} = 321 \text{ Bt}/(\text{m}^3 \cdot \text{K}) = 0.321 \text{ KBt}/(\text{m}^3 \cdot \text{K})$$

Для вычисления Δ*l*_{cp} необходимо найти температуру сушильного агента *t_s*, до которой он охладится, отдавая тепло на нагрев высушиваемого материала до *t_{м1}*. Эту

Тι	блица	9.2 .	Опытные	данные	no	сушке	некоторых	материалов
8	бараба	нны	с сушилка	ıx				

Материал	Размер частиц, мм	ω _κ , %	ωκ, %	<i>t</i> ₁ , °C	12, °C	А., кг/(м ³ ·ч)	Тип (параметры) внут- ренних распределитель- ных систем барабана
Глина:							
простая	—	22	5	600700	80-100	50-60	Подъемно-лопастная
огнеупорная		. 9	0,7	800-1000	0 7080	60	*
Известняк	0-15	10-15	1,5	1000	80	45-65	*
Инфузориза земла	020	40	0,5	550	120	30-40	» Decuberations
Песок	_	4,3-3,7	0,05	840	100	80 - 88	Распределительная и Распределительная и
Руда:							перевалочная
железная (маг- нитогорская)	0—50	6,0	0,5	730	_	65	Подъемно-лопастная
марганцевая	2,5	15,0	2,0	120	60	12	Распределительная
Железный колче- дан		10—12	1—3	270—350	95100	20—30	Подъемно-лопастная секторная $(d = 1.6 \text{ м}, d = 1.6 \text{ м})$
Сланиы	0-40	38	12	500-600	100	45-60	l = 14 M $\Pi_{0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
Уголь:	0 10	00	••	000 000	100	10 00	Hog beams nondernan
каменный		9,0	0,6	800-1000	60	32-40	»
бурый	010	30	10-15	430	150 - 200	40—65	*
Торф фрезерный	—	50	20	450	100	75	*
Фосфориты	05 40	6,0	0,5	600	100	45-60	»
	0,34,0	_	1	220	105	0,5—4,0	подъемно-лопастная секторная
Аммофос	1-4	8	1,5	350	110	15-20	То же
Диаммофос	14	3-4		200	90	8-10	» († 00
Суперфосфат гра- нулированный	14	1418	2,5—3,0	550-600	120	60—80	l = 14 m
Преципитат		55—57	_	500—700	120-130	2833	То же $(d=3,2)$ м, $l=22$ м)
Сульфат аммония		3,5	0,4	82		4—5	Подъемно-лопастная
Хлорид бария		5,6	1,2	109		1,0—2,0	»
Фторид алюминия	—	48—50	3—5,5	750	220-250	18	Подъемно-лопастная
							и секторная (n = = 3 об/мин)
Соль поваренная	_	46	0,2	150 - 200		7,2	Подъемно-лопастная
Пшеница		20	14	150-200	5080	20 - 30	Распределительная
Жом свекловичный		84	12	750	100—125	185	*

температуру можно определить из уравнения теплового баланса:

$$Q_{n} = L_{c,r} (1 + x_{1}) c_{r} (t_{1} - t_{x}); \qquad (9.24)$$

$$292 = 8,83(1+0,0248)1,05(300-t_{x}),$$

откуда t_x = 269 °C. Средняя разность температур равна:

$$\Delta t_{\rm cp} = \left[\left(t_1 - 0_1 \right) + \left(t_x - t_{\rm M1} \right) \right] / 2, \tag{9.25}$$

$$\Delta t_{cp} = [(300 - 18) + (269 - 57)]/2 = 247 \text{ °C}.$$

Подставляем полученные значения в уравнение (9.21)

$$V_{\rm n} = 292/0,321 \cdot 247 = 3,7 \text{ M}^3.$$

Общий объем сушильного барабана V = 56,5 + 3,7 = 60,2 м³.

При отсутствии расчетных зависимостей для определения коэффициентов массо- и теплопередачи объем сушильного барабана может быть ориентировочно определен с помощью объемного напряжения по влаге A_v , кг/(м³·ч). При использовании величины A_v объем сушильного барабана рассчитывают по уравнению

$$V = 3600 W/A_{\rm s}$$
 (9.26)

Значения A_v для некоторых материалов, полученные из опытов, приведены в табл. 9.2.

В результате расчета, выполненного по уравнению (9.26) с использованием данных табл. 9.2 [$t_1 = 840$ °C, $t_2 = 100$ °C, $A_2 = 80$ кг/($(m^3 \cdot q)$], найдем объем сушильного барабана V = 32,7 м³ Расхождение с результатом, полученным при использовании кинетических закономерностей, обусловлено различием параметров сушильного агента, что существенно отражается на движущей силе сушки. Расчеты показывают, что средняя движущая сила при изменении начальной температуры сушильного агента от 300 до 840 °C увеличивается в 1,6 раза. Коррекция на изменение движущей силы дает объем сушильного барабана V = 52,3 м³ Этот результат удовлетворительно совпадает с полученным в примере.

Далее по справочным данным [2, 3] находим основные характеристики барабанной сушилки — длину и диаметр.

В табл. 9.3 приведены основные характеристики барабанных сушилок, выпускаемых заводами «Уралхиммаш» и «Прогресс» [6] По таблице выбираем барабанную сушилку N_{2} 7207 со следующими характеристиками: объем V = 74 м³, диаметр d = 2,8 м, длина l = 14 м.

Определим действительную скорость газов в барабане:

$$w_a = v_r / (0,785d^2).$$
 (9.27)

	Hor	мер по	заводся	кой спе	цифика	ции
Показатели	7450	7119	6843	6720	7207	7208
Внутренний диаметр барабана, м	1,5	1,8	2,2	2,2	2,8	2,8
Длина барабана, м	8	12	12	14	12	14
Толщина стенок наружного цилиндра, мм	10	12	14	14	14	14
Объем сушильного пространства, м ³	14,1	30,5	45,6	53,2	74,0	86,2
Число ячеек, шт.	25	28	28	28	51	51
Частота вращения барабана, об/мин	5	5	5	5	5	5
Общая масса, т	13,6	24,7	42	45,7	65	70
Потребляемая мощность двигателя, кВт	5,9	10,3	12,5	14,7	20,6	25,8

Таблица 9.3. Основные характеристики барабанных сушилок заводов «Уралхиммаш» и «Прогресс»

равен:

$$v_r = L_{c,r} v_0 - \frac{(T_0 + t_{cp})}{T_0} \left(\frac{1}{M_{c,r}} + \frac{x_{cp}}{M_{b}} \right),$$
(9.28)

где x_{ср} — среднее содержание влаги в сушильном агенте, кг/кг сухого воздуха. Подставив, получим:

$$v_r = 8,82 \cdot 22,4 \frac{(273+200)}{273} \left(\frac{1}{29} + \frac{0,06}{81}\right) = 12,95 \text{ m}^3/\text{c}.$$

Тогда $w_{\rm A} = 12,95/(0,785 \cdot 2,8^2) = 2,1$ м³/с.

Действительная скорость газов ($w_x = 2, 1 \text{ м/c}$) отличается от принятой в расчете (w = 2, 4 м/c) менее чем на 15%. Некоторое уменьшение интенсивности процесса сушки при снижении скорости газов по сравнению с принятой в расчете полностью компенсируется избытком объема выбранной сушилки по сравнению с расчетным. Если расхождение между принятой и действительной скоростями газов более существенно, необходимо повторить расчет, внося соответствующие коррективы.

Определим среднее время пребывания материала в сушилке [5]

$$\tau = G_{\rm M} / (G_{\rm K} + W/2). \tag{9.29}$$

Количество находящегося в сушилке материала (в кг) равно:

$$G_{\mu} = V \beta \rho_{\mu}; \qquad G_{\mu} = 74 \cdot 0.12 \cdot 1200 = 10660 \text{ kr.}$$
 (9.30)

Отсюда т = 10660/(5,56+0,726/2) = 1800 с.

Зная время пребывания, рассчитаем угол наклона барабана [5]:

$$\alpha' = [30l/(dn\tau) + 0.007w_{\rm a}] (180/\pi); \qquad (9.31)$$

$$\alpha' = [30 \cdot 14/(2, 2 \cdot 5 \cdot 1800) + 0,007 \cdot 2, 1] (180/3, 14) = 2,06 \,^{\circ}\text{C}.$$

Если полученное значение α' мало (меньше 0,5°), число оборотов барабана уменьшают и расчет повторяют сначала.

Далее необходимо проверить допустимую скорость газов, исходя из условия, что частицы высушиваемого материала наименьшего диаметра не должны уноситься потоком сушильного агента из барабана. Скорость уноса, равную скорости свободного витания $w_{c.B}$, определяют по уравнению [4]:

$$\omega_{\rm c.B} = \frac{\mu_{\rm cp}}{d\rho_{\rm cp}} \left(\frac{\rm Ar}{18 + 0.575 \sqrt{\rm Ar}} \right), \tag{9.32}$$

где μ_{cp} и ρ_{cp} — вязкость и плотность сушильного агента при средней температуре; d — наименьший диаметр частиц материала, м; Аг $\approx d^3 \rho_* \rho_{cp} g / \mu_{cp}^2$ — критерий Архимеда; ρ_* — плотность частиц высушиваемого материала, равная для песка 1500 кг/м³

Средняя плотность сушильного агента равна

$$\rho_{cp} = [M_{c.b} (P_0 - p) + M_b p] \frac{T}{v_0 P_0 (T + t_{cp})};$$

$$\rho_{cp} = [29 (10^5 - 9271) + 18.9271] \frac{273}{22.4 \cdot 10^5 (273 + 200)} = 0.72 \text{ kg/m}^3$$

Критерий Архимеда

Ar =
$$\frac{(1 \cdot 10^{-3})^3 1500 \cdot 0.72 \cdot 9.8}{(2.6 \cdot 10^{-5})^2} = 1.57 \cdot 10^4.$$

302

$$\omega_{\rm c} = \frac{2.6 \cdot 10^{-5}}{1 \cdot 10^{-3} \cdot 0.72} \left(\frac{1.57 \cdot 10^4}{18 + 0.575 (\sqrt{1.57 \cdot 10^4})} \right) = 6.3 \text{ m/c}.$$

Рабочая скорость сушильного агента в сушилке ($w_x = 2, 1 \text{ м/c}$) меньше, чем скорость уноса частиц наименьшего размера $w_{c,B} = 6,3 \text{ м/c}$, поэтому расчет основных размеров сушильного барабана заканчиваем. В противном случае (при $w_x > w_{c,B}$) уменьшают принятую в расчете скорость сушильного агента и повторяют расчет.

Схема расчета барабанной сушилки представлена на рис. 9.4.

Кроме основных размеров сушильного барабана расчету подлежат основные узлы и детали сушильного агрегата.

9.2. РАСЧЕТ СУШИЛКИ С ПСЕВДООЖИЖЕННЫМ СЛОЕМ

Задание на проектирование. Рассчитать сушилку с псевдоожиженным слоем для высушивания влажного песка нагретым воздухом при следующих условиях:

производительность по высушенному материалу $G_{\kappa} = 0,556$ кг/с; содержание фракций частиц в материале: диаметром от 2,0 до 1,5 мм — 25 %; диаметром от 1,5 до 1,0 мм — 75 %; влажность песка: начальная $\omega_{\kappa} = 12$ %; конечная $\omega_{\kappa} = 0,5$ %; температура влажного материала $\theta_1 = 18$ °C; параметры свежего воздуха: температура

Рис. 9.4. Схема расчета барабанной сушилки

 $t_0 = 18$ °C; относительная влажность $\varphi_0 = 72$ %; давление в сушилке — атмосферное; температура воздуха после калорифера $t_1 = 130$ °C; удельные потери тепла в окружающую среду на 1 кг испаренной влаги $q_n = 22.6$ кДж/кг (что соответствует примерно 1 % тепла, затрачиваемого на испарение 1 кг воды).

Обозначения основных величин, используемых в данном расчете, пояснены в примере расчета барабанной сушилки.

9.2.1. Расход воздуха, скорость газов и диаметр сушилки

По уравнению (9.10) определим расход влаги, удаляемой из высушиваемого материала:

$$W = 0.556(12 - 0.5)/(100 - 12) = 0.0726 \text{ kr/c}.$$

Определим параметры отработанного воздуха. Для этого примем температуру его $t_2 = 60$ °C, что позволит достаточно полно использовать тепло сушильного агента. Обычно температуру материала в псевдоожиженном слое принимают на 1—2 градуса пиже температуры отработанного воздуха. Тогда температура материала в слое равна 58 °C. Принимая модель полного перемешивания материала в псевдоожиженном слое, можно считать температуру высушенного материала равной температуре материала в слое. т. е. $\theta = 58$ °C.

Рассчитаем внутренний тепловой баланс сушилки по уравнению (9.11):

Δ=4,19·18-0,556·0,8(58-18)/0,0726-22,6=192 кДж/кг влаги.

На диаграмме I - x (рис. 9.5)- по известным параметрам $t_0 = 18$ °C и $q_0 = 72$ % находим влагосодержание x_0 и энтальпию I_0 свежего воздуха: $x_0 = 0,0092$ кг влаги/кг сухого воздуха; I = 41.9 кДж/кг сухого воздуха.

Рис. 9.5. Диаграмма состояния влажного воздуха I — x

304

При нагревании воздуха до температуры $t_1 = 130$ °C его энтальпия увеличивается до $I_1 = 157$ кДж/кг; так как нагрев сушильного агента осуществляется через стенку, влагосодержание остается постоянным: $x_0 = x_1$. Для определения параметров отработанного воздуха необходимо на диаграмме I - x построить рабочую линию сушки (построение ее описано в расчете барабанной сушилки). Зададим произвольное значение влагосодержания воздуха x = 0,04. Соответствующее ему значение энтальпии находим по уравнению (9.12):

/=157-192(0,04-0,0092)=151 кДж/кг сухого воздуха.

Далее проводим линию сушки на диаграмме I - x через две точки с координатами $x_1 = x_0 = 0,0092$ кг/кг, $I_1 = 157$ кДж/кг и x = 0,04 кг/кг, I = 151 кДж/кг до пересечения с заданным параметром отработанного воздуха $t_2 = 60$ °C. В точке пересечения линии сушки и изотермы 60 °C (см. рис. 9.5) находим конечное влагосодержание отработанного воздуха $x_2 = 0,035$ кг/кг.

Расход воздуха L на сушку по уравнению (9.14) равен:

L = 0.0726/(0.035 - 0.0092) = 2.81 kr/c.

Средняя температура воздуха в сушилке

 $t_{\rm cp} = (t_1 + t_2)/2 = (130 + 60)/2 = 95$ °C.

Среднее влагосодержание воздуха в сушилке

 $x_{cp} = (x_0 + x_2)/2 = (0,0092 + 0,035)/2 = 0,0221$ кг влаги/кг сухого воздуха.

Средняя плотность сухого воздуха и водяных паров

$$\rho_{\text{c.B}} = \frac{M_{\text{c.B}}}{v_0} \cdot \frac{T_0}{T_0 + t_{\text{cp}}} = \frac{29}{22.4} \cdot \frac{273}{(273 + 95)} = 0.96 \text{ kr/m}^3;$$

$$\rho_{\text{B.B}} = \frac{18}{22.4} \cdot \frac{273}{(273 + 95)} = 0.596 \text{ kr/m}^3$$

Средняя объемная производительность по воздуху:

$$V = L/\rho_{e,B} + x_{cp}L/\rho_{B,n};$$
(9.33)

$$V = 2.81/0.96 + 0.0221 \cdot 2.81/0.596 = 3.04 \text{ m}^3/\text{c}.$$

Далее рассчитываем фиктивную (на полное сечение аппарата) скорость начала псевдоожижения:

$$w_{\rm nc} = {\rm Re}\mu_{\rm cp}/(\rho_{\rm cp}d_{\star}), \qquad (9.34)$$

где Re = Ar/(1400 + 5,22 $\sqrt{\text{Ar}}$) — критерий Рейнольдса; Ar = $d_3^3 \rho_{cp} g \rho_3 / \mu_{cp}^2$ — критерий Архимеда; μ_{cp} — вязкость воздуха при средней температуре; $d_3 = 1 / \sum_{i} \frac{m_i}{d_i} - 3$ квива-

лентный диаметр полидисперсных частиц материала; *п* — число фракций; *m_i* — содержание *i*-й фракции, масс. доли; *d_i* — средний ситовый размер *i*-й фракции, м.

Рассчитаем d_э:

$$d_{3} = \frac{1}{\frac{0.25}{\left(\frac{2.0+1.5}{2}\right)10^{-3}} + \frac{0.75}{\left(\frac{1.5+1.0}{2}\right)10^{-3}}} = 1.35 \cdot 10^{-3} \text{ M}.$$

Критерий Архимеда

$$Ar = (1,35 \cdot 10^{-3})^{3} 0.96 \cdot 9.8 \cdot 1500 / (2,2 \cdot 10^{-5})^{2} = 7.17 \cdot 10^{4}.$$

Критерий Рейнольдса

$$Re = 7.17 \cdot 10^4 / (1400 + 5.22 \sqrt{7.17 \cdot 10^4}) = 25.6$$

Скорость начала псевдоожижения

$$w_{\rm nc} = \frac{25,6\cdot 2,2\cdot 10^{-5}}{0,96\cdot 1,35\cdot 10^{-3}} = 0,435$$
 M/c.

Верхний предел допустимой скорости воздуха в псевдоожиженном слое определяется скоростью свободного витания (уноса) наиболее мелких частиц. Эту скорость определяют по уравнению (9.32).

Критерий Архимеда для частиц песка диаметром 1 мм равен:

 $Ar = (10^{-3})^{3} 0.96 \cdot 9.8 \cdot 1500 / (2.2 \cdot 10^{-5})^{2} = 2.91 \cdot 10^{4}.$

Скорость свободного витания (уноса)

$$w_{\rm c.s} = \frac{2.2 \cdot 10^{-5}}{10^{-3} \cdot 0.96} \left(\frac{2.91 \cdot 10^4}{18 + 0.575 \sqrt{2.91 \cdot 10^4}} \right) = 5.75 \text{ m/c}.$$

Рабочую скорость w сушильного агента выбирают в пределах от w_{nc} до $w_{c.B}$. Эта скорость зависит от предельного числа псевдоожижения $K_{np} = w_{c.B}/w_{nc}$: при K_{np} более 40—50 рабочее число псевдоожижения $K_w = w/w_{nc}$ рекомендуется выбирать в интервале от 3 до 7; при K_{np} меньше 20—30 значение K_w можно выбирать в интервале от 1,5 до 3. В рассматриваемом расчете $K_{np} = 5,75/0,435 = 13,2$. Примем $K_w = 2,3$. Тогда рабочая скорость сушильного агента

$$w = K_w w_{nc} = 2,3 \cdot 0,435 = 1,0 \text{ M/c}.$$

Диаметр сушилки d определяют из уравнения расхода (9.27):

 $d = \sqrt{3,04/0,785 \cdot 1} = 1,97 \text{ M} \approx 2 \text{ M}.$

9.2.2. Высота псевдоожиженного слоя

Высоту псевдоожиженного слоя высушиваемого материала можно определить на основании экспериментальных данных по кинетике как массо-, так и теплообмена. Ниже приведен расчет высоты псевдоожиженного слоя, необходимой для удаления свободной влаги (что имеет место в нашем случае), двумя указанными методами.

Решая совместно уравнения материального баланса и массоотдачи, получим:

$$dW = w \rho_{cp} S dx = \beta_y (x^* - x) dF, \qquad (9.35)$$

где W — производительность сушилки по испарившейся влаге, кг/с; S — поперечное сечение сушилки, м²; x и x^{*} — рабочее и равновесное влагосодержание воздуха, кг влаги/кг сухого воздуха; F — поверхность высушиваемого материала, м²; ρ_{cs} — плотность сухого воздуха при средней температуре в сушилке, кг/м³

При условии шарообразности частиц заменим поверхность высушиваемого материала dF на $dF = [6(1-\varepsilon)/d_s]Sdh$, где h — высота псевдоожиженного слоя, м. Разделяя переменные и интегрируя полученное выражение, при условии постоянства температур частиц по высоте слоя находим:

$$\frac{x^* - x_2}{x^* - x_0} = \exp\left[-\frac{\beta_y}{w\rho_{\rm cp}} \cdot \frac{6(1 - \varepsilon)}{d_s}h\right]$$
(9.36)

Равновесное содержание влаги в сушильном агенте x^* определяем по I - x диаграмме как абсциссу точки пересечения рабочей линии сушки с линией постоянной относительной влажности $\varphi = 100 \%$. Величина $x^* = 0,0438$ кг/кг. При этом левая часть

306

уравнения (9.36) равна:

$$(x^{\bullet} - x_2) / (x^{\bullet} - x_0) = (0.0438 - 0.035) / (0.0438 - 0.0092) = 0.254.$$

Порозность псевдоожиженного слоя є при известном значении рабочей скорости может быть вычислена по формуле [4]

$$\varepsilon = [(18Re + 0.36Re^2)/Ar]^{0.21}$$

Критерий Рейнольдса

 $\operatorname{Re} = wd_{3}\rho_{cp}/\mu_{cp} = 1.0 \cdot 1.35 \cdot 10^{-3} \cdot 0.96/(2.2 \cdot 10^{-5}) = 58.9.$

Критерий $Ar = 7,17 \cdot 10^4$ (см. выше). Тогда

 $\varepsilon = [(18.58,9+0.36.58,9^2)/(7,17.10^4)]^{0.21} = 0.486 \text{ m}^3/\text{m}^3$

Коэффициент массоотдачи β, определяют на основании эмпирических зависимостей; при испарении поверхностной влаги он может быть рассчитан с помощью уравнения [7]:

$$Nu'_{y} = 2 + 0.51 \operatorname{Re}^{0.52} \operatorname{Pr}_{y}^{\prime 0.33}, \qquad (9.37)$$

где Νu'y=βyd₃/D — диффузионный критерий Нуссельта; Рт'y=μ/ρD — диффузионный критерий Прандтля.

Коэффициент диффузии водяных паров в воздухе при средней температуре в сушилке D (м²/с) равен:

$$D = D_{20} \left[\left(T_0 + t_{\rm cp} \right) / T_0 \right]^{3/2} \tag{9.38}$$

Коэффициент диффузии водяных паров в воздухе при 20 °С $D_{20} = 21,9 \cdot 10^{-6} \text{ м}^2/\text{с}$ [1] Тогда

$$D = 21,9 \cdot 10^{-6} \left[(273 + 95) / 273 \right]^{3/2} = 3,44 \cdot 10^{-5} \text{ m}^2/\text{c};$$

$$Pr'_y = 2,2 \cdot 10^{-5} / (0,96 \cdot 3,44 \cdot 10^{-5}) = 0,67$$

Коэффициент массоотдачи из уравнения (9.37) равен:

$$\beta_{y} = \frac{D}{d_{s}} (2 + 0.51 \text{ Re}^{0.52} \text{ Pr}_{y}^{\prime 0.33}), \qquad (9.39)$$
$$\beta_{y} = \frac{3.44 \cdot 10^{-5}}{1.35 \cdot 10^{-3}} (2 + 0.51 \cdot 58.9^{0.52} \cdot 0.67^{0.33}) = 0.145 \text{ m/c}.$$

Подставляя вычисленные значения в уравнение (9.36), определим высоту псевдоожиженного слоя высушиваемого материала h:

$$0,254 = \exp\left(-\frac{0,145}{1\cdot0.96} \cdot \frac{6\ (1-0,486)}{1,35\cdot10^{-3}}\ h\right),$$

откуда $h = 4 \cdot 10^{-3}$ м.

Проверим правильность определения величины *h* по опытным данным для теплоотдачи в псевдоожиженных слоях. Приравняем уравнение теплового баланса и уравнение теплоотдачи:

$$dQ = w \rho_{\rm cp} cS dt = \alpha \left(t - t_{\rm M} \right) dF, \tag{9.40}$$

где с — теплоемкость воздуха при средней температуре, равная 1000 Дж/(кг·К); α — коэффициент теплоотдачи, Вт/(м²·К); t — температура газа, °C; t_{M} — температура материала, °C.

Сделав приведенные выше преобразования, получим:

$$\frac{t_2 - t_{\rm M}}{t_1 - t_{\rm M}} = \exp\left[-\frac{\alpha}{\omega c \rho_{\rm cp}} \cdot \frac{6 (1 - \varepsilon)}{d_3} h\right]$$
(9.41)

307

Сначала определим высоту псевдоожиженного слоя, необходимую для испарения поверхностной влаги материала. В уравнении (9.41) высота псевдоожиженного слоя *h* является той же самой величиной, что и рассчитанная по уравнению (9.36). Принимая модель полного перемешивания материала в псевдоожиженном слое, можно считать температуру материала равной температуре мокрого термометра. Последнюю находим по параметрам сушильного агента с помощью I - x диаграммы. Она равна $l_{\rm M} = 38~{\rm C}$.

Коэффициент теплоотдачи с определяют на основании экспериментальных данных. Можно пользоваться следующими уравнениями [4]

для Re < 200

$$Nu = 1.6 \cdot 10^{-2} (Re/r)^{4.3} Pr^{0.33}; \qquad (9.42)$$

для Re≥200

$$Nu = 0.4 (Re/e)^{0.67} Pr^{0.33}, \qquad (9.43)$$

где Nu = $\alpha d_3/\lambda$ — критерий Нуссельта; Pr = $c\mu/\lambda$ — критерий Прандтля; λ — коэффициент теплопроводности воздуха при средней температуре, Bt/(м·K) [1].

Коэффициент теплоотдачи для рассматриваемого случая (Re = 58,9 < 200) равен:

$$\alpha = 1.6 \cdot 10^{-2} \frac{\lambda}{d_s} \left(\frac{\text{Re}}{\epsilon}\right)^{1.3} \text{Pr}^{0.33} =$$

= 1.6 \cdot 10^{-2} \frac{0.032}{1.35 \cdot 10^{-3}} \left(\frac{58.9}{0.486}\right)^{1.3} \left(\frac{1000 \cdot 2.2 \cdot 10^{-5}}{0.032}\right)^{0.33} = 171 \text{ Bt} / (m^2 \cdot \text{K}).

Подставляя найденные значения в уравнение (9.41), определим высоту псевдоожиженного слоя, необходимую для испарения влаги:

$$\frac{60-38}{130-38} = \exp\left(-\frac{171}{1\cdot1000\cdot0.96}\cdot\frac{6(1-0.486)}{1.35\cdot10^{-3}}h\right),$$

откуда $h = 3.5 \cdot 10^{-3}$ м.

Сравнивая величины, рассчитанные на основании опытных данных по массоотдаче ($h = 4 \cdot 10^{-3}$ м) и по теплоотдаче ($h = 3,5 \cdot 10^{-3}$ м), можно заключить, что они удовлетворительно совпадают.

Рабочую высоту псевдоожиженного слоя *H* определяют путем сравнения рассчитанных величин с высотой, необходимой для гидродинамически устойчивой работы слоя и предотвращения каналообразования в нем. Разница между этими высотами зависит от того, каким (внешним или внутренним) диффузионным сопротивлением определяется скорость сушильного процесса и насколько велико это сопротивление.

В случае удаления поверхностной влаги (первый период сушки) гидродинамически стабильная высота обычно значительно превышает рассчитанную по кинетическим закономерностям. При этом высоту псевдоожиженного слоя H определяют, исходя из следующих предпосылок. На основании опыта эксплуатации аппаратов с псевдоожиженным слоем установлено, что высота слоя H должна быть приблизительно в 4 раза больше высоты зоны гидродинамической стабилизации слоя $H_{\rm ct}$, т. е. $H \approx 4 H_{\rm ct}$. Высота $H_{\rm ct} \approx 20 d_{\rm o}$; следовательно, $H \approx 80 d_{\rm o}$.

Диаметр отверстий распределительной решетки выбирают из ряда нормальных размеров, установленного ГОСТ 6636—69 (в мм): 2,0; 2,2; 2,5; 2,8; 3,2; 3,6; 4,0; 4,5; 5,0; 5,6.

Выберем диаметр отверстий распределительной решетки $d_0 = 2,5$ мм. Тогда высота псевдоожиженного слоя $H = 80 \cdot 2,5 \cdot 10^{-3} = 0,2$ м.

Число отверстий *n* в распределительной решетке определяют по уравнению

$$n = 4SF_c / (\pi d_o^2) = d^2 F_c / d_o^2, \tag{9.44}$$

где S — сечение распределительной решетки, численно равное сечению сушилки, M^2 ; F_c — доля живого сечения решетки, принимаемая в интервале от 0,02 до 0,1.

Материал	Размер частиц, мм	ω", %	ωκ, %	<i>t</i> ₁, °C	t₂, °C	А., кг/(м ³ ∙ч)
Песок	_	10	0.5	900	120	435
Ильменит	0-0.3	3.7	0.03	400-300	130-160	103-167
Уголь	0-6	20	2	650	80	2900
	0-10	14,5	4,8	410	70	2500
	6-13	25 - 28	2-4	600	60	1500-1750
		22	8,5	436	63	1500
Хлорид калия		16	0,15	700	120	900
Перманганат калия	0,5-1,2	7—8	0,2-0,3	180	70	60 - 70
Сульфат железа	0,25-1,0	48,5	19,2	400	125	412
Сульфат аммония	—	2,5—3	0,10,7	150	60	300-500
	0,25	4	0,2	200	70	48,4
	0,8	2	0,2	150	100	61,4
	0,25	0,8	0,2	100	80	3,5
Комбинированные удобрения РК	0—4,6	4-11	2,6—6,6	80 - 200	65—98	28-128
Бензолсульфамид	_	18,9	2,4	100	46 - 50	118
Карбонат бария	—	45	1	380	100	70
Адипиновая кислота		5,6	0,27	130	77	27,3
Себациновая кислота		9,8	0,09	100	42	43
2-Аминофенол	_	12	0,5	110	65	4,4
Полистирол эмульсионный	—	33,0	0,67	138	58	24,5
Поливинилбутираль	_	20,0	1,0	118	50	15,2
Хлорированный поливинилхлорид	_	66	0,5	120	60	6,4

Таблица 9.4. Опытные данные по сушке некоторых материалов в псевдоожиженном слое

Приняв долю живого сечения $F_c = 0.05$, найдем число отверстий в распределительной решетке: $n = 2^2 \cdot 0.05/0.0025^2 = 32000$.

Рекомендуется применять расположение отверстий в распределительной решетке по углам равносторонних треугольников. При этом поперечный шаг t' и продольный шаг t' вычисляют по следующим соотношениям:

$$t' = 0.95 d_0 F_c^{-0.5};$$
 (9.45) $t'' = 0.866 t'$ (9.46)

откуда

$$t' = 0.95 \cdot 0.0025 \cdot 0.05^{-0.5} = 0.011$$
 M; $t'' = 0.866 \cdot 0.011 = 0.009$ M.

Высоту сепарационного пространства сушилки с псевдоожиженным слоем H_c принимают в 4—6 раз больше высоты псевдоожиженного слоя: $H_c = 5H = 5 \cdot 0.2 = 1$ м.

При отсутствии опытных данных по кинетике тепло- или массообмена можно пользоваться объемным напряжением сушилок с псевдоожиженным слоем по влаге A_v . В табл. 9.4 приведены сведения о напряжениях по влаге A_v для некоторых материалов.

Проверим соответствие рассчитанного значения высоты псевдоожиженного слоя экспериментальным данным, полученным при сушке песка. Из табл. 9.4 напряжение по влаге $A_v = 435 \text{ kr}/(\text{m}^3 \cdot \text{q}) = 0.121 \text{ kr}/(\text{m}^3 \cdot \text{c})$. Объем псевдоожиженного слоя V_{R} равен:

$$V_{\kappa} = W/A_{\nu} = 0.0726/0.121 = 0.6 \text{ M}^3.$$

Высота псевдоожиженного слоя Н:

$$H = V_{\kappa} / (0,785d^3) = 0.6 / (0,785 \cdot 2^2) = 0.191 \text{ M}.$$

1014

Как видим, рассчитанная высота псевдоожиженного слоя и найденная на основании опытных данных хорошо согласуются.

9.2.3. Гидравлическое сопротивление сушилки

Основную долю общего гидравлического сопротивления сушилки ΔP составляют гидравлические сопротивления псевдоожиженного слоя ΔP_{nc} и решетки ΔP_{p} :

$$\Delta P = \Delta P_{\rm nc} + \Delta P_{\rm p}. \tag{9.47}$$

Величину ΔP_{nc} находят по уравнению

$$\Delta P_{\rm nc} = \rho_{\rm s} (1 - \varepsilon) g H; \qquad (9.48)$$
$$\Delta P_{\rm nc} = 1500 (1 - 0.486) 9.8 \cdot 0.2 = 1511 \ \Pi a.$$

Для удовлетворительного распределения газового потока необходимо соблюдать определенное соотношение между гидравлическими сопротивлениями слоя и решетки. Минимально допустимое гидравлическое сопротивление решетки ΔP_{pmin} может быть вычислено по формуле

$$\Delta P_{\text{pmin}} = \Delta P_{\text{nc}} K_{w}^{2} \left(\epsilon - \epsilon_{0} \right) / \left[\left(K_{w}^{2} - 1 \right) \left(1 - \epsilon_{0} \right) \right].$$
(9.49)

Порозность неподвижного слоя ε_0 для шарообразных частиц принимают равной 0,4. Подставив соответствующие значения, получим:

$$\Delta P_{\text{pmin}} = 1511 \frac{1.3^2}{(2.3^2 - 1)} \left(\frac{0.486 - 0.4}{1 - 0.486} \right) = 312 \ \text{Ta}.$$

Гидравлическое сопротивление выбранной решетки

$$\Delta P_{\rm p} = \xi \left(\frac{w}{F_{\rm c}}\right)^2 \frac{\rho_{\rm cp}}{2} \,. \tag{9.50}$$

Коэффициент сопротивления решетки $\xi = 1,75$. Тогда

$$\Delta P_{\rm p} = 1,75 \left(\frac{1}{0.05}\right)^2 \frac{0.96}{2} = 336 \ \mbox{Ta}.$$

Значение $\Delta P_p = 336$ Па превышает минимально допустимое гидравлическое сопротивление решетки $\Delta P_{p\,min}$. В противном случае, т. е. когда $\Delta P_p < \Delta P_{p\,min}$, необходимо выбрать другую долю живого сечения распределительной решетки. Общее гидравлическое сопротивление сушилки в соответствии с уравнением (9.47) равно: $\Delta P = 1511 + 336 = 1847$ Па.

Зная суммарное гидравлическое сопротивление сушилки и газоочистной аппаратуры (циклоны, скрубберы мокрой очистки, рукавные фильтры и т. д.) и производительность по сушильному агенту, выбирают вентиляционное оборудование (см. гл. 1).

Расчеты размеров пылеосадительных устройств, топок, питателей, конвейеров, пневмотранспорта приведены в литературе [8—11]

С работой других сушилок можно ознакомиться в литературе [12]

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Павлов К. Ф., Романов П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1981. 560 с.
- 2. Сушильные аппараты и установки. Каталог ЦИНТИХИМНЕФТЕМАШ. Изд. 3-е. М., 1975. 64 с.
- Аппараты с вращающимися барабанами общего назначения. Основные параметры и размеры. ГОСТ 11875—79.
- 4. Касаткин А. Г. Основные процессы и аппараты химической технологии. М.: Химия, 1973. 754 с.
- 5. Лыков М. В. Сушка в химической промышленности. М.: Химия, 1970. 429 с.
- 6. Лебедев П. Д., Щукин А. А. Теплоиспользующие установки промышленных предприятий. М.: Энергия, 1970. 408 с.

- 7 Плановский А. Н., Муштаев В. И., Ульянов В. М. Сушка дисперсных материалов в химической промышленности. М.: Химия, 1979. 287 с.
- 8. Канторович З. Б. Машины химической промышленности. Т. 1. Машгиз, 1957 568 с.
- 9. Исламов М. Ш. Печи химической промышленности. Л.: Химия, 1975. 432 с.
- 10. Ужов В. Н. Борьба с пылью в промышленности. М.: Госхимиздат, 1962. 185 с.
- 11. Лебедев П. Д. Расчет и проектирование сушильных установок. М.: Госэнергоиздат, 1963. 319 с.
- 12. Сажин Б. С. Основы техники сушки. М.: Химия, 1984. 319 с.

ГЛАВА 10

РАСЧЕТ КРИСТАЛЛИЗАЦИОННОЙ УСТАНОВКИ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

С — концентрация кристаллизующегося вещества, кг/м³;

- c_p теплоемкость, $\mathbf{\Pi} \mathbf{ж} / (\mathbf{k} \mathbf{\Gamma} \cdot \mathbf{K});$
- D коэффициент диффузии, м²/с;
- f удельная поверхность кристаллов, м²/м³;
- G расход раствора, кг/с;
- G_x расход твердой фазы, кг/с;
- *H* высота псевдоожиженного слоя, м;
- 1 энтальпия вторичных паров, Дж/кг;
- Q тепло, подводимое или отводимое при кристаллизации, Вт;
- Кс коэффициент массопередачи, м/с;
- М молекулярная масса, кг/кмоль;
- q теплота кристаллизации, Дж/кг;
- *P* давление, Па;
- R коэффициент скорости роста размера кристаллов, м/с;
- r размер кристалла, м;
- w скорость жидкости, м/с;
- W расход удаляемого растворителя, кг/с;
- Y концентрация кристаллизующегося вещества, % (масс);
- β_с коэффициент массоотдачи, м/с;
- є порозность псевдоожиженного слоя, м³/м³;
- µ вязкость, Па∙с;
- ρ плотность, кг/м³;
- σ_v напряжение парового пространства, ч⁻¹;
- σ_s допустимая масса пара с единицы площади зеркала испарения, кг/(м²·ч);

Индексы:

- и для объемных параметров;
- х для твердой фазы;
- у для жидкой фазы;
- с для концентрации, измеряемой в кг/м³,
- н начальные параметры;
- к конечные параметры;
- п параметры у поверхности контакта фаз.

введение

Под кристаллизацией понимают образование твердой кристаллической фазы из любой фазы, в том числе из другой кристаллической. В промышленности кристаллизацию осуществляют из расплавов, растворов и паров.

Кристаллизация идет с достаточной скоростью лишь в пересыщенных растворах, в которых образуются зародыши кристаллов. Начиная с некоторого критического размера *г*_{кр}, составляющего 0,5—5 нм, происходит быстрый рост зародышей и образуется большое число кристаллов различного размера.

Рис. 10.1. Принципиальная технологическая схема кристаллизационной установки с псевдоожиженным слоем:

1 — насос; 2 — нспаритель; 3 — кристаллораститель; 4—6 — барометрические конденсаторы; 7—10 — эжекторы

Критический размер кристалла может быть определен из уравнения

$$r_{\rm kp} = 2\sigma M / \left[\rho_x RT \ln \left(C / C^* \right) \right],$$

где С. С^{*} — концентрации пересыщенного и насыщенного растворов, кг/м³; σ — поверхностное натяжение, Н/м; ρ_x — плотность кристаллов, кг/м³

В промышленности используют три метода кристаллизации из растворов: изотермический, в котором пересыщение раствора достигается удалением части растворителя путем выпаривания при постоянной температуре; изогидрический, при котором пересыщение раствора достигается охлаждением раствора при сохранении массы растворителя; комбинированный (комбинация первых двух методов) — кристаллизация под вакуумом, при которой происходит отгонка растворителя с одновременным понижением температуры.

В соответствии с указанными методами создания пересыщенного раствора различают три типа промышленных кристаллизаторов: 1 — с удалением части растворителя; 2 — с охлаждением раствора; 3 — вакуум-кристаллизаторы.

Несмотря на различные способы создания пересыщения, большинство аппаратов, предназначенных для кристаллизации из растворов, является кристаллизаторами со стационарным или циркулирующим по замкнутому контуру псевдоожиженным слоем. Поэтому в дальнейшем будем рассматривать лишь кристаллизацию в псевдоожиженном слое.

Кристаллизационные установки с псевдоожиженным слоем, работающие под атмосферным давлением, используют в тех случаях, когда температура кристаллизации ниже нуля или равна нулю (0 °C). Вакуумные кристаллизаторы используют при температуре кристаллизации не ниже 6 °C.

Типичная схема вакуумной кристаллизационной установки приведена на рис. 10.1. Исходный раствор поступает во всасывающую линию циркуляционного насоса 1, где смешивается с циркулирующим раствором и направляется в испаритель 2. В испарителе, находящемся под вакуумом, происходит понижение температуры раствора вследствие испарения части растворителя до точки кипения, соответствующей остаточному давлению в аппарате. Пересыщенный в результате охлаждения раствор поступает по барометрической трубе в кристаллораститель 3, где происходит кристаллизация. Образовавшаяся суспензия кристаллов удаляется из нижней части кристаллорастителя. Вакуум в кристаллизационной установке создается с помощью барометрических конденсаторов 4— 6 и паровых эжекторов 7—10.

10.1. РАСЧЕТ КРИСТАЛЛИЗАЦИОННОГО АППАРАТА с псевдоожиженным слоем кристаллов

10.1.1. Материальный и тепловой балансы кристаллизации

Массу кристаллической фазы (G_x) определяют из уравнений материального баланса кристаллизации:

$$G_{\mu} = G_{\kappa} + G_{\kappa} + W; \qquad (10.1)$$

$$G_{\kappa}Y_{\mu} = G'_{\kappa} + G_{\kappa}Y_{\kappa}, \qquad (10.2)$$

где G_{μ} , G_{κ} — расход начального и конечного маточного растворов, кг/с; G_{x} , G'_{x} — расход соответственно кристаллогидрата (т. е. кристаллической фазы, включающей растворитель) и кристаллической фазы в пересчете на чистое растворенное вещество, кг/с; W — расход удаляемого растворителя, кг/с; Y_{μ} , Y_{κ} — концентрации начального и конечного маточного растворов, масс. доли.

Поскольку число молей в кристаллической фазе без растворителя и в форме кристаллогидрата одно и то же, расход безводной кристаллической фазы G'_x может быть выражен через расход кристаллогидрата:

$$G'_x = G_x M / M_{\rm sr}$$

где *М*, *М*_{кг} — молекулярная масса соответственно кристаллов (без растворителя) и кристаллогидрата.

Из уравнений (10.1), (10.2) получают расход кристаллической фазы:

$$G_x = \frac{G_w (y_k - y_u) - W Y_k}{Y_k - M/M_{kr}}$$
(10.3)

Тепловой баланс для всех трех методов кристаллизации из растворов может быть выражен единым уравнением:

$$G_{n}c_{pyn}t_{n} + G_{x}q \pm Q = G_{x}c_{px}t_{\kappa} + (G_{n} - C_{x} - W)c_{py\kappa}t_{\kappa} + WI \pm Q_{nor}, \qquad (10.4)$$

где С_{руп}, С_{рик}, С_{рх} — теплоемкости начального раствора, маточного раствора и кристаллов; t₁₁, t_к — температуры исходного и маточного растворов, °C; q — теплота кристаллизации, Дж/кг; I — энтальпия вторичных паров, Дж/кг; Q_{пот} — потери тепла, Вт; +Q тепло, подводимое при изотермической кристаллизации; — Q — тепло, отводимое при изогидрической кристаллизации.

В случае изогидрической кристаллизации W = 0. При вакуум-кристаллизации (комбинированный метод) Q = 0.

10.1.2. Определение высоты псевдоожиженного слоя

После того как пересыщенный раствор поступает в кристаллорастворитель, начинается процесс кристаллизации, в течение которого масса вещества из раствора переходит к поверхности кристаллов и далее включается в кристаллическую решетку. В ходе образования твердой фазы выделяется тепло кристаллизации. Таким образом, по мере передвижения раствора в зоне кристаллизации меняются его концентрация и температура.

Скорость увеличения массы кристаллов зависит от интенсивности внешнего массообмена [уравнение массоотдачи (10.5)] и от скорости включения молекул растворенного вещества в кристаллическую решетку [кинетическое уравнение (10.6)] [1]

$$i = \beta_c \left(C - C_n \right); \tag{10.5}$$

$$i = K_{w}(C_n - C^*),$$
 (10.6)

где β_c — коэффициент массоотдачи, м/с; K_{ω} — константа скорости роста кристаллов, м/с; C_n , C — концентрации вблизи поверхности кристалла и в ядре жидкости, кг/м³; i — плотность потока массы, кг/(м²·с).

Из уравнений (10.5), (10.6) найдем плотность потока массы, входящей в кристаллическую фазу:

$$i = K_c(C - C^*),$$
 (10.7)

где $K_c = (1/\beta_c + 1/K_w)^{-1}$ — коэффициент массопередачи, м/с.

Принимая, что скорость массопередачи кристаллизации в псевдоожиженном слое контролируется внешней массоотдачей $K_c = \beta_c$, получили [2] следующее уравнение для определения объемного коэффициента массопередачи:

$$K_{\nu c} = \beta_c f = 0.105 \cdot 10^{-3} f \omega (\nu/D)^{0.07}, \qquad (10.8)$$

где v — кинематическая вязкость маточного раствора, m^2/c .

Материальный и тепловой балансы кристаллизации в псевдоожиженном слое в дифференциальной форме могут быть записаны следующим образом:

$$\frac{\partial C}{\partial t} + w \frac{\partial C}{\partial x} + K_{vc}(C - C^*) = 0; \qquad (10.9)$$

$$\frac{\partial t}{\partial \tau} + w \frac{\partial t}{\partial x} = \frac{\alpha_v}{\rho_{cn} C_{p\,cn}} (t_n - t), \qquad (10.10)$$

где α_v — объемный коэффициент теплоотдачи, Вт/(м³·K); ρ_{cn} — плотность псевдоожиженного слоя, кг/м³; c_{pcn} — усредненная теплоемкость псевдоожиженного слоя, Дж/(кг·K); l_n — температура поверхности, °C.

Поскольку температура в кристаллорастителе меняется незначительно, равновесная концентрация C* может быть описана линейной функцией температуры:

$$C^* = at + b,$$
 (10.11)

где a, b — константы.

Из системы уравнений (10.9), (10.10) для стационарного процесса найдем [2] зависимости концентрации и температуры раствора от высоты слоя:

$$C_{\kappa} = C'_{\mu} - \frac{C'_{\mu} - (at'_{\mu} + b)}{1 + aA} \left\{ 1 - \exp\left[-\frac{K_{\nu c}}{w} (1 + aA) H \right] \right\};$$
(10.12)

$$t_{\kappa} = t'_{\mu} + A \frac{[C'_{\mu} - (at'_{\mu} + b)]}{1 + aA} \left\{ 1 - \exp\left[-\frac{K_{vc}}{w} (1 + aA) H\right] \right\},$$
(10.13)

где H — высота псевдоожиженного слоя, м; C_{κ} , t_{κ} — концентрация (кг/м³) и температура (°C) раствора, покидающего кристаллизатор; C'_{κ} , t'_{μ} — концентрация (кг/м³) и температура (°C) раствора, входящего в кристаллораститель.

Константа А в уравнениях (10.12), (10.13) равна:

$$A = q / [c_{py} \rho_y \varepsilon + \rho_z c_{pz} (1 - \varepsilon)]$$
(10.14)

Высоту аппарата определяют из равенства подэкспоненциального выражения уравнения (10.12) единице [2]

$$K_{vc}(1+aA)H/w = 1,$$
 (10.14a)

поскольку при этом наблюдается наиболее предпочтительный вид зависимости концентрации раствора от высоты, близкий к линейному.

10.2. РАСЧЕТ ВАКУУМ-КРИСТАЛЛИЗАТОРА

Задание на проектирование. Рассчитать вакуум-кристаллизатор с псевдоожиженным слоем для кристаллизации MgSO4 из водного раствора по следующим данным:

производительность по исходному раствору $G_{\mu} = 18\ 000\ \kappa r/ч$; содержание MgSO₄ в исходном растворе $Y_{\mu} = 27\ \%$ (масс); температура исходного раствора $t_{\mu} = 50\ ^{\circ}\text{C}$; температура маточного раствора на выходе из кристаллизатора $t_{\kappa} = 15 \, {}^{\circ}\text{C}$; средний размер кристаллов $r = 2 \cdot 10^{-3} \, \text{м}$.

10.2.1. Концентрация раствора на выходе из кристаллизатора

Равновесная растворимость MgSO₄ в воде [3] в рабочем интервале температур 10— 30 °C хорошо описывается линейной функцией температуры (рис. 10.2):

$$C^* = at + b$$
 (a = 4,8; b = 257),

где данные по растворимости [3] пересчитаны из г/100 г воды в кг/м³.

Концентрацию раствора на выходе из кристаллорастителя можно определить из условия, согласно которому кристаллизация при пересыщении, составляющем 5 % от предельного, практически прекращается [2]:

$$C_{\kappa} = 0.05S_{np} + at_{\kappa} + b, \qquad (10.15)$$

где S_{пр} — предельное пересыщение раствора, кг/м³ Его находят, зная предельное переохлаждение, определяемое по эмпирическому уравнению

$$\Delta t_{\rm np} = 62.59q^{-0.772} \exp((-0.027q)), \tag{10.16}$$

где q = 65,7 кДж/кг (3,87 ккал/моль) — теплота кристаллизации. Получим:

$$\Delta t_{np} = 62,59 \cdot 3,87^{-0.772} \exp((-0.027 \cdot 3.87)) = 19,83 \text{ °C}.$$

По температурной зависимости равновесной растворимости найдем предельное пересыщение $S_{np} = 91 \text{ кг/м}^3$ Подставив это значение в уравнение (10.15), получим концентрацию раствора на выходе из кристаллизатора:

$$C_{\kappa} = 0.05 \cdot 91 + 4.8 \cdot 15 + 257 = 333.6 \text{ Kr/m}^3$$

10.2.2. Определение рабочей высоты кристаллорастителя

Для определения рабочей высоты кристаллорастителя необходимо располагать значениями порозности слоя, скорости раствора и коэффициента массопередачи.

Оптимальное значение порозности в кристаллизаторах с псевдоожиженным слоем $\varepsilon = 0.75$ [2].

В литературе имеется ряд зависимостей для определения скорости раствора в кристаллорастителях с псевдоожиженным слоем. Используем уравнение, дающее наиболее близкую сходимость с экспериментальными данными [2]

$$w = 2.33 \left(\frac{\epsilon}{1.05} \right)^3 \sqrt{r \left(\rho_x - \rho_y \right) / \rho_y}; \tag{10.17}$$

$$w = 2,33(0,75/1,05)^{3}\sqrt{2 \cdot 10^{-3}(1680 - 1300)/1300} = 0,021 \text{ m/c},$$

где $\rho_x = 1680$ кг/м³ — плотность кристаллической фазы; $\rho_y = 1300$ кг/м³ — плотность раствора при C_{κ} .

Объемный коэффициент массопередачи определяется уравнением (10.8). Входящие в него величины найдем следующим образом.

Кинематическую вязкость маточного раствора при l=25 °C, $C=C_{\kappa}=333.6$ кг/м³, $Y_{\kappa}=336\cdot100/1300=25.7$ % найдем экстраполяцией из Приложения 11.1: $v=4.29\times$ $\times 10^{-6}$ м²/с.

Вязкость маточного раствора при температуре 15 °C:

$$v_{15} = v_{25} = v_{B15}/v_{R25} = 4,29 \cdot 10^{-6} \cdot 1,16 \cdot 10^{-6}/(0,91 \cdot 10^{-6}) = 5,4 \cdot 10^{-6} \text{ m}^2/\text{c},$$

где v_{в 15}, v_{в 25} — вязкость воды при 15 и 25 °C.

Удельную поверхность кристаллов в слое можно определить из уравнения [2]:

$$\int = 0.447 \sqrt{\frac{(\rho_x - \rho_y)(1 - \epsilon)\epsilon^3 g}{\omega \mu}} = 0.447 \sqrt{\frac{(1680 - 1300)(1 - 0.75) \cdot 0.75^3 \cdot 9.81}{0.021 \cdot 5.4 \cdot 10^{-6} \cdot 1300}} = 730.1 \text{ m}^{-1}$$

Коэффициент диффузии MgSO₄ в воде при концентрации C_к и температуре 25 °C (Приложение 11.1) D₂₅=0,447 м²/с.

Коэффициент диффузии при 15 °С можно определить следующим образом:

$$D_{15} = D_{25} \frac{(273 + 15)}{(273 + 25)} \cdot \frac{\mu_{B25}}{\mu_{B15}} = 0.447 \cdot 10^{-9} \frac{283 \cdot 0.9 \cdot 10^{-3}}{293 \cdot 1.15 \cdot 10^{-3}} = 0.34 \cdot 10^{-9} \text{ m}^2/\text{c}.$$

Подставив значения *f*, v. *D* в уравнение (10.8), найдем коэффициент массопередачи:

$$K_{vc} = 0.105 \cdot 10^{-3} \cdot 730.1 \cdot 0.021 [5.4 \cdot 10^{-6} / (0.34 \cdot 10^{-9})]^{0.07} = 0.0032 \text{ c}^{-1}$$

Рабочую высоту псевдоожиженного слоя можно рассчитать по уравнению (10.14а). Для этого определим константу A в уравнении (10.14а) по уравнению (10.14). Теплоемкость кристаллов $c_{px} = 945 \ \text{Дж}/(\kappa \cdot \text{K})$. Теплоемкость маточного раствора:

 $c_{py} = c_{px}Y_{\kappa} + 4190(1 - Y_{\kappa}) = 945 \cdot 0.257 + 4190(1 - 0.257) = 3356 \ \text{Дж}/(\kappa \cdot \text{K}).$

По уравнению (10.14)

 $A = 15,7 \cdot 4190 / [3356 \cdot 1300 \cdot 0,75 + 945 \cdot 1680 (1 - 0,75)] = 0,018.$

Тогда рабочая высота псевдоожиженного слоя

 $H = 0.021 / [0.0032(1 + 4.8 \cdot 0.018)] = 6.0 \text{ M}.$

Рабочая высота псевдоожиженного слоя должна составлять 0,75 от высоты кристаллорастителя до уровня отводящего патрубка, т. е. с учетом сепарационного пространства [2] получим: H = 6/0.75 = 8 м.

Решая систему уравнений (10.12), (10.13) находим концентрацию и температуру раствора на входе в кристаллораститель. Подставив в эту систему уравнений известные величины, получим:

$$333.6 = C'_{\text{H}} - \frac{C'_{\text{H}} - (4.8t'_{\text{H}} + 257)}{1 + 4.8 \cdot 0.018} \left\{ 1 - \exp\left[-\frac{0.0032}{0.021} \left(1 + 4.8 \cdot 0.018 \right) \cdot 6 \right] \right\};$$

$$15 = t'_{\text{H}} + \frac{0.018 \left[C'_{\text{H}} - (4.8t'_{\text{H}} + 257) \right]}{1 + 4.8 \cdot 0.018} \left\{ 1 - \exp\left[-\frac{0.0032}{0.021} \left(1 - 4.8 \cdot 0.018 \right) \cdot 6 \right] \right\}$$

Отсюда $C'_{\mu} = 341,2$ кг/м³, $t'_{\mu} = 14,8$ °C.

10.2.3. Давление в испарителе, производительность установки по кристаллической фазе, расход испаряемой воды

Концентрация раствора в испарителе равна концентрации раствора, поступающего в кристаллораститель:

$$Y_{y} = C_{y}/\rho_{y} = 341.2 \cdot 100/1308 = 26.1 \%$$
 (macc.).

Температурная депрессия, соответствующая этой концентрации, при атмосферном давлении составляет $\Lambda' = 2,6$ °C.

Приняв в первом приближении, что давление в испарителе соответствует температуре $t_{\mu} = t_{\mu} - 2,6 = 14,8 - 2,6 = 12,2$ °С, т. е. $P_{\mu} = 0,00147$ МПа, по формуле Тишенко [4] получим значение температурной депрессии:

$$\Delta' = 2.6 \cdot 16.2 (273 + 12.2)^2 / (2465 \cdot 10^3) = 1.4 \ ^{\circ}\text{C}.$$

Таким образом, истинные значения температуры и давления в испарителе $t_{\mu} = = 14.8 - 1.4 = 13.4$ °C; $P_{\mu} = 0.00159$ МПа.

Производительность установки по кристаллической фазе (G_x) и расход упариваемой воды получим решением системы уравнений материального и теплового балансов (10.3) и (10.4).

Соотношение молекулярных масс безводных кристаллов MgSO₄ и кристаллогидрата MgSO₄ · 7H₂O равно: $M/M_{\kappa r} = 120,3/246,3 = 0,49$.

Теплоемкость исходного раствора

 $c_{\mu\mu\mu} = 945 \cdot 0.27 + 4190(1 - 0.27) = 3370 \ \mbox{$\mb\$\mbx{$\mbox{$\mbox{$\mbo\$

Подставив известные значения параметров в систему уравнений (10.3), (10.4), получим:

$$G_x = \frac{18\,000\,(0,257-0,27)-0,257\,W}{0.257-0.49};$$

 $18000 \cdot 3370 \cdot 50 + 15.7 \cdot 4190G_x = 945 \cdot 15G_x + (18000 - G_x - W) \cdot 3356 \cdot 15 + 2519.1 \cdot 10^3 W.$

Отсюда $G_x = 2046,5 \ \kappa r/ч; W = 944,9 \ \kappa r/ч.$

10.2.4. Диаметр кристаллорастителя

Диаметр кристаллорастителя находим из уравнения расхода:

$$D_{\kappa} = \sqrt{4V_{u.p}/(3600\pi\omega)},$$

где V_{и.р} — расход циркулирующего раствора, м³/ч. Его определяют из производительности установки по кристаллической фазе:

$$V_{u,p} = G_x/(C_H - C_K) = 2046.5/(341.2 - 333.6) = 269.3 \text{ m}^3/\text{u}.$$

Подставив значение V_{и.р}, получим диаметр кристаллорастителя:

 $D_{\rm N} = \sqrt{4 \cdot 269.3 / (3.14 \cdot 3600 \cdot 0.021)} = 2.13$ M.

Проверка расчета кристаллорастителя. Масса кристалла в слое:

$$G_{x,nc} = 0.785 D_{\kappa}^2 L (1-\epsilon) \rho_x = 0.785 \cdot 2.13^2 \cdot 6 (1-0.75) 1680 = 8974.9 \text{ kr}.$$

Коэффициент скорости роста кристаллов [2]:

$$k = K_{ee}r/(1-\epsilon) = 0.0032 \cdot 2 \cdot 10^{-3}/(1-0.75) = 2.55 \cdot 10^{-5} \text{ m/c}.$$

Расчетное значение среднего размера кристаллов

$$r = k \frac{3600 \, \omega \, G_{x \, \text{nc}}}{\rho_x K_{uc} H G_x} = \frac{2,55 \cdot 10^{-5} \cdot 3600 \cdot 0,021 \cdot 8974,9}{1680 \cdot 0,0032 \cdot 6 \cdot 2046,5} = 2,07 \cdot 10^{-3} \, \text{M}.$$

Расхождение с принятым значением r=2 мм составляет 3,5 %.

10.2.5. Основные параметры испарителя

Поверхность зеркала испарения можно определить исходя из допустимой массы паровой фазы, снимаемой с единицы площади зеркала в единицу времени, $\sigma_s = [50 \text{ кг/(ч} \cdot m^2)]$ [5] С учетом σ_s получим площадь зеркала испарения:

$$S_{\rm M} = W/\sigma_{\rm s} = 944,9/150 = 6,3 {\rm m}^2.$$

Диаметр испарителя

$$D_{\mu} = \sqrt{4S_{\mu}/\pi} = \sqrt{4 \cdot 6.3/3.14} = 2.8$$
 M.

Диаметр сепарационного пространства можно определить на основе допустимой скорости пара ($w_{доп}$), рассчитываемой по уравнению [2]:

$$w_{non} = \sqrt[3]{4,26/\rho_n} = \sqrt[3]{4,26/0,0117} = 7,14 \text{ m/c}.$$

Принимая скорость пара на 20% меньше допустимой, получим диаметр сепарационной части:

$$D_{\rm c} = \sqrt{4 \, W / \left(3600 \rho_{\rm n} w_{\rm gon} 0.8 \pi\right)} = \sqrt{944.9 \cdot 4 / \left(3600 \cdot 0.0117 \cdot 7.14 \cdot 0.8 \cdot 3.14\right)} = 2.24 \, \, {\rm M}.$$

Для упрощения конструкции аппарата примем диаметры испарителя и сепаратора равными: $D_{\mu} = D_{c} = 2,8$ м.

Объем парового пространства испарителя находят, зная напряжение парового пространства, являющееся функцией от давления в испарителе. По графику $\sigma_v = f(P_u)$, приведенному в [5], получим: $\sigma_v = 4500 \text{ y}^{-1}$

Объем парового пространства

$$V = W/(\rho_n \sigma_v) = 944, 9/(0,0117 \cdot 4500) = 17,94 \text{ M}^3.$$

Высота сепарационной части испарителя

$$H_{\rm c} = V/(0.785D_{\rm H}^2) = 17.94/(0.785\cdot 2.8^2) = 2.8$$
 M.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Веригин А. Н., Щупляк И. А., Михалев М. Ф. Кристаллизация в дисперсных системах. Инженерные методы расчета. Л.: Химия, 1986. 248 с.
- Пономаренко В. Г., Ткаченко К. П., Курлянд Ю. А. Кристаллизация в псевдоожиженном слое. Киев: Техника, 1972. 131 с.
 Лурье Ю. Ю. Справочник по аналитической химии. М.: Химия, 1979. 480 с.
- 4. Касаткин А. Г. Основные процессы и аппараты химической технологии. 9-е изд. М.: Химия, 1973. 750 c.
- 5. Плановский А. Н., Рамм В. М., Каган С. З. Процессы и аппараты химической технологии. М.: Химия, 1968. 848 с.

ГЛАВА П

РАСЧЕТ УСТАНОВОК МЕМБРАННОГО РАЗДЕЛЕНИЯ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- F поверхность мембраны;
- G удельная производительность мембраны;
- L расход жидкости или газа;
- Δ*H* теплота гидратации иона;
 - концентрация растворенного вещества в процессах разделения жидких растворов и концентрация лучше проникающего компонента в процессах разделения газов;
 - идеальный коэффициент разделения;
 - л осмотическое давление;
 - ф наблюдаемая селективность мембраны;
- фи истинная селективность мембраны.

введение

Среди мембранных методов разделения жидких смесей важное место занимают обратный осмос и ультрафильтрация [1—3]. В последние годы их начали применять для опреснения соленых вод, очистки сточных вод, получения воды повышенного качества, концентрирования технологических растворов в химической, пищевой, микробиологической и других отраслях промышленности. Обратный осмос и ультрафильтрация основаны на фильтровании растворов под давлением, превышающим осмотическое, через полупроницаемые мембраны, пропускающие растворитель, но задерживающие растворенные вещества (низкомолекулярные при обратном осмосе и высокомолекулярные при ультрафильтрации). Разделение проходит при температуре окружающей среды без фазовых превращений, поэтому затраты энергии значительно меньше, чем в большинстве других методов разделения (таких как ректнфикация, кристаллизация, выпаривание и др.). Малая энергоемкость и сравнительная простота аппаратурного оформления обеспечивают высокую экономическую эффективность указанных процессов.

При проведении обратного осмоса и ультрафильтрации получают два раствора: один (*peтант, или концентрат*) обогащен растворенными веществами, другой (*пермеат, или фильтрат*) обеднен ими. Если каждый из этих растворов является готовым продуктом (например, концентрат — технологический раствор заданной концентрации, а пермеат — чистая вода, пригодная для использования на производстве), обратный осмос или ультрафильтрация может быть единственным массообменным процессом в схеме разделения. Однако на практике чаще встречаются случаи, когда концентрат должен подвергаться более значительному концентрированию, чем может обеспечить обратный осмос или ультрафильтрация, либо пермеат требует более глубокой очистки.

Поэтому наибольший интерес при выполнении курсового проекта представляют комплексные схемы, включающие наряду с обратным осмосом и ультрафильтрацией другие процессы разделения (например, выпаривание, ионный обмен). В данной главе рассматривается методика расчета мембранных процессов, поскольку вопросы расчета остальных процессов, входящих в комплексные схемы, подробно освещены в других разделах пособия.

Процесс мембранного разделения газов в настоящее время используют для решения ограниченного числа задач, что связано с необходимостью получения в каждом конкретном случае полупроницаемой мембраны, обладающей высокой селективностью и проницаемостью по компонентам данной смеси. Наиболее изучены следующие процессы мембранного разделения газов: получение воздуха, обогащенного кислородом; получение азота; концентрирование водорода продувочных газов синтеза аммиака и нефтепродуктов; выделение гелия, диоксида углерода и сероводорода из природных газов; получение и поддержание состава газовой среды, обеспечивающего длительную сохранность овощей и фруктов.

Вопросы расчета мембранного газоразделения разработаны недостаточно. Частично они отражены в монографиях [1, 2]. Приведенная в настоящем пособии методика рекомендуется для ориентировочных расчетов. Следует заметить, однако, что она может оказаться весьма полезной при выполнении технико-экономического сравнения мембранного разделения с альтернативными методами разделения газовых смесей.

11.1. УСТАНОВКА ОБРАТНОГО ОСМОСА

Здесь рассматривается технологическая схема концентрирования растворов, в которой основным узлом является установка обратного осмоса. Ее использование позволяет существенно снизить общие затраты на процесс концентрирования, поскольку большая часть воды удаляется этим высокоэкономичным методом и лишь малая часть — сравнительно дорогим методом (выпариванием).

Технологическая схема установки представлена на рис. 11.1. Исходный раствор неорганической соли из емкости 1 подается насосом 2 на песочный фильтр 3, где очищается от взвесей твердых частиц. Далее раствор насосом высокого давления 4 подается в аппараты обратного осмоса 5, где его концентрация повышается в песколько раз. Концентрат подогревается в теплообменнике 6 и направляется для окончательного концентрирования в выпарной аппарат 7, работающий под избыточным давлением. (В случае больших производительностей целесообразно для экономии греющего пара использовать многокорпусную выпарную установку.) Упаренный раствор стекает в емкость 8. Пермеат из аппаратов обратного осмоса возвращается для использования на производстве либо сбрасывается в каналнзацию, в зависимости от его качества. Вторнчный пар из выпарного аппарата 7 направляется для обогрева других производственных аппаратов, в том числе теплообменника 6. (В схеме может быть предусмотрена система вентилей для отключения мембранных аппаратов, вышедших из строя, и их замены без прекращения работы установки.)

Задание на проектирование. Спроектировать установку для концентрирования 5,56 кг/с водного раствора CaCl₂ от концентрации 0,8 % до 30 % (масс.). Первичное концентрирование провести обратным осмосом, окончательное — выпариванием. Потери соли с пермеатом не должны превышать 10 % от ее количества, содержащегося в исходном растворе.

11.1.1. Степень концентрирования на ступени обратного осмоса

При концентрировании разбавленных растворов обратный осмос экономичнее выпаривания. Однако начиная с концентраций растворенных веществ 0,2—0,4 моль/л воды, характеристики обратного осмоса начинают ухудшаться: становится существенным снижение удельной производительности мембран и начинает уменьшаться их селективность, которая для разбавленных растворов (при концентрациях не менее 2.10⁻⁴ моль/л)

Рис. 11.1. Технологическая схема установки для концентрирования растворов с применением обратного осмоса:

I — емкость для исходного раствора; 2 — насос низкого давления; 3 — фильтр; 4 — насос высокого давления; 5 — аппараты обратного осмоса; 6 — теплообменник; 7 — выпарной аппарат; 8 — емкость для упареиного раствора

320

остается примерно постоянной. Это приводит к увеличению необходимой поверхности мембран и ухудшению качества пермеата, что снижает экономичность обратного осмоса. Поэтому примем концентрацию 0,3 моль/л воды в качестве конечной для ступени обратного осмоса. (Наиболее правильный путь — определять эту коицентрацию на основе техпико-экономических расчетов.)

С помощью данных, приведенных в Приложении 11.1, находим, что выбранное значение соответствует концентрации 3,2 % (масс.) Таким образом, в аппаратах обратного осмоса раствор концентрируется от начальной концентрации $x_{1*}=0,8$ % (масс.) до конечной $x_{1*}=3,2$ % (масс.). Степень концентрирования $K=x_{1*}/x_{1*}=3,2/0,8=4$.

11.1.2. Выбор рабочей температуры и перепада давления через мембрану

С повышением температуры разделяемого раствора селективноеть мембран изменяется мало, а удельная производительность увеличивается в первом приближении обратно пропорционально вязкости пермеата (в том диапазоне температур, где мембраны не разрушаются от термических воздействий). Однако повышением температуры возрастает скорость гидролиза полимерных мембран и сокращается срок их службы. Учитывая это, а также то, что использование теплообменников усложняет и удорожает процесс, обратный осмос целесообразно проводить при температуре окружающей среды (обычно 20—25 °C). В тех случаях, когда технологический раствор, подвергаемый разделению, уже имеет повышенную температуру, экономически оправдапа работа и при температурах выше 25 °C.

С увеличением перепада рабочего давлепия через мембрану возрастает движущая сила обратного осмоса и увеличивается удельная производительность мембран. Однако при высоких давлениях полимерные мембраны подвергаются уплотнению, которое при определенном давлении, зависящем от структуры мембраны, может иейтрализовать эффект, связанный с повышением движущей силы. Кроме того, при высоких давлениях мембраны быстрее загрязняются взвешенными в растворе микрочастицами, поскольку в этих условиях загрязняющим частицам легче внедриться в поры мембраны, а на поверхности мембраны образуется более плотный осадок задержанных микрочастиц. Практика применения обратного осмоса показывает, что в условиях длительной эксплуатации оптимальный перепад давления для полимерных плоских мембран составляет 5—6 МПа, а для мембран в виде полых волокон — 2—3 МПа.

Выбираем $t = 25 \, ^{\circ}\text{C}, \, \Delta p = 5 \, \text{M} \Pi a.$

11.1.3. Выбор мембраны

При выборе мембраны следует исходить из того, что она должна обладать максимальной удельной производительностью при селективности, обеспечивающей выполнение требований к качеству пермеата (соответствие санитарным нормам или нормам на техническую воду, допустимым потерям растворенного вещества и т. п.). Кроме того, мембрана должна обладать высокой химической стойкостью по отношению к разделяемому раствору.

При работе на нейтральных растворах наибольшее распространение получили ацетатцеллюлозные мембраны, которые характеризуются хорошими разделительными свойствами, но не являются химически стойкими в щелочных и сильнокислых средах (рабочий диапазон 3 < pH < 8). Поскольку растворы CaCl₂ укладываются в этот диапазон, последующий выбор проводим из ацетатцеллюлозных мембран.

Предварительно проводим подбор мембраны по истинной селективности φ_{ii} , от которой затем следует перейти к наблюдаемой φ с учетом концентрационной поляризации в реальных мембранных аппаратах [3]. Истинная селективность $\varphi_{ii} = (x_3 - x_2)/x_3$, а наблюдаемая $\varphi = (x_1 - x_2)/x_1$ (где x_1 , x_2 и x_3 — концентрация соли в произвольном сечении аппарата соответственно в объеме разделяемого раствора, в пермеате и у поверх ности мембраны со стороны разделяемого раствора). Истинную селективность мембран по отношению к сильным электролитам можно рассчитать по формуле

$$lg (1 - \varphi_{\rm H}) = a - b lg (\Delta H_{\rm cr} / Z_{\rm H}), \qquad (11.1)$$

где *а* и *b* — константы для данной мембраны при определенных давлении и температуре; ΔH_{cr} — среднее геометрическое значение теплот гидратации ионов, образующих соль; Z_{M} — валентность иона с меньшей теплотой гидратации.

Формула (11.1) с высокой точностью применима в диапазоне концентраций от $2 \cdot 10^{-4}$ до $2 \cdot 10^{-1}$ моль/л и приближенно — до концентрации $4 \cdot 10^{-4}$ моль/л.

Ниже представлены характеристики ацетатцеллюлозных мембран для обратного осмоса, выпускаемых в СССР (характеристики установлены при перепаде рабочего давления через мембрану $\Delta p = 5$ МПа и рабочей температуре t = 25 °C, что соответствует выбранным нами рабочим параметрам; в качестве удельной производительности по воде указаны средние значения за длительный период эксплуатации; значения констант a и b отвечают размерности ΔH в к Λ ж/моль):

Марка мембраны	Удельная произво- дительность по воде $G_0 \cdot 10^3$, кг/ (м ² · c)	Константы уравнения (11.1)	
		a	b
ΜΓΑ-100	1,4	6,70	3,215
МГА-95	2,3	3,47	1,844
ΜΓΑ-90	3,0	2,67	1,420
ΜΓΑ-80	4,9	1,00	0,625

Значения теплот гидратации ионов, необходимые для расчета по уравнению (11.1), приведены в Приложении 11.2.

Для рассматриваемого случая $\Delta H_{Ca^{2+}} = 1616 \ \kappa \mbox{Д} \mbox{ж}/\mbox{моль}, \ \Delta H_{Cl^-} = 352 \ \kappa \mbox{Д} \mbox{ж}/\mbox{моль}, \ Z_{m} = Z_{Cl^-} = 1.$ Тогда

 $\Delta H_{\rm c} = \sqrt[3]{1616 \cdot 352 \cdot 352} = 584$ кДж/моль.

Рассчитаем истинную селективность для мембраны МГА-100:

$$lg (1 - \varphi_{ii}) = 6,70 - 3,215 lg 584 = \overline{3},820;$$
$$1 - \varphi_{ii} = 0,0066; \qquad \varphi_{ii} = 0,993.$$

Аналогичным образом определим истинную селективность для остальных мембран. Получим:

Приняв в первом приближении, что наблюдаемая селективность равна истинной, определим среднюю концентрацию x2 растворенного вещества в пермеате по формуле

$$\overline{x}_2 = x_{1s} (1 - K^{-(1-q)/q}) / (1 - K^{-1/q}).$$
(11.2)

Расчет начнем с наиболее производительной мембраны МГА-80:

 $\bar{x}_2 = 0,008(1 - 4^{-(1 - 0.814)/0.814})/(1 - 4^{-1/0.814}) = 0,0028$ кг соли/кг раствора.

Расход пермеата Ln найдем по формуле

$$L_{n} = L_{n} (1 - K^{-1/\eta}), \qquad (11.3)$$

где L_{II} — расход исходного раствора.

Тогда

$$L_n = 5,56(1 - 4^{-1/0.814}) = 4,55 \text{ kr/c}.$$

так Расход соли с исходным раствором

$$L_{\rm H} x_{1\,\rm H} = 5,56 \cdot 0,008 = 0,0445 \, {\rm kr/c}.$$

Потери соли с пермеатом

 $L_n \bar{x}_2 = 4,55 \cdot 0,0028 = 0,0128 \text{ Kr/c},$

что в процентах от количества, содержащегося в исходном растворе, составит: $0.0128 \times 100/0.0445 = 28.7$ %.

Полученное значение больше допустимого (10 %), поэтому рассмотрим следующую по удельной производительности мембрану — МГА-90:

 $\overline{x}_2 = 0.008(1 - 4^{-(1 - 0.945)/0.945})/(1 - 4^{-1/0.945}) = 0.000806$ кг соли/кг раствора;

 $L_{\rm H} = 5,56(1-4^{-1/0.945}) = 4,28 \text{ kr/c};$

 $L_{n}\bar{x}_{2} = 4,28 \cdot 0,000806 = 0,00345 \text{ kr/c}.$

Потери соли в процентах от количества, содержащегося в исходном растворе: 0,00345 · 100/0,0445 = 7,75 %.

Это значение находится в пределах допустимого, поэтому выбираем для дальнейших расчетов мембрану МГА-90, имеющую селективность по CaCl₂ $\varphi_{\rm H} = 0.945$ и удельную производительность по воде $G_0 = 3.0 \cdot 10^{-3}$ кг/(м²·с).

11.1.4. Приближенный расчет рабочей поверхности мембран

Удельная производительность мембран по воде G_в при разделении обратным осмосом водных растворов электролитов в общем случае определяется соотношением

$$G_{\rm s} = c_{\rm s} A_{\rm s} \left[\Delta p + (\pi_3 - \pi_2) \right] / \mu_{\rm n}, \tag{11.4}$$

где $c_{\rm B}$ — доля свободной воды в разделяемом растворе (т. е. воды, не связанной в первичных гидратных оболочках ионов); $A_{\rm B}$ — константа для данной мембраны в определенном диапазоне изменения давления и температуры; $\mu_{\rm n}$ — вязкость пермеата; Δp — перепад рабочего давления через мембрану; π_3 — осмотическое давление разделяемого раствора у поверхности мембраны; π_2 — осмотическое давление пермеата.

При концентрациях электролита, не превышающих 0,4 моль/л воды, можно считать, что удельная производительность по воде равна удельной производительности по пермеату G, доля свободной воды $c_{\rm B} = 1$, вязкость пермеата равна вязкости воды и не меняется в процессе концентрирования раствора.

В этих условиях применимо уравнение

$$G = A \left[\Delta p - (\pi_3 - \pi_2) \right], \tag{11.5}$$

где $A = G_0 / \Delta \rho$ — константа проницаемости мембраны по воде.

В первом приближении пренебрегаем влиянием концентрационной поляризации и будем считать, что осмотическое давление у поверхности мембраны равно осмотическому давлению в объеме разделяемого раствора: $\pi_3 = \pi_1$. Примем также, что осмотическое давление пермеата пренебрежимо мало: $\pi_2 = 0$.

С учетом этих допущений перепишем выражение (11.5) в виде:

$$G = G_0 (1 - \pi_1 / \Delta \rho). \tag{11.6}$$

По данным Приложения 11.1 строим график зависимости осмотического давления от концентрации CaCl₂ (рис. 11.2). По графику находим $\pi_{1\mu} = 0.46$ МПа; $\pi_{1\kappa} = 2.0$ МПа.

Удельная производительность на входе разделяемого раствора в аппараты обратного осмоса и на выходе соответственно равна:

$$G_{\kappa} = G_0 (1 - \pi_{1\kappa} / \Delta \rho) = 3.0 \cdot 10^{-3} (1 - 0.46/5) = 2.7 \cdot 10^{-3} \text{ kr} / (\text{m}^2 \cdot \text{c});$$

$$G_{\kappa} = G_0 (1 - \pi_{1\kappa} / \Delta \rho) = 3.0 \cdot 10^{-3} (1 - 2/5) = 1.8 \cdot 10^{-3} \text{ kr} / (\text{m}^2 \cdot \text{c}).$$

Рис. 11.2. Зависимость осмотического давления водного раствора CaCl₂ от его концентрации при температуре 25 °C

Рас. 11.3. Схема устройства аппарата рулонного типа:

I — пакидное кольцо; 2 упорное кольцо; 3 — крышка; 4 — корпус; 5 — решетка; 6 — трубка для отвода пермеата; 7 — резиновое кольцо; 8 – рулонный модуль, 9 резиновая манжета; 10 — резиновое кольцо; 11 — мембраны, 12 — сетка-сспаратор; 13 — дренажный слой

В первом приближении принимаем, что средняя удельная производительность мембран может быть выражена как средняя арифметическая величина:

$$G = (G_{\mu} + G_{\kappa})/2 = (2.7 + 1.8) 10^{-3}/2 = 2.25 \cdot 10^{-3} \text{ kr}/(\text{m}^2 \cdot \text{c}).$$

Тогда рабочая поверхность мембран составит

$$F = L_{\rm e}/G = 4.28/(2.25 \cdot 10^{-3}) = 1900 \text{ m}^3$$

11.1.5. Выбор аппарата и определение его основных характеристик

Среди мембранных аппаратов наиболее распространены аппараты с рулонными (спиральными) фильтрующими элементами, с плоскокамерными фильтрующими элементами (типа «фильтр-пресс»), с трубчатыми фильтрующими элементами, с мембранами в виде полых волокон. В установках большой производительности целесообразно использовать аппараты первого или четвертого типа как наиболее компактные (ввиду высокой удельной поверхности мембран).

Ориентируясь на отечественную аппаратуру, выберем аппараты рулонного типа. Среди нпх наиболее перспективны аппараты, каждый модуль которых состоит из нескольких совместно навитых рулонных фильтрующих элементов (РФЭ). Такая конструкция позволяет уменьшить гидравлическое сопротивление дренажа потоку пермеата благодаря тому, что путь, проходимый пермеатом в дренаже, обратно пропорционален
числу-еовместно навитых РФЭ. Выберем аппарат с РФЭ типа ЭРО-Э-6,5/900, выпускаемыми серийно отечественной промышленностью.

Аппарат (см. рис. 11.3) состоит из корпуса 4, выполиенного в виде трубы из нержавеющей стали, в которой размещается от одного до четырех рулонных модулей 8. Модуль формируется павивкой пяти мембранных пакетов на пермеатоотводящую трубку 6. Пакет образуют две мембраны 11, между которыми расположен дренажный слой 13. Мембранный, пакет герметично соединен с пермеатоотводящей трубкой, кромки его также герметизируют, чтобы предотвратить смешение разделяемого раствора с пермеатом. Для создания необходимого зазора между мембранными пакетами при навивке модуля вкладывают крупноячеистую сетку-сепаратор 12, благодаря чему образуются напорные каналы для прохождения разделяемого раствора.

Герметизация пермеатоотводящих трубок в аппарате обеспечивается резиновыми кольцами 7. Герметизация корпуса осуществляется с помощью крышек 3, резиновых колец 10 и упорных разрезных колец 2, помещаемых в прорези накидного кольца 1, привариваемого к корпусу 4.

Исходный раствор через штуцер поступает в аппарат и проходит через витки модуля (напорные каналы) в осевом направлении. Последовательно проходя все модули, раствор концентрируется и удаляется из аппарата через штуцер отвода концентрата. Прошедший через мембраны пермеат транспортируется по дренажному слою к пермеатоотводящей трубке, проходит через отверстия в ее стенке и внутри трубки движется к выходному штуцеру.

С целью предотвращения телескопического эффекта (возникающего вследствие разности давлений у торцов модулей и приводящего к сдвигу слоев навнвки в осевом направлении) у заднего торца модуля устанавливают антителескопическую решетку 5, в которую он упирается.

Байпасирование жидкости в аппарате предотвращено резиновой манжетой 9, перекрывающей зазор между рулонным модулем и внутренней стенкой корпуса.

Основные характеристики аппарата ЭРО-Э-6,5/900 приведены ниже:

Длина рулонного модуля <i>I</i> _м , м	0,90
Длина пакета In, м	0,95
Ширина пакета b _n , м	0,83
Высота напорного канала, равная толщине сетки-	$5 \cdot 10^{-4}$
сепаратора б, м	
Толщина дренажной сеткн δ ₁ , м	$3 \cdot 10^{-4}$
Толщина подложки δι, м	$1 \cdot 10^{-4}$
Толщина мембраны δ ₂ , м	1.10-4
Число элементов в модуле и,	5
Материал корпуса	Сталь X18H10T
Диаметр корпуса, мм	130×5
Толщина крышки, м	$2,5 \cdot 10^{-2}$
Диаметр крышки, м	0,108

Определим параметры аппарата, необходимые для расчетов.

Поверхность мембран в одном элементе определяется произведением 21_nb_n. Учи тывая, что часть этой поверхности используется для склеивания пакетов (примерно на длине 0,05 м) и не участвует в процессе обратного осмоса, рабочую поверхность мембран в одном элементе *F*, определим по соотношению

$$F_{y} = 2(l_{u} - 0.05) (b_{u} - 2 \cdot 0.05) = 2(0.95 - 0.05) (0.83 - 0.1) = 1.315 \text{ m}^{2}.$$

Рабочая поверхность мембран в одном модуле F_{M} равна произведению F_{3} на числс элементов в модуле:

$$F_{\rm M} = F_{\rm p} n_{\rm p} = 1,315 \cdot 5 = 6,57 \,{\rm M}^2$$
.

Примем, что аппарат состоит из двух модулей. Тогда рабочая поверхность мембран в аппарате

$$F_{\star} = 2F_{\star} = 13.14 \text{ m}^2 \approx 13 \text{ m}^2$$
.

Сечение аппарата, по которому проходит разделяемый раствор

$$S_c = n_s \delta_c (l_n - 0.05) = 5 \cdot 5 \cdot 10^{-4} \cdot 0.9 = 2.25 \cdot 10^{-3} \text{ m}^2.$$

Общее число аппаратов в мембранной установке

$$n = F/F_{\rm s} = 1900/13 = 146.$$

11.1.6. Секционирование аппаратов в установке

Проведем секционирование аппаратов в установке, т. е. определим число последовательно соединенных секций, в каждой из которых разделяемый раствор подается одновременно (параллельно) во все аппараты.

Необходимость секционирования обусловлена тем, что при параллельном соединении всех аппаратов велико отрицательное влияние концентрационной поляризации, а при последовательном соединении чрезмерно велико гидравлическое сопротивление потоку разделяемого раствора.

При секционировании будем исходить из условий примерного равенства средних скоростей разделяемого раствора в каждом аппарате каждой секции и постоянства снижения расхода по длине аппарата:

$$\overline{L_i} = (L_{\mathrm{w}\,i} + L_{\mathrm{w}\,i})/2n_i = \mathrm{const}; \tag{11.7}$$

$$q = L_{\mathrm{H}i} / L_{\mathrm{K}i} = \mathrm{const}, \tag{11.8}$$

где L_и, L_к — соответственно начальный и конечный расход разделяемого раствора в *i*-й секции, n_i — число аппаратов в *i*-й секции.

Для упрошения расчетов в выражении (11.7) вместо средней скорости используем средний массовый расход разделяемого раствора в каждом аппарате *i*-й секции $\overline{L_i}$, поскольку плотность раствора в процессе концентрирования меняется незначительно, а сечение аппаратов постоянно.

Представим расход раствора на выходе из секции как разницу между расходом раствора на входе в секцию и расходом пермеата в секции (при этом расход пермеата в каждом аппарате L_{па} будем считать постоянным, равным расходу при средней удельной производительности мембран):

$$L_{Ri} = L_{Ri} - L_{Ra} n_i. \tag{11.9}$$

Подставляя в соотношение (11.9) значение $L_{\kappa i}$ из выражения (11.8) и решая преобразованное уравнение относительно числа аппаратов в *i*-й секции, получим:

$$n_i = L_{\text{H}\,i} \left(1 - 1/q \right) L_{\text{na}}. \tag{11.10}$$

Выражение (11.10) определяет число аппаратов в каждой секции, отвечающее принятому значению q.

Начальный расход разделяемого раствора в каждой секции, начиная со второй, равен конечному расходу в предыдущей секции:

$$L_{\rm H\,i} = L_{\rm K(i-1)}.\tag{11.11}$$

Отсюда с учетом (11.8), зная расход исходного раствора L_н, получим:

$$L_{\rm H,i} = L_{\rm H(i-1)}/q = L_{\rm H}/q^{i-1} \tag{11.12}$$

Преобразуем выражение (11.10) с учетом соотношения (11.12):

$$n_i = L_{\rm m} \left(1 - 1/q \right) / \left(q^{i-1} L_{\rm ma} \right). \tag{11.13}$$

Тогда для первой секции

$$n_1 = L_{\rm H} \left(1 - 1/q \right) / L_{\rm na.} \tag{11.14}$$

Сравнивая соотношения (11.13) и (11.14), можно увидеть, что

$$n_i = n_1 / q^{i-1} \tag{11.15}$$

qii

Проверим справедливость условия (11.7), т. е. соблюдение постоннства среднего расхода (скорости) в каждом аппарате каждой секции:

$$\overline{L_{i}} = \frac{L_{\kappa i} + L_{\kappa i}}{2n_{i}} = \frac{L_{\kappa}/q^{i-1} + L_{\kappa}/(q^{i-1}/q)}{2L_{\mu}(1 - 1/q)/(q^{i-1}L_{\mu a})} = \frac{L_{\pi a}(q+1)}{2(q-1)}.$$
(11.16)

Отсюда видно, что с учетом принятых допущений условие (11.7) соблюдается. Для проведения операции секционирования необходимо выбрать допустимое снижение расхода по длине аппарата q. Быстрое снижение расхода разделяемого раствора при его течении по аппарату (вследствие образования пермеата) может приводить к осаждению на поверхности мембран взвешенных микрочастиц, что ухудшает характеристики разделения. С другой стороны, небольшое изменение расхода по длине аппарата возможно лишь при последовательном соединении всех аппаратов или же при чрезмерно большом числе секций, что приведет к значительному гидравлическому сопротивлению. Поэтому выбор величины q должен являться задачей технико-экономического расчета. Упрощенно значение q можно найти, исходя из оптимального расхода разделяемого раствора, подаваемого в аппарат с модулями определенного типа. При этом под оптимальным понимают такой расход, который обеспечивает прнемлемое снижение концентрационной поляризации при относительно небольшом гидравлическом сопротивлении. Для модулей ЭРО-Э-6,5/900 экспериментально установлено, что оптимальный расход составляет 1000 л/ч (0,278 кг/с).

Тогда число аппаратов в первой секции можно найти, разделив расход исходного раствора на значение оптимального расхода для каждого аппарата: n₁=5,56/0,278=20.

Из формулы (11.14) найдем значение q, соответствующее данному значению n₁:

$$1-1/q=n_1L_{n_B}/L_{n_B}$$

откуда

$$q = 1/(1 - n_1 L_{na}/L_{H}) = 1/(1 - n_1 \overline{GF_a}/L_{H}) = 1/(1 - 20 \cdot 2,25 \cdot 10^{-3} \cdot 13/5,56) = 1,117$$

Далее, используя это значение q, по формуле (11.15) определим число аппаратов в последующих секциях:

$n_2 = 20/1, 117 = 17, 9 = 18;$	$n_3 = 20/1, 117^2 = 16, 1 = 16;$
$n_4 = 20/1, 117^3 = 14, 4 = 14;$	$n_5 = 20/1, 117^4 = 12, 9 = 13,$
$n_6 = 20/1, 117^5 = 11, 5 = 12;$	$n_7 = 20/1, 117^6 = 10, 3 = 10;$
$n_{\rm A} = 20/1,117^7 = 9,3 = 9;$	$n_9 = 20/1, 117^8 = 8.3 = 8;$
$n_{10} = 20/1.117^9 = 7.4 = 7$	$n_{11} = 20/1.117^{10} = 6.7 = 7$
$n_{12} = 20/1, 117^{11} = 6;$	$n_{13} = 20/1.117^{12} = 5.3 = 5.3$
	$n_{14} = 20/1, 117^{13} = 4, 8 = 5.$

Суммируя число аппаратов, замечаем, что

$$\sum_{i=1}^{13} n_i = 145, \quad \mathbf{a} \quad \sum_{i=1}^{14} n_i = 150,$$

т. е. в случае 13 секций недостает одного аппарата до общего числа 146, а в случае 14 секций появляется четыре избыточных аппарата. Ограничимся 13 секциями, добавив один аппарат к первой секции. (Поскольку в первой секции установлено больше всего аппаратов, то изменение их числа на единицу мало отразится на скоростях потоков. В общем случае, если возникнет необходимость перераспределения двух и более аппаратов, следует добавлять или убавлять их пропорционально рассчитанному числу аппаратов в секциях.)

На основании полученных данных имеем:

Секция	1	2	3	4	.5	6	7	8	9	10	11	12	13
Число аппара-	21	18	16	14	13	12	10	9	8	7	7	6	5
тов в секции													

11.1.7. Расчет наблюдаемой селективности мембран

Наблюдаемую селективность рассчитываем по формуле:

$$\lg \frac{1-\varphi}{\varphi} = \frac{U}{2,3\beta} + \lg \frac{1-\varphi_{\rm H}}{\varphi_{\rm H}}, \qquad (11.17)$$

где U — скорость движення раствора по направлению к мембране, вызванного отводом пермеата; β — коэффициент массоотдачи растворенного вещества от поверхности мембраны к ядру потока разделяемого раствора.

Коэффициент массоотдачи β определяем из диффузионного критерия Нуссельта Nu' При расчетах будем считать канал, по которому движется разделяемый раствор, полым, т. е. пренебрежем влиянием на массообмен сепарирующей сетки. При этом мы вносим некоторую погрешность в сторону занижения наблюдаемой селективности, что обеспечивает определенный запас селективности на возможные дефекты в мембране.

Проведем расчеты при средних значениях рабочих параметров установки.

Средняя удельная производительность $\overline{G} = 2,25 \cdot 10^{-3}$ кг/(м² · c); средняя концентрация

$$\vec{x}_1 = (x_{1,8} + x_{1,8})/2 = (0.8 + 3.2)/2 = 2\%$$
 (macc.).

Средняя линейная скорость движения разделяемого раствора в каналах мембранных аппаратов

$$\overline{w} = (w_{\mu} + w_{\kappa})/2 = [L_{\mu}/(\rho_{\mu}S_{c}n_{1}) + L_{\kappa}/(\rho_{\kappa}S_{c}n_{\kappa})]/2,$$

где L_к — расход концентрата. Подставив значения, получим:

$$\overline{\omega} = [5,56/(1004 \cdot 2,25 \cdot 10^{-3} \cdot 21) + 1,28/(1023 \cdot 2,25 \cdot 10^{-3} \cdot 5)]/2 = 0,114 \text{ m/c}.$$

Значения плотности ρ и нужные для последующих расчетов значения коэффициентов кинематической вязкости ν и диффузии D находим, пользуясь данными Приложения 11.1.

Определим режим течения раствора. Эквивалентный диаметр кольцевого канала

$$d_{s} = 2\delta_{c} = 2 \cdot 5 \cdot 10^{-4} = 1 \cdot 10^{-3}$$
 м

Критерий Рейнольдса

$$\operatorname{Re} = \overline{w} d_{3} / v = 0.114 \cdot 1 \cdot 10^{-3} / (0.934 \cdot 10^{-6}) = 122$$

Таким образом, в аппаратах ламинарный режим течения разделяемого раствора. Для нахождения среднего по длине канала значения Nu' в случае ламинарного потока в щелевых и кольцевых каналах можно использовать критериальное уравнение

$$Nu' = 1.67 \operatorname{Re}^{0.34} (\operatorname{Pr}')^{0.33} (d_{2}/l)^{0.3}, \qquad (11.18)$$

где Рг' = v/D — диффузионный критерий Прандтля; *l* — длина канала, равная ширине пакета.

Критериальные уравнения для расчета Nu' при других условиях приведены в монографии [2]

Подставив численные значения, получим:

$$Pr' = 0.934 \cdot 10^{-6} / (1.281 \cdot 10^{-9}) = 729;$$

Nu' = 1.67 \cdot 122⁶ \cdot 31 \cdot 729⁶ \cdot 33 \cdot (1 \cdot 10^{-3} / 0.83)⁶ \cdot 3 = 10.25.

Коэффициент массоотдачи

$$b = Nu'D/d_5 = 10,25 \cdot 1,281 \cdot 10^{-9}/(1 \cdot 10^{-3}) = 1,31 \cdot 10^{-5} \text{ m/c}.$$

Поперечный поток

$$U = \overline{G}/\rho = 2.25 \cdot 10^{-3}/1014 = 2.219 \cdot 10^{-6} \text{ m/c}.$$

Теперь рассчитаем наблюдаемую селективность по формуле (11.17):

$$\lg \frac{1-\varphi}{\varphi} = \frac{2,219 \cdot 10^{-6}}{2,3 \cdot 1,31 \cdot 10^{-5}} + \lg \frac{1-0,945}{0,945},$$

откуда φ=0,932.

Проверим пригодность выбранной мембраны. Для этого по формуле (11.2) определим концентрацию соли в пермеате, используя полученное значение наблюдаемой селективности:

 $\overline{x}_2 = 0.008(1 - 4^{-(1-0.932)/0.932}) / (1 - 4^{-i/0.932}) = 0.000994$ кг соли/кг раствора.

По формуле (11.3) найдем расход пермеата:

$$L_{\rm n} = 5,56(1-4^{-1/0.932}) = 4,3 \text{ kr/c}.$$

Потери соли с пермеатом

 $L_{0}\bar{x}_{2} = 4,3 \cdot 0,000994 = 0.00427 \text{ Kr/c},$

что в процентах от исходного содержания составляет 0,00427 · 100/0,0445 = 9,6 %. Это значение меньше допустимого (10 %), поэтому нет необходимости перехода к более селективным мембранам.

11.1.8. Уточненный расчет поверхности мембран

Рассчитаем удельную производительность мембран по формуле (11.5) с учетом осмотического давления раствора у поверхности мембраны и пермеата. Необходимые для расчета концентрации x₃ и x₂ найдем следующим путем. Согласно определению,

$$\varphi = (x_1 - x_2)/x_1;$$
 $\varphi_0 = (x_3 - x_2)/x_3.$

Отсюда для каждого поперечного сечения можно записать:

$$x_2 = (1 - \varphi) x_1 = (1 - \varphi_0) x_3;$$
 $x_3 = \frac{x_2}{(1 - \varphi_0)}.$

Рассмотрим два крайних сечения.

Сечение на входе в аппараты первой секции:

$$x_{2\,\mu} = (1-\varphi)x_{1\,\mu} = (1-0.932)0.008 = 0.000544$$
кг соли/кг раствора;
 $x_{3\,\mu} = x_{2\,\mu}/(1-\varphi_{\mu}) = 0.000544/(1-0.945) = 0.00989$ кг соли/кг раствора.

По графику (см. рис. 11.2) находим:

$$\pi_{3\,\mu} = 0.6 \text{ M}\Pi a; \qquad \pi_{2\,\mu} = 0.03 \text{ M}\Pi a;$$

$$G_{\mu} = A \left[\Delta \rho - (\pi_{3\mu} - \pi_{2\mu}) \right] = \frac{G_0}{\Delta \rho} \left[\Delta \rho - (\pi_{3\mu} - \pi_{2\mu}) \right] = G_0 \left[1 - (\pi_{3\mu} - \pi_{2\mu}) / \Delta \rho \right] =$$

$$= 3.0 \cdot 10^{-3} \left[1 - (0.60 - 0.03) / 5 \right] = 2.66 \cdot 10^{-3} \text{ kr} / (\text{m}^2 \cdot \text{c}).$$

Сечение на выходе из аппаратов последней секции:

$$x_{2\kappa} = (1 - \varphi) x_{1\kappa} = (1 - 0.932) 0.032 = 0.00218$$
 кг соли/кг раствора;
 $x_{3\kappa} = x_{2\kappa}/(1 - \varphi_{\kappa}) = 0.002176/(1 - 0.945) = 0.0396$ кг соли/кг раствора;
 $\pi_{3\kappa} = 2.40$ МПа; $\pi_{2\kappa} = 0.12$ МПа;
 $G_{\kappa} = 3.0 \cdot 10^{-3} [1 - (2.40 - 0.12)/5] = 1.63 \cdot 10^{-3}$ кг/(м²·c).

Выразим удельную производительность в виде функции от концентрации раствора по уравнению

$$G = G_0 - cx_1, \tag{11.19}$$

где с — константа для данной системы.

Найдем значение с для крайних сечений:

$$c_{\mu} = (G_0 - G_{\mu}) / x_{1 \mu} = (3,0 - 2,66) \, 10^{-3} / 0,008 = 0,0425;$$

$$c_{\mu} = (G_0 - G_{\mu}) / x_{1 \mu} = (3,0 - 1,63) \, 10^{-3} / 0,032 = 0,0428.$$

Разница между полученными значениями, выраженная в процентах, составляет:

$$(c_{\rm s} - c_{\rm h}) 100/c_{\rm h} = (0.0428 - 0.0425) 100/0.0428 = 0.7 \%$$

Это расхождение невелико, поэтому уравнение (11.19) применимо ко всей установке при использовании среднеарифметического значения с:

$$c = (c_{\mu} + c_{\mu})/2 = (0.0425 + 0.0428)/2 = 0.0426.$$

Тогда удельная производительность $G = 0,003 - 0,0426x_1$. Рабочую поверхность мембран можно определить по формуле

$$F = \frac{L_{\pi} x_{1\pi}^{1/q}}{\Phi} \int_{x_{1\pi}}^{x_{1\pi}} \frac{dx_{1}}{x_{1}^{(1+q)/q}} \frac{dx_{1}}{(G_{0} - cx_{1})}.$$
 (11.20)

Если бы разница между c_{H} и c_{H} превысила 20 %, то уравнение (11.20) нельзя было бы применять во всем диапазоне концентраций. Тогда следовало бы разбить интервал от $x_{1\text{H}}$ до $x_{1\text{K}}$ на несколько частей, найти для каждой части среднее значение \overline{c} и рассчитать рабочую поверхность каждой части отдельно.

Значение интеграла в формуле (11.20) находят методом численного или графического интегрирования. Если селективность $\varphi \ge 0.9$, то с достаточной для практики точностью можно использовать аналитическое решение уравнения (11.20), получаемое при $\varphi = 1$:

$$F = \frac{L_{\mu} x_{1\mu}}{G_0} \left[-\frac{c}{G_0} \ln \frac{(G_0 - c x_{1\kappa}) x_{1\mu}}{(G_0 - c x_{1\mu}) x_{1\kappa}} + \frac{1}{x_{1\mu}} - \frac{1}{x_{1\kappa}} \right]$$
(11.21)

В нашем случае $\phi = 0.9345 > 0.9$, поэтому воспользуемся уравнением (11.21):

$$F = \frac{5.56 \cdot 0.008}{0.003} \left[-\frac{0.0426}{0.003} \ln \frac{(0.003 - 0.0426 \cdot 0.032) 0.008}{(0.003 - 0.0426 \cdot 0.008) 0.032} + \frac{1}{0.008} - \frac{1}{0.032} \right] = 1785 \text{ m}^2$$

Расхождение со значением, полученным в первом приближении, составляет (1900-1785) 100/1785=6.44 %.

Полученная разница не превышает 10 %, поэтому перерасчета не делаем. Если бы расхождение превысило это значение, необходимо было бы заново определить число аппаратов, провести секционирование и расчет наблюдаемой селективности, определить рабочую поверхность мембран и сопоставить ее с полученной в предыдущем расчете.

11.1.9. Расчет гидравлического сопротивления

Гидравлическое сопротивление необходимо рассчитать для определения фактического давления в аппаратах обратного осмоса (знание которого требуется при механических расчетах) и потребного напора насоса.

Развиваемое насосом давление $\Delta p_{\rm H}$ расходуется на создание перепада рабочего давления через мембрану Δp , преодоление гидравлического сопротивления потоку разделяемого раствора в аппаратах $\Delta p_{\rm a}$ и потоку пермеата в дренажах $\Delta p_{\rm a}$, а также на компенсацию потерь давления на трение и местные сопротивления в трубопроводах и арматуре $\Delta p_{\rm n}$ и подъем раствора на определенную геометрическую высоту $\Delta p_{\rm r}$:

$$\Delta p_{\rm H} = \Delta p + \Delta p_{\rm a} + \Delta p_{\rm a} + \Delta p_{\rm a} + \Delta p_{\rm r}. \tag{11.22}$$

Последней составляющей в установках обратного осмоса можно пренебречь ввиду ее малости по сравнению с остальными. Потери на трение и местные сопротивления в трубопроводах и арматуре зависят от компоновки аппаратов и используемой арматуры. Для практических нужд можно приближенно считать, что Δp_n составляет 10% от Δp_a . Таким образом, выражение (11.22) преобразуется к виду:

$$\Delta p_{s} = \Delta p + \Delta p_{a} + \Delta p_{a} + 0, 1 \Delta p_{s}. \tag{11.23}$$

Гидравлическое сопротивление при течении жидкости в каналах, образованных сетками-сепараторами и дренажным слоем, можно определять по формулам

$$\Delta p_{a} = \Delta p_{n k} \zeta_{1}; \qquad (11.24) \qquad \Delta p_{a} = \Delta p_{n k} \zeta_{2}, \qquad (11.25)$$

где $\Delta p_{n,\kappa}$ — гидравлическое сопротивление полых каналов; ζ_1 и ζ_2 — коэффициенты, зависящие от вида сепарирующей сетки и дренажного материала. Обычно $\zeta_1 = 5 - 10$, $\zeta_2 = 100 - 200$. Для рассматриваемых рулонных модулей по экспериментальным данным $\zeta_1 = 5, 6$.

Значение $\Delta p_{n,\kappa}$ определяют на основе общего выражения

$$\Delta p_{\rm n.\kappa} = \lambda \, \frac{l}{d_s} \, \frac{\rho \, \omega^2}{2} \tag{11.26}$$

При ламинарном режиме течения в кольцевых и щелевых каналах $\lambda = 96/{
m Re.}$ Тогда

$$\Delta p_{n,\kappa} = 96 l\rho w^2 / (2 \text{Re} d_3) = 96 v l\rho w^2 / (2 w d_3 d_3) = 48 v \rho l w / d_3^2.$$
(11.27)

Определение Δp_a . Раствор течет от первой до последней секции в каналах кольцевого сечения вдоль оси аппаратов. Общая длина канала l равна произведению числа секций, числа модулей в аппарате и длины пути в модуле, равной ширине мембранного пакета: $l = 13 \cdot 2 \cdot 0.83 = 21.6$ м.

Поскольку скорость, плотность и вязкость разделяемого раствора мало меняются от первой к последней секции, подставим в формулу (11.27) среднеарифметические значения этих параметров на входе в первую секцию и на выходе из последней:

$$\Delta p_{\text{II}.\text{K}} = 48 \cdot 0.934 \cdot 10^{-6} \cdot 1014 \cdot 21, 6 \cdot 0, 114 / (1 \cdot 10^{-6}) = 112\,000\,\text{ITa};$$

$$\Delta p_a = 112\ 000 \cdot 5, 6 = 627\ 000\ 11a.$$

Определение Δ*p_a*. Пермеат проходит в каналах, образованных дренажным слоем, причем его скорость изменяется от нуля на внешней поверхности элемента (спирали) до максимального значения при входе в пермеатоотводящую трубку. Общая длина канала равна длине пакета, а ширина — ширине пакета за вычетом частей, используемых для склеивания.

Поскольку дренажный материал характеризуется значительно более крупными порами, чем материал подложки, его сопротивление во много раз меньше, и можно считать, что пермеат течет только по каналу, образованному дренажной сеткой ($\delta_a = 3 \cdot 10^{-4}$ м)

Эквивалентный диаметр (в пересчете на полый канал) равен: $d_3 = 2\delta_3 = 6 \cdot 10^{-1} \,\mathrm{M}$

Перепад давления в произвольном сечении на участке бесконечно малой длины для полого канала составит:

$$dp = 48v\rho w dl/d_{2}^{2}.$$
 (11.28)

Скорость в произвольном сечении связана с длиной канала следующим образом:

$$w = \frac{G \cdot 2(b_{\rm n} - 2 \cdot 0.05)l}{\rho(b_{\rm n} - 2 \cdot 0.05)\delta_{\rm n}} = \frac{2Gl}{\rho\delta_{\rm n}},$$
 (11.29)

где $b_n = 2 \cdot 0.05$ — ширина канала, представляющая собой ширину мембранного пакета за вычетом части, используемой для склеивания пакетов: $2(b_n = 2 \cdot 0.05)l = paбочая$ поверхность мембраны от внешней поверхности спирали до произвольного сечения на расстоянии l; выражение ($b_n = 2 \cdot 0.05$) $\delta_a = плошадь поперечного сечения канала$ Подставим выражение (11.29) в соотношение (11.28):

$$dp = 48 \frac{v\rho 2Gl}{d_3^2 \rho \delta_a} dl = 96 \frac{vGl}{d_3^2 \delta_a} dl.$$

Учитывая, что $\delta_a = d_a/2$, получим:

$$dp = 192 v G l dl / d_{2}^{3}$$
.

Проинтегрируем левую часть от 0 до $\Delta p_{n.\kappa}$, а правую — от 0 до $(l_n - 0.05)$:

$$\int_{0}^{\Delta p_{n.\kappa}} dp = 192 \frac{\nu G}{d_{3}^{3}} \int_{0}^{(l_{n}-0.05)} l \, dl;$$

$$\Delta p_{n.\kappa} = 192 \frac{\nu G}{d_{3}^{3}} \frac{(l_{n}-0.05)^{2}}{2} = 96 \frac{\nu G (l_{n}-0.05)^{2}}{d_{3}^{3}}.$$
(11.30)

Проведем расчет по формуле (11.30), используя среднеарифметическое значение удельной производительности мембран:

$$\overline{G} = (G_{\text{s}} + G_{\text{s}})/2 = (2.66 \cdot 10^{-3} + 1.63 \cdot 10^{-3})/2 = 2.14 \cdot 10^{-3} \text{ kr/ (m}^2 \cdot \text{c});$$

$$\Delta p_{\text{m.s}} = 96 \cdot 0.9 \cdot 10^{-6} \cdot 2.14 \cdot 10^{-3} (0.95 - 0.05)^2 / (6 \cdot 10^{-4})^3 = 693 \text{ Ta}.$$

Примем $\zeta_2 = 150$. Тогда $\Delta p_a = 693 \cdot 150 = 104\ 000\ \Pi a$.

Определим давление, которое должен развивать насос, по формуле (11.23):

 $\Delta p_{\rm H} = 5 \cdot 10^6 + 0.627 \cdot 10^6 + 0.104 \cdot 10^6 + 0.1 \cdot 0.627 \cdot 10^6 = 5.79 \cdot 10^6 \,\, \Pi {\rm a}.$

Напор насоса (при плотности исходного раствора ρ_n)

$$H = \Delta p_{\rm u} / (\rho_{\rm u}g) = 5.79 \cdot 10^6 / (1004 \cdot 9.81) = 588$$
 M.

На основе полученных данных подбираем насос по методике, изложенной в гл. 1.

11.2. УСТАНОВКА УЛЬТРАФИЛЬТРАЦИИ

В данном разделе рассматривается технологическая схема концентрирования растворов высокомолекулярных соединений (ВМС), в которой основным узлом является установка ультрафильтрации. Концентрирование растворов ВМС путем традиционных методов (например, выпаривания) обычно неэффективно вследствие разрушения ВМС (особенно биохимических препаратов).

Практика проведения процесса ультрафильтрации показывает, что он может проходить в одном из двух режимов: предгелевом и гелевом. В первом случае концентрация у поверхности мембраны ниже концентрации гелеобразования (для полимеров — студнеобразования), во втором — концентрация ВМС достигает такого значения, что на поверхности мембраны образуется слой геля (студня). В настоящее время не существует надежных методов расчета ультрафильтрации в гелевом режиме, которые позволили бы обойтись без постановки экспериментальных исследований. Поэтому в заданиях на проектирование рекомендуется рассматривать ультрафильтрацию разбавленных растворов ВМС, для которых концентрация последних у поверхностн мембраны даже с учетом концентрационной поляризации была бы меньше концентрации гелеобразования.

Ниже рассмотрена ультрафильтрация в предгелевом режиме.

Технологическая схема установки представлена на рис. 11.4. Разбавленный раствор ВМС, содержащий также неорганическую соль, из емкости / пасосом 2 подается на песчаный фильтр 3, где очищается от взвесей твердых частиц. Далее раствор насосом высокого давления 4 перекачнвается в аппарат ультрафильтрации 5, где копцентрируется до заданиой концентрации ВМС. Пермеат собирается в промежуточной емкости 6, откуда пасосом 7 подается в теплообменник 8. Здесь он подогревается и направляется в выпарной аппарат 9, работающий под небольшим избыгочным давлением. В выпарном аппарате концентрация неорганической соли в пермеате доводится зо требуемого значения. Упаренный раствор стекает в емкость 10.

Рис. 11.4. Технологическая схема установки для концентрирования растворов с применением ультрафильтрации:

I — емкость для исходного раствора; 2 — насос; 3 — фильтр; 4 — насос; 5 — аппарат ультрафильтрации; 6 — промежуточная емкость; 7 — насос; 8 — теплообмснник; 9 — выпарной аппарат; 10 — емкость для упаренного раствора

Концентрат из аппарата ультрафильтрации возвращается в технологический процесс. Вторичный пар из выпарного аппарата 9 направляется на обогрев других производственных аппаратов, в том числе теплообменника 8.

Задание на проектирование. Спроектировать установку для концентрирования 0,2 кг/с водного раствора ацилазы от концентрации 0,015 % (масс.) до 0,15 (масс.) В растворе содержится 5,5 % NaCl. Концентрирование ацилазы осуществить ультрафильтрацией. Содержание ацилазы в пермеате не должно превышать 0,003 % (масс.). Пермеат сконцентрировать в выпарном аппарате до концентрации 25 % (масс.) NaCl.

11.2.1. Выбор рабочей температуры и перепада давления через мембрану

Учитывая соображения, изложенные в разд. 11.1.2, а также возможность деструкции ферментов при повышенных температурах, примем в качестве рабочей температуры t=25 °C.

При выборе давления следует наряду с изложенным в разд. 11.1.2 учитывать также, что ввиду малых коэффициентов диффузии ВМС концентрационная поляризация в процессе ультрафильтрации весьма эначительна и может вызывать гелеобразование на мембране даже при обработке разбавленных растворов. Поэтому работа при высоких перепадах рабочего давления (более 0,3 МПа) хотя и обусловливает высокие начальные значения удельной производительности, но для длительной эксплуатации установки оказывается неприемлемой, приводя к резкому снижению удельной производительности во времени по мере нарастания слоя геля на мембране. Эффекты, связанные с уплотнением ультрафильтрационных мембран, также заметно проявляются при давлениях выше 0,3 МПа. С другой стороны, при давлениях ниже 0,1 МПа удельные производительности невысоки, что вызывает необходимость использования аппаратов с излишне большой поверхностью мембран. Поэтому рекомендуется выбирать рабочие давления в диапазоне 0,1—0,3 МПа. Для дальнейших расчетов примем перепад рабочего давления через мембрану $\Delta \rho = 0.2$ МПа.

11.2.2. Выбор мембраны

По причинам, указанным в разд. 11.1.3, будем проводить выбор из ацетатцеллюлозных мембран.

Характеристики некоторых ацетатцеллюлозных ультрафильтрационных мембран, выпускаемых в СССР, полученные при $\Delta p = 0, 1-0, 3$ МПа и t = 20-25 °C, представлены ниже (d_{nop} — средний диаметр пор; A — константа проницаемости по чистой воде):

Тип мембраны	d _{пор} , нм	А · 10², кг/ (м² · с · МПа)	Тил мембраны	<i>d</i> _{пор} , нм	А · 10², кг/ (м² · с · МПа)
УАМ-30	3	0,15	УАМ-175	17,5	6,5
YAM -50	5	0,33	УАМ-200	20	7,5
УАМ-100	10	1,7	УАМ- 30 0	30	13,4
YAM-150	15	3,7	У АМ -500	45	37

Рассчитаем истинную селективность мембран $\varphi_{\rm H}$ по ацилазе, используя приведенные данные о размерах пор в мембранах и представленные ниже размеры молекул некоторых ВМС (данные можно использовать при t = 20 - 25 °C):

Наименование ВМС	Молекулярная масса	Диаметр молекулы d _{нол} , нм	Коэффициент диффузии в воде D·10 ¹¹ , м²/с
Яичный альбумин	45000	4.9	7.8
Сывороточный альбумин	66000	6,4	6,1
Ацилаза (фермент)	76500	7,0	7,0
ү ₂ -6-Глобулин	160000	9,5	3,8
Каталаза (фермент)	246000	10,4	4,1

Обратимся к графику зависимости селективности мембран по глобулярным BMC от соотношения диаметров молекул и пор в мембранах (рис. 11.5). График построен для интервала $d_{\text{мол}}/d_{\text{пор}} > 0,5$, в котором селективность имеет высокие значения, обычно удовлетворяющие требованиям к качеству разделения.

Определим отношение $d_{\text{мол}}/d_{\text{пор}}$ для приведенных выше мембран. Условию $d_{\text{мол}}/d_{\text{пор}} > 0.5$ отвечают мембраны УАМ-30, УАМ-50 и УАМ-100, для которых отношение $d_{\text{мол}}/d_{\text{пор}}$ равно соответственно 2,3; 1,4 и 0,7.

Рие. 11.5. Зависимость истинной селективности мембран по глобулярным высокомолекулярным соединениям от соотношения диаметров молекул и пор в мембранах

Расчеты начнем с более производительной мембраны — УАМ-100. Из графика находим $\varphi_{\mu} = 0.999$. Приняв в первом приближении, что наблюдаемая селективность равна истинной, определим концентрацию растворенного вещества в пермеате по формуле (11.2).

Степень концентрирования $K = x_{1\kappa}/x_{1\kappa} = 0.15/0.015 = 10$. Тогда

$$\overline{x_2} = 1,5 \cdot 10^{-4} \frac{1 - 10^{-(1 - 0.999)/0.999}}{1 - 10^{-1/0.999}} = 3,67 \cdot 10^{-7}$$
 кг ацилазы/кг раствора, или 3,67 \ 10^{-5}%.

Полученное значение меньше допустимого (3·10⁻³ %), поэтому для дальнейших расчетов выбираем мембрану УАМ-100.

11.2.3. Приближенный расчет рабочей поверхности мембран

Рабочая поверхность мембран зависит от их удельной производительности и потребного расхода пермеата. Определим сначала удельную производительность по чистой воде, пользуясь приведенными выше данными о константах проницаемости. Для мембраны УАМ-100 $A = 1,7 \cdot 10^{-2} \text{ кг/(m^2 \cdot c \cdot M\Pia)}$. Тогда при рабочем давлении 0,2 МПа удельная производительность по чистой воде составит:

$$G_0 = A\Delta \rho = 1.7 \cdot 10^{-2} \cdot 0.2 = 3.4 \cdot 10^{-3} \text{ kr}/(\text{m}^2 \cdot \text{c}).$$

Для перехода от этой величины к удельной производительности в рабочих условиях следует учесть, что осмотические давления разбавленных растворов ВМС пренебрежимо малы. Неорганические соли ультрафильтрами практически не задерживаются, поэтому осмотическое давление пермеата близко к осмотическому давлению исходного раствора и последнее также не сказывается на удельной производительности. В рассматриваемом случае основным фактором, снижающим ее, является повышение вязкости, определяемое концентрацией соли, которая значительно выше концентрации ВМС.

Течение растворов через поры ультрафильтрационных мембран подчиняется закону Пуазейля, поэтому проницаемость обратно пропорциональна динамической вязкости.

Из Приложения 11.1 находим, что коэффициент кинематической вязкости 5.5 %-ного раствора NaCl при t = 25 °C составляет $v = 0.944 \cdot 10^{-6} \text{ m}^2/\text{c}$; плотность раствора $\rho = = 1036 \text{ кг/m}^3$ Отсюда коэффициент динамической вязкости равен:

$$\mu = \nu \rho = 0.944 \cdot 10^{-6} \cdot 1036 = 0.000978 \text{ kr}/(\text{m} \cdot \text{c}).$$

Вязкость чистой воды при той же температуре µ0=0,000894 кг/(м·с) Тогда

$$G = G_0 \mu_0 / \mu = 3.4 \cdot 10^{-3} 0.000894 / 0.000978 = 3.11 \cdot 10^{-3} \text{ kr} / (\text{m}^2 \cdot \text{c}).$$

Поскольку в процессе концентрирования ВМС концентрация NaCl, определяющая вязкость раствора, не изменяется, полученная величина может быть принята постоянной для любого сечения аппарата.

Определим расход пермеата по формуле (11.3), считая в первом приближении, что наблюдаемая селективность равна истинной:

$$L_n = L_n (1 - K)^{-1/q} = 0.2(1 - 10^{-1/0.999}) = 0.18 \text{ kr/c}.$$

Рабочая поверхность мембраны

$$F = L_{\rm n}/G = 0.18/(3.11 \cdot 10^{-3}) = 57.8 \text{ m}^2$$

Определим также расход концентрата, знание которого понадобится при последующих расчетах:

$$L_{\rm H} = L_{\rm H} - L_{\rm H} = 0.20 - 0.18 = 0.02 \ {\rm kr/c}.$$

335

11.2.4. Выбор аппарата и определение его основных характеристик

Наиболее часто для проведения процесса ультрафильтрации используют аппараты типа фильтр-пресс с плоскокамерными фильтрующими элементами; аппараты с трубчатыми фильтрующими элементами и аппараты с мембранами в виде полых волокон. Сборку и разборку аппаратов первого типа проводят вручную, поэтому их не используют в установках большой производительности. Однако при небольшой потребной производительности они обладают рядом преимуществ по сравнению с другими типами аппаратов ультрафильтрации: возможностью выявления и замены поврежденных мембран, многократного использования сепарирующих и дренажных материалов при замене мембран, отработавших срок службы.

Учитывая, что потребная производительность в рассматриваемом случае невелика, выберем аппарат типа фильтр-пресс. Среди аппаратов этого типа следует отдать предпочтение бескорпусным. Такие аппараты не имеют массивного корпуса, рассчитанного на работу при высоких давлениях, благодаря чему снижается металлоемкость и достигается относительно высокая удельная поверхность мембран. Одна из конструкций изображена на рис. 11.6.

Аппарат состоит из ряда секций, стянутых во фланцах 3 с помощью шпилек / и гаек 2. Каждая секция представляет собой пакет мембранных элементов 6, чередующихся с уплотнительными прокладками 5. Пакет уложен в цилиндрическую обсчайку 4. Прокладки 5 обеспечнавют герметичность секции и благодаря силам трения при обжатии шпильками передают усилие рабочего давления на дренажный материал (этот эффект позволяет в данной конструкции обойтись без специального прочного корпуса). Между элементами располагаются сетки-сепараторы, предотвращающие соприкосновение элементов и создающие каналы для протекания разделяемого раствора.

Переточные отверстия всех мембранных элементов секции совпадают, образуя коллекторы для входа раствора в секцию, распределения его между элементами и выхода в следующую секцию. Число мембранных элементов в каждой последующей секции по ходу раствора в аппарате уменьшается, что обеспечивает необходимую скорость раствора в любом межмембранном канале.

Мембранный элемент (см. рис. 11.6) состоит из двух мембран 7, уложенных на подложки из мелкопористого материала 8, между которыми размещается дренажный материал 10. Для предотвращения вдавливания мембран и подложек в дренажный материал между подложками и дре-

Рис. 11.6. Схема устройства аппарата типа «фильтр-пресс» с плоскокамерными фильтрующими элементами:

I — шпилька; 2 — гайка; 3 — фланец; 4 — обечайка; 5 — прокладка; 6 — мембранный элемент; 7 — мембраны; 8 — подложка; 9 — прокладочное кольцо; 10 — дренажный слой

нажом располагаются кольца 9 из тонкого жесткого материала. Мембраны, расположенные по обе стороны дренажного слоя, приклеиваются одна к другой по периферии персточных отверстий.

Исходный раствор поступает в аппарат через штуцер в нижнем фланце и последовательно проходит все секции. В каждой секции раствор движется параллельными потоками по межмембранным каналам. Пройдя вдоль мембран, раствор собирается в выходном коллекторе секции и поступает во входной коллектор следующей сскции. Концентрат (ретант) выходит из аппарата через штуцер верхнего фланца. Фильтрат (пермеат) движется внутри каналов, образованных дренажными сетками, в радиальном направлении, поступает в обечайки и из них сливается через отводные патрубки.

Диаметр аппарата определяется шириной выпускаемого мембранного полотна (0,45 м) Переменными величинами могут быть толщина сепарирующей сетки и дренажного слоя (составленного из собственно дренажного материала и двух подложек), а также число секций.

При уменьшении толшины сетки-сепаратора и дренажного слоя повышается компактность установки, но растет гидравлическое сопротивление. Поэтому наиболее правильно проводить выбор сепараторов и дренажей на основе технико-экономических расчетов. Для целей настоящего проекта можно принять, исходя из практических данных, следующие зиачения: толщина сепаратора $\delta_c = 0.5$ мм; толщина дренажной сетки $\delta_a = 0.4$ мм; толщина подложки и мембраны соответственно $\delta_1 = 0.2$ и $\delta_2 = 0.1$ мм.

Диаметр рабочей части мембраны равен общему диаметру за вычетом удвоенной ширины прокладочного кольца. Примем ширину кольца равной 0,025 м. Тогда диаметр мембраны $d_{\text{M}} = 0,45 - 2 \cdot 0,025 = 0,4$ м.

Рабочая поверхность одного элемента, включающего две мембраны, равна:

$$F_{3} = 2(\pi d_{\rm N}^{2}/4 - 2\pi d_{\rm nep}^{2}/4) = 2 \cdot 0.785(0.4^{2} - 2 \cdot 0.02^{2}) = 0.25 \,{\rm M}^{2},$$

где d_{nep} = 0,02 м — диаметр переточного отверстия.

Общее число элементов в аппарате $n = F/F_3 = 57.8/0.25 = 231.$

Проведем секционирование аппарата, исходя из необходимости обеспечения примерно одинакового расхода разделяемого раствора во всех сечениях аппарата.

В отличие от рассмотренной выше установки с рулонными аппаратами (см. разд. 11.1.6) в данном случае число каналов, по которым проходит разделяемый раствор, не равно числу элементов, поэтому удовлетворить одновременно условиям (11.7) и (11.8) невозможно, и необходим иной подход к секционированию.

Пусть L_{ni} , $L_{\kappa i}$ — расход разделяемого раствора соответственно на входе в *i*-ю секцию и на выходе из нее (*i* = 1, 2, *m*, где *m* — число секций в аппарате); $\overline{L_i}$ — средний расход разделяемого раствора в канале, образованном двумя соседними элементами *i*-й секции; n_i — число элементов в *i*-й секции; $L_{n,3}$ — расход пермеата на одном элементе; $q = L_{ni}/L_{\kappa i}$ — величина, определяющая допустимое изменение расхода по длине каждой секции.

Выразим расход раствора на выходе из секции как разницу между расходом на входе в секцию и расходом пермеата в секции:

$$L_{ki} = L_{ki} - L_{n_{2}} n_{i}. \tag{11.31}$$

Представим величину L_{кі} в виде

$$L_{\kappa i} = L_{\kappa i}/q. \tag{11.32}$$

Приравнивая выражение (11.31) и (11.32), находим число элементов:

$$n_i = L_{wi} (1 - 1/q) / L_{w_0}. \tag{11.33}$$

Соотношение (11.33) определяет число элементов в каждой секции, отвечающее допустимому значению q. Преобразуем это соотношение, учитывая, что начальный расход в каждой секции (начиная со второй) равен конечному расходу в предыдущей секции:

$$L_{\rm Hi} = L_{\rm K(r-1)}.$$
 (11.34)

Отсюда с учетом соотношения (11.32), зная расход исходного раствора L_#, получим:

$$L_{\rm H} = L_{\rm H}(i-1)/q = L_{\rm H}/q^{i-1}$$
(11.35)

Подставляя выражение (11.35) в уравнение (11.33), получим:

$$n_i = L_{\rm H} (1 - 1/q) / (q^{i-1} L_{\rm n_s}).$$
 (11.36)

Тогда для первой секции

$$n_1 = L_{\mu} (1 - 1/q) / L_{n.3}. \tag{11.37}$$

С учетом последнего перепишем соотношение (11.36) в виде

$$n_i = n_1 / q^{i-1} \tag{11.38}$$

Рассмотрим, как соотносятся расходы раствора в первой и последней секциях. Средний расход раствора в каждом канале *i*-й секции можно выразить в виде

$$\overline{L_i} = (L_{H_i} + L_{H_i}) / [2(n_i + 1)] = (L_{H_i} + L_{H_i}/q) / [2(n_i + 1)] = L_{H_i} (1 + 1/q) / [2(n_i + 1)]$$
(11.39)

или в виде

$$\overline{L_i} = (L_{\kappa i}q + L_{\kappa i}) / [2(n_i + 1)] = L_{\kappa i}(q + 1) / [2(n_i + 1)], \qquad (11.39a)$$

где (n; +1) — число каналов в *i*-й секции, по которым проходит разделяемый раствор. Из уравнения (11.39) имеем:

для первой секции Для последней секции

$$\overline{L_1} = L_{H}(1+1/q)/[2(n_1+1)];$$
 $\overline{L_m} = L_{H}(1+1/q)/[q^{m-1}2(n_m+1)].$

Отношение средних расходов с учетом соотношения (11.38) равно:

$$\frac{\overline{L_1}}{\overline{L_m}} = \frac{q^{m-1}(n_m+1)}{n_1+1} = \frac{q^{m-1}(n_1/q^{m-1}+1)}{n_1+1} = \frac{n_1+q^{m-1}}{n_1+1}.$$
 (11.40)

Уравнение (11.40) определяет соотношение расходов в крайних секциях, отвечающее принятому значению q. Анализ этого уравнения показывает: чем меньше q, тем больше соотношение расходов, поэтому снижая q и тем самым уменьшая степень изменения расхода по длине каждой секции, мы одновременно увеличиваем неравномерность расходов между секциями.

С целью выбора оптимального значения q проведем несколько вариантов секционирования, задаваясь различными q.

Расход пермеата на одном элементе равен:

$$L_n = L_n/n = 0.18/231 = 0.00078 \text{ Kg/c}.$$

Примем q = 1,6. Тогда из соотношения (11.37) имеем:

 $n_1 = 0.2(1 - 1/1.6)/0.00078 = 96.2 = 96.$

Из соотношения (11.38) найдем:

$$\begin{array}{ll} n_2 = 96, 2/1, 6 = 60; & n_3 = 96, 2/1, 6^2 = 37, 6 = 38; \\ n_4 = 96, 2/1, 6^3 = 23, 5 = 24; & n_5 = 96, 2/1, 6^4 = 14, 7 = 15. \end{array}$$

Суммируя число элементов, получим:

$$\sum_{i=1}^{5} n_i = 96 + 60 + 38 + 24 + 15 = 232.$$

Полученное значение на сдиницу больше имеющегося числа элементов (n=231). По причинам, указанным ракее (разд. 11.1.6), вычтем один избыточный элемент из первой секции, т. е. примем $n_1 = 95$.

По формуле (11.40) рассчитаем соотношение расходов:

$$\overline{L}_1/\overline{L}_5 = (95 + 1.6^4)/(95 + 1) = 1,058.$$

Примем q = 1,4. Тогда

 $n_{1} = 0.2(1 - 1/1.4) / 0.00078 = 73.5 = 73; \qquad n_{2} = 73.5/1.4 = 52.5 = 53; \\ n_{3} = 73.5/1.4^{2} = 37.5 = 37; \qquad n_{4} = 73.5/1.4^{3} = 26.8 = 27; \\ n_{5} = 73.5/1.4^{4} = 19.2 = 19; \qquad n_{6} = 73.5/1.4^{5} = 13.6 = 14; \\ n_{7} = 73.5/1.4^{6} = 9.7 = 10; \\ n_{7} = 10.5/1.4^{6}$

$$\sum_{i=1}^{7} n_i = 233.$$

Вычтем один избыточный элемент из первой секции и один — из второй, т. е. примем $n_1 = 72$, $n_2 = 52$. Тогда

$$\overline{L_1}/\overline{L_7} = (72+1,4^6)/(72+1) = 79,58/73 = 1,09.$$

Примем q = 1,2. Получим:

 $\begin{array}{rl} n_1 = 0.2 \left(1 - 1/1.2\right) / 0.00078 = 43; & n_2 = 43/1.2 = 35.8 = 36; \\ n_3 = 43/1.2^2 = 29.9 = 30; & n_4 = 43/1.2^3 = 24.9 = 25; \\ n_5 = 43/1.2^4 = 20.8 = 21; & n_6 = 43/1.2^6 = 17.6 = 18; \\ n_7 = 43/1.2^6 = 14.4 = 14; & n_8 = 43/1.2^7 = 12; \\ n_9 = 43/1.2^8 = 10; & n_{10} = 43/1.2^9 = 8.3 = 8; \\ n_{11} = 43/1.2^{10} = 6.9 = 7; & n_{12} = 43/1.2^{11} = 5.8 = 6; \\ \end{array}$

Добавим один недостающий элемент к первой секции, т. е. примем $n_1 = 44$. Тогда $\overline{L_1}/\overline{L_{12}} = (44 + 1.2^{11})/(44 + 1) = 1.142.$

Примем q = 1, 1. Получим:

 $\begin{array}{ll} n_1 = 0.2 \left(1 - 1/1, 1\right) / 0.00078 = 23, 3 = 23; \\ n_3 = 23, 3/1, 1^2 = 19, 3 = 19; \\ n_5 = 23, 3/1, 1^4 = 15, 9 = 16; \\ n_7 = 23, 3/1, 1^6 = 13, 1 = 13; \\ n_9 = 23, 3/1, 1^8 = 10, 9 = 11; \\ n_{11} = 23, 3/1, 1^{10} = 9; \\ n_{12} = 23, 3/1, 1^{12} = 7, 4 = 7; \\ n_{13} = 23, 3/1, 1^{12} = 7, 4 = 7; \\ n_{15} = 23, 3/1, 1^{16} = 5, 1 = 5; \\ n_{17} = 23, 3/1, 1^{16} = 5, 1 = 5; \\ n_{19} = 23, 3/1, 1^{16} = 5, 1 = 5; \\ n_{19} = 23, 3/1, 1^{16} = 5, 1 = 5; \\ n_{19} = 23, 3/1, 1^{16} = 4, 2 = 4; \\ n_{21} = 23, 3/1, 1^{16} = 4, 2 = 4; \\ n_{21} = 23, 3/1, 1^{16} = 4, 2 = 4; \\ n_{23} = 23, 3/1, 1^{22} = 2, 8 = 3; \\ n_{23} = 23, 3/1, 1^{22} = 2, 8 = 3; \\ n_{25} = 23, 3/1, 1^{24} = 2, 4 = 2; \\ \end{array}$

Тогда

$$\overline{L_1}/\overline{L_{25}} = (23+1,1^{24})/(23+1) = 1,37$$

Таким образом, получаем:

q	1,6	1,4	1,2	1,1
m	5	7	12	25
$\overline{L_1}/\overline{L_m}$	1,058	1,090	1,142	1,370

На основе этих данных строим график зависимости отношения $\overline{L_1}/\overline{L_m}$ и числа секций *m* от *q* (рис. 11.7, стр. 336).

Из рис. 11.7 можно видеть, что с увеличением q отношение расходов и число секций сначала быстро снижаются, а затем в интервале q = 1,15 - 1,20 на кривых наблюдается перегиб, и снижение становится замедленным.

Построив на графике диагональ, можно увидеть, что при q = 1,17 отношение $\overline{L_1/L_m} = q$, т. е. при этом значении q снижение расхода по длине каждой секции равно снижению среднего расхода от первой до последней секции. Исходя из примерного равенства расходов в каждом канале каждой секции это значение можно было бы взять в качестве рабочего. Однако следует учитывать, что по мере концентрирования раствора в нем одновременно увеличивается содержание взвешенных частиц, практически всегда имеющнхся в технологических растворах, даже подвергнутых предварительному фильтрованию. Это может привести к ускоренному загрязнению мембран в последних секциях, сопровождающемуся снижением удельной производительности, а иногда и селективности. Уменьшение среднего расхода (а следовательно скорости потока) от первой к последней секции способствует этому нежелательному процессу. Кроме того, снижение q сопровождается увеличением числа секций, что усложняет конструкцию аппарата. В связи с этим в качестве рабочего значения q целесообразно выбрать значение больше диагонального, равного 1,17. Примем для дальнейших расчетов q = 1,4. Для этого значения получено следующее распределение элементов по секциям:

Секция	1	2	3	4	5	6	7
Число элементов в секции	72	52	37	27	19	14	10

Определим средние расходы в каналах первой и последней секции по формулам (11.39) и (11.39а):

$$\overline{L}_{1} = \frac{L_{\kappa}(1+1/q)}{2(n_{1}+1)} = \frac{0.2(1+1/1.4)}{2(72+1)} = 0.00235 \text{ kr/c};$$

$$\overline{L}_{7} = \frac{L_{\kappa}(q+1)}{2(n_{7}+1)} = \frac{0.02(1.4+1)}{2(10+1)} = 0.00218 \text{ kr/c}.$$

Отношение $\overline{L_1}/\overline{L_7} = 0.00235/0.00218 = 1.077$ Найдем отклонение этого значения от полученного в расчетах: (1.090 - 1.077)100/1.077 = 1.2%.

Такую сходимость следует признать удовлетворительной, учитывая, что в расчетах число элементов в секциях округлялось до целых единиц и из числа элементов в первой секции был вычтен один избыточный элемент.

11.2.5. Расчет наблюдаемой селективности мембран

Наблюдаемую селективность рассчитаем по формуле (11.17). Расчеты проведем для крайних секций — первой и седьмой. По причинам, указанным в разд. 11.1.7, будем считать канал, по которому движется разделяемый раствор, полым.

При течении раствора между круговыми элементами скорость меняется от максимальной (в областях входа и выхода) до минимальной (в средней части элемента). Среднюю ширину кругового сечения найдем, разделив площадь элемента на длину пути раствора, которую примем равной диаметру элемента:

$$b = \pi d_w^2 / (4d_w) = 0.785 d_w = 0.785 \cdot 0.4 = 0.314.$$

Средияя скорость в первой секции равна:

$$w_1 = \overline{L_1} / (\rho \delta_c b) = 0.00235 / (1036 \cdot 0.5 \cdot 10^{-3} \cdot 0.314) = 0.0144 \text{ m/c};$$

$$d_3 = 2\delta_c = 1 \cdot 10^{-3} \text{ m};$$

$$\operatorname{Re}_1 = w_1 d_3 / v = 0.0144 \cdot 1 \cdot 10^{-3} / (0.944 \cdot 10^{-6}) = 15.3.$$

Это свидетельствует о ламинарном режиме течения раствора, и, следовательно, для расчета диффузионного критерия Нуссельта можно использовать критериальное уравнение (11.18). Определим критерий Pr':

$$Pr' = v/D = 0.944 \cdot 10^{-6}/(7 \cdot 10^{-11}) = 1.35 \cdot 10^{4}$$
.

$$\begin{split} \mathrm{Nu}_1' &= 1.67 \cdot 15.3^{\circ} \stackrel{\mathrm{sr}}{}(1.35 \cdot 10^{\circ}) \stackrel{\mathrm{sr}}{}(1 \cdot 10^{-3} / 0.4)^{\circ} \stackrel{\mathrm{sr}}{}= 16.1; \\ \beta_1 &= \mathrm{Nu}_1' D/d_2 = 16.1 \cdot 7 \cdot 10^{-11} / (1 \cdot 10^{-3}) = 1.13 \cdot 10 \qquad \mathrm{w/c}; \\ U &= G/\rho = 3.11 \cdot 10^{-3} / 1036 = 3 \cdot 10^{-6} \ \mathrm{w/c}; \\ \mathrm{lg} \frac{1 - \varphi_1}{\varphi_1} &= \frac{3 \cdot 10^{-6}}{2.3 \cdot 1.13 \cdot 10^{-6}} + \mathrm{lg} \frac{1 - 0.999}{0.999}. \end{split}$$

Отсюда $\phi_1 = 0,9860.$

Средняя скорость в седьмой секции:

$$\begin{split} \omega_7 &= \overline{L_7} / (\rho \delta_c b) = 0.00218 / (1036 \cdot 0.5 \cdot 10^{-3} \cdot 0.314) = 0.0134 \text{ M/c};\\ \mathrm{Re}_7 &= 0.0134 \cdot 1 \cdot 10^{-3} / (0.944 \cdot 10^{-6}) = 14.2;\\ \mathrm{Nu}_7' &= 1.67 \cdot 14.2^{0.34} (1.35 \cdot 10^4)^{0.33} (1 \cdot 10^{-3} / 0.4)^{0.3} = 15.7;\\ \beta_7 &= 15.7 \cdot 7 \cdot 10^{-11} / (1 \cdot 10^{-3}) = 1.11 \cdot 10 \quad \mathrm{M/c};\\ \mathrm{lg} \frac{1 - \varphi_7}{\varphi_7} &= \frac{3 \cdot 10^{-6}}{2.3 \cdot 1.11 \cdot 10^{-6}} + \mathrm{lg} \frac{1 - 0.999}{0.999}. \end{split}$$

Отсюда $\varphi_7 = 0,9854.$

Селективность секций мало различается, поэтому для последующих расчетов используем ее среднее значение:

$$\varphi = (\varphi_1 + \varphi_7)/2 = (0.9860 + 0.9854)/2 = 0.9857 \approx 0.986.$$

Проверим пригодность выбранной мембраны. Для этого по формуле (11.2) определим концентрацию ацилазы в пермеате. используя полученное значение паблюдаемой селективности:

$$\overline{x_2} = 1,5 \cdot 10^{-4} \frac{1 - 10^{-(1 - 0.986)/0.986}}{1 - 10^{-1/0.986}} = 5,34 \cdot 10^{-6}$$
 кг ацилазы/кг раствора = 5,34 \ 10^{-4} %.

Это значение меньше допустимого, равного 3.10⁻³ %, поэтому нет необходимости перехода к мембране с большей селективностью.

11.2.6. Уточненный расчет поверхности мембран

Определим расход пермеата по формуле (11.3), используя полученное значение наблюдаемой селективности:

$$L_{\rm n} = 0.2(1 - 10^{-1/0.986}) = 0.1806 \text{ Kr/c}.$$

Рабочая поверхность мембраны

$$F = L_{a}/G = 0.1806/(3.11 \cdot 10^{-3}) = 58.1 \text{ m}^{2}$$

Расхождение с величиной 57,8 м², полученной в первом приближении, составляет: (58,1-57,8)100/58,1=0.52 %; это расхождение ничтожно, поэтому перерасчета ис делаем.

11.2.7. Расчет гидравлического сопротивления

Развиваемое насосом давление будем определять на основе выражения (11.22) с использованием рассмотренных выше соотношений (11.24) — (11.27). Однако следует учитывать, что в установке ультрафильтрации с аппаратом типа фильтр-пресс основная часть местных сопротивлений сосредоточена в самом аппарате, где многократно меняется направление и скорость раствора: в коллекторах, образованных совмещенными отверстиями мембранных элементов; при перетоке из одной секции в другую и, главное, — при входе из коллектора в межмембранное пространство и выходе из последнего. Кроме того, в рассматриваемом случае рабочие давления на порядок меньше, чем при обратном осмосе, поэтому нельзя пренебрегать перепадом давления, связанным с геометрической высотой подъема разделяемого раствора.

Примем, что Δp_n (включая потери на местные сопротивления в самом аппарате) составляет 20 % от Δp_n , а геометрическая высота подъема (расстояние от уровня раствора, прошедшего песчаный фильтр, до вентиля на выходе концентрата из аппарата ультрафильтрации) $h_r = 2$ м. Тогда

$$\Delta p_{\rm n} = 0.2 \Delta p_{\rm a};$$
 $\Delta p_{\rm r} = \rho g h_{\rm r} = 1036 \cdot 9.81 \cdot 2 = 2.03 \cdot 10^4 \ \Pi a$

Определение Δр_а. Общая длина канала, по которому проходит разделяемый раствор, равна произведению диаметра элемента на число секций: $l=0,4\cdot7=2,8$ м.

Поскольку скорость течения мало меняется от первой к последней секции, используем в расчетах среднеарифметическое значение скорости:

$$w = (w_1 + w_7)/2 = (0.0144 + 0.0134)/2 = 0.0139$$
 m/c.

Тогда в соответствии с выражением (11.27)

 $\Delta \rho_{\rm n, \kappa} = 48 v \rho / \omega / d_2^2 = 48 \cdot 0.944 \cdot 10^{-6} \cdot 1036 \cdot 2.8 \cdot 0.0139 / (1 \cdot 10^{-6}) = 1.85 \cdot 10^3 \,\, \Pi \, a.$

Примем $\zeta_1 = 5.6$. Тогда $\Delta p_a = 1.85 \cdot 10^3 \cdot 5.6 = 1.036 \cdot 10^4$ Па.

Определение Δp_a . Скорость пермеата в дренажном слое меняется от нуля в центре элемента до максимального значения на его окружности. Общая длина канала, по которому проходит пермеат, равна радиусу элемента: $l = r_{\rm M} = d_{\rm M}/2 = 0.2$ м.

Перепад давления в произвольном сечении на расстоянии r от центра элемента на участке бесконечно малой длины dr составит:

$$d\rho = 48\nu \rho w dr / d_{3}^{2}. \tag{11.41}$$

Скорость на расстоянии r от центра элемента связана с r следующим образом:

$$w = G \cdot 2\pi r^2 / (\rho 2\pi r \delta_{\lambda}) = Gr / (\rho \delta_{\lambda}), \qquad (11.42)$$

где $2\pi r^2$ -- поверхность мембраны от центра элемента до произвольного сечения на расстоянии r; $2\pi r \delta_{a}$ -- площадь поперечного сечения канала на расстоянии r от центра элемента.

Подставим выражение (11.42) в (11.41), учитывая, что $d_{3} = 2\delta_{a}$:

$$dp = 48 \frac{2\nu\rho Gr}{d_s^3\rho} dr = 96 \frac{\nu G}{d_s^3} r dr.$$

Проинтегрируем левую часть от 0 до $\Delta \rho_{n.s.}$, а правую — от 0 до $r_{m:s}$

$$\int_{0}^{\Delta \rho_{n.\kappa}} dp = 96 \frac{\nu G}{d_s^3} \int_{0}^{r_{\rm M}} r \, dr; \qquad \Delta \rho_{n.\kappa} = 96 \frac{\nu G}{d_s^3} \frac{r_{\rm M}^2}{2} = 12 \frac{\nu G d_{\rm M}^2}{d_s^3}. \tag{11.43}$$

Проведем расчет по этой формуле, учитывая, что d₃=0,8·10⁻³ м:

$$\Delta \rho_{n,s} = \frac{12 \cdot 0.944 \cdot 10^{-6} \cdot 3.11 \cdot 10^{-3} \cdot 0.4^2}{(0.8 \cdot 10^{-3})^3} = 11 \ \Pi a.$$

Примем $\zeta_2 = 100$. Тогда $\Delta p_a = 11 \cdot 100 = 1, 1 \cdot 10^3$ Па. По формуле (11.22)

$$\Delta \rho_{\rm u} = 2 \cdot 10^5 + 1,036 \cdot 10^4 + 1,1 \cdot 10^3 + 0,2 \cdot 1,036 \cdot 10^4 + 2,03 \cdot 10^4 = 2,34 \cdot 10^5 \ \mathrm{\Pi a}.$$

Напор насоса

$$H = \Delta \rho_{\rm H} / (\rho g) = 2.34 \cdot 10^5 / (1036 \cdot 9.81) = 23.0$$
 M.

На основе полученных данных подбираем насос по методике, изложенной в гл. 1.

11.3. УСТАНОВКА МЕМБРАННОГО РАЗДЕЛЕНИЯ ГАЗОВЫХ СМЕСЕЙ

Принципиальная схема одноступенчатого процесса мембранного газоразделения показана на рис. 11.8.

Газовая смесь, подлежащая разделению, подается в напорный канал мембранного аппарата. Проходя по этому каналу вдоль мембраны, смесь обедняется компонентами, преимущественно проходящими через мембрану, и обедненный поток (ретант) выводится из аппарата. Газовый поток, прошедший через мембрану (пермеат), обогащенный лучше проходящими компонентами, выходит из аппарата по дренажному каналу. Необходимый перепад давления через мембрану обеспечивается подачей исходной газовой смеси с помощью компрессора или откачиванием пермеата с помощью вакуум-насоса.

Рис. 11.8. Принципиальная схема одноступенчатого процесса мембранного газоразделения

Задание на проектирование. Рассчитать установку для обогащения воздуха кислородом до 40 %. Производительность по обогащенному воздуху 36 м³/ч (при нормальных условиях)

Пренебрегая содержанием в воздухе аргона, углекислого газа и других микропримесей, примем для расчета следующий состав воздуха в мол. (об.) долях: кислорода $x_{0,} = 0.21$, азота $x_{N_2} = 0.79$.

11.3.1. Выбор рабочих давлений и температуры

Кислород и азот относятся к простым газам; если такие газы образуют смесь, то проникновение каждого из них в мембрану и переход через нее происходят независимо от других компонентов газовой смеси. В этом случае удельная производительность мембраны по каждому компоненту газовой смеси может быть представлена следующими уравнениями:

$$G_{O_2} = K_{O_2}(p'x'_{O_2} - p''x''_{O_2}) \text{ моль}/(\mathbf{M}^2 \cdot \mathbf{c}); \qquad (11.44)$$

$$G_{N_2} = K_{N_2}(p'x'_{N_2} - p''x''_{N_2}) \text{ моль}/(\mathbf{M}^2 \cdot \mathbf{c}), \qquad (11.45)$$

где K_{O_2} , K_{N_2} — константы проницаемости данной мембраны соответственно по кислороду и азоту, моль/ (м²·c·Па); p', p'' — давления соответственно в напорном и дренажном канале, Па; x', x'' — мольные доли газов соответственно в напорном и дренажном канале.

Селективность разделения определяется фактором разделения а:

$$\alpha = K_{\rm O_2} / K_{\rm N_2}. \tag{11.46}$$

Для простых газов а не меняется при переходе от индивидуальных газов к смесям. С повышением давления (до нескольких МПа) а остается постоянным, поскольку константы проницаемости при этом не меняются. Для полимерных мембран с ростом температуры а уменьшается, так как константа проницаемости лучше проникающего компонента увеличивается с повышением температуры медленнее, чем константа проницаемости хуже проникающего компонента.

Таким образом, с увеличением перепада давления через мембрану удельная производительность возрастает в соответствии с уравнениями (11.44), (11.45) и пропорционально сокращается необходимая поверхность мембран. С увеличением температуры удельная производительность также возрастает, но одновременно снижается селективность, что может сделать невозможным достижение заданной степени разделения в одноступенчатом процессе. Технико-экономический анализ показывает, что в большинстве случаев энергетически более выгоден процесс, когда разделяемая смесь подастся в напорный канал мембранного аппарата вентилятором (т е. при давлении, практически равном атмосферному), а необходимый перепад давления обеспечивается путем создания вакуума в дренажном канале с помощью вакуум-насоса. (В значительной мере это обусловлено тем, что приходится сжимать не всю смесь, подаваемую на разделение, а только пермеат.) Сказанное выше справедливо при степени сжатия в вакуум-насосе не выше 10. Исходя из этого примем давление в напорном канале $\rho' = 10^5 \, \Pi$ а, в дренажном канале $p'' = 10^4 \, \Pi$ а.

Обычно при использовании полимерных мембран оптимальной является температура окружающей среды, поскольку небольшие выгоды, связанные с повышением температуры на несколько десятков градусов, не компенсируют затрат, необходимых на установку и эксплуатацию теплообменника. Более высокое повышение температуры может привести к резкому снижению фактора разделения, что потребует перехода к многоступенчатым схемам разделения, и соответственно к резкому ухудшению экономических показателей. Таким образом, примем рабочую температуру равной t = 25 °C.

11.3.2. Выбор мембраны

Для того чтобы процесс мембранного разделения газов мог конкурировать с другими процессами разделения, мембрана должна обладать следующими свойствами: высокой проницаемостью по преимущественно проходящему компоненту; высокой селективностью по отношению к этому компоненту; химической стойкостью и механической прочностью, позволяющими эксплуатировать мембрану в течение нескольких лет.

Ниже приведены характеристики некоторых полимерных мембран по кислороду и азоту при 25 °C:

Материал и толщина мембраны	К _{О2} · 10 ¹⁰ , моль/ (м²·с·Па)	К _№ .10 ¹⁰ . моль/(м ² ·с·Па)	$\alpha = \frac{K_{O_2}}{K_{N_2}}$
Полидиметилсилоксан, 10 мкм	82	37	2.2
* Полисилоксанарилат, 2 мкм	298	149	2.0
Полисилоксанкарбонат, 0,1 мкм	589	295	2.0
* Поливинилтриметилсилан (ПВТМС), 0.2 мкм	707	198	3,57
Полифениленоксид, 0,005 мкм	1132	23 6	4,8

* Мембраны, выпускаемые в нашей стране серийно.

Как видно из приведенных данных, наилучшие разделительные характеристики для смеси кислорода и азота имеют мембраны из полифениленоксида и ПВТМС. Выберем мембрану из ПВТМС, поскольку их выпускают в промышленном масштабе. Для этой мембраны $K_{0_7} = 7.07 \cdot 10^{-8}$ моль/(м²·с·Па); $K_{N_2} = 1.98 \cdot 10^{-8}$ моль/(м²·с·Па); $\alpha = 3.57$.

11.3.3. Выбор типа аппарата. Расчет расхода потоков, их концентраций и рабочей поверхности мембран

Примем, что потоки в напорном и дренажном каналах движутся в режиме идеального смешения. Такое допущение приведет к некоторому завышению потребной поверхности мембраны и снижению экономичности процесса, что обеспечит небольшой «заиас» при технико-экономическом сравнении мембранного разделения с альтернативными методами.

Запишем уравнения материального баланса по всему веществу и по лучше проходящему компоненту (кислороду) и уравнения перехода вещества через мембрану, получаемые из (11.44) и (11.45) с учетом сделанпых допущений:

$$L_{\rm u} = L_{\rm p} + L_{\rm u}; \tag{11.47}$$

$$L_{\mu}x_{\mu} = L_{\mu}x_{\mu} + L_{\mu}x_{\mu}; \qquad (11.48)$$

$$L_{n}x_{n} = K_{O_{2}}\Gamma(p'x_{p} - p''x_{n}); \qquad (11.49)$$

$$L_{\rm u}(1-x_{\rm u}) = K_{\rm N_2} F[p'(1-x_{\rm p}) - p''(1-x_{\rm u})], \qquad (11.50)$$

где L_{μ} , L_{p} , L_{n} — расход соответственно исходной смеси, ретанта и пермеата, моль/с; x_{μ} , x_{p} , x_{n} — мольная доля кислорода соответственно в исходной смеси, ретанте и пермеате; F — рабочая поверхность мембраны, м²

Разделив (11.49) на (11.50) и проведя сокращения, получим:

$$\frac{x_{\rm n}}{1-x_{\rm n}} = \alpha \frac{x_{\rm p} - p^{\prime\prime} x_{\rm n} / p^{\prime}}{1-x_{\rm p} - p^{\prime\prime} (1-x_{\rm n}) / p^{\prime}}.$$
(11.51)

Решим уравнение (11.51) относительно x_p :

$$x_{\rm p} = \frac{x_{\rm n} \left[1 + p^{\prime\prime} (1 - x_{\rm n}) \left(\alpha - 1\right) / p^{\prime}\right]}{x_{\rm n} + (1 - x_{\rm n}) \alpha} \,. \tag{11.52}$$

Подставляя числовые значения величин, определим концентрацию кислорода в ретанте:

$$x_{\rm p} = \frac{0.4 \left[1 + 10^4 \left(1 - 0.4\right) \left(3.57 - 1\right) / 10^5\right]}{0.4 + (1 - 0.4) \left(3.57\right)} = 0.1816.$$

Проверим выполнение условия, при котором возможно одноступенчатое газоразделение:

$$p'x_{\rm p} > p''x_{\rm n};$$
 (11.53)

$$p'x_p = 10^5 \cdot 0, 1816 = 1,816 \cdot 10^4 \ \Pi a;$$

$$p''x_n = 10^4 \cdot 0.4 = 0.4 \cdot 10^4 \ \Pi a$$
.

Таким образом, условие (11.53) соблюдается и выполняемые расчеты имеют физический смысл.

Выразим расход пермеата в моль/с:

$$L_n = 36 \cdot 10^3 / (3600 \cdot 22, 4) = 0,4464 \text{ моль/с.}$$

Решая совместно уравнения (11.47) и (11.48), найдем расходы исходной смеси и ретанта:

$$L_{\rm H} = \frac{L_{\rm n}(x_{\rm n} - x_{\rm p})}{x_{\rm H} - x_{\rm p}} = \frac{0.4464(0.4 - 0.1816)}{0.21 - 0.1816} = 3.433 \text{ моль/с};$$
$$L_{\rm p} = L_{\rm n} - L_{\rm n} = 3.433 - 0.4464 = 2.986 \text{ моль/с}.$$

Выразим рабочую поверхность мембран из уравнения (11.49):

$$F = \frac{L_{\mathrm{n}} x_{\mathrm{n}}}{K_{\mathrm{O}_2} (p' x_{\mathrm{p}} - p'' x_{\mathrm{n}})} \, .$$

Подставим численные значения величин:

$$F = \frac{0.4464 \cdot 0.4}{7.07 \cdot 10^{-8} (10^5 \cdot 0.1816 - 10^4 \cdot 0.4)} = 178,36 \approx 180 \text{ m}^2$$

Концен	трация	Осмотическое лавление	Плотность раствора	Кинематическая вязкость	Коэффициент диффузни		
моль/л воды	% (масс.)	л, МПа	р, кг/м ³	ν·10 ⁶ , м ² /c	D·10 ⁹ , м²/с		
	BaCl ₂						
0,1 0,2 0,3 0,4 0,5 0,6 0,8 1,0 1,4	2,0402 3,9989 5,8808 7,6903 9,4315 11,1083 14,2822 17,2373 22,5756	0,63 1,24 1,88 2,53 3,21 3,90 5,37 6,92 10,40	1018,0 1032,0 1050,0 1068,0 1085,0 1101,0 1134,0 1167,0 1229,0	0,9002 0,9053 0,9115 0,9170 0,9248 0,9297 0,9491 0,9625 1,0245	1,159 1,150 1,151 1,155 1,160 1,164 1,171 1,177 1,280		
		Ca	Cl₂				
$\begin{array}{c} 0,1\\ 0,2\\ 0,3\\ 0,4\\ 0,5\\ 0,6\\ 0,8\\ 1,0\\ 2,0\\ 3,0\\ 4,0\\ 5,0\\ 6,0\\ \end{array}$	1,0977 2,1716 3,2224 4,2508 5,2577 6,2436 8,1551 9,9902 18,1656 24,9796 30,7460 35,6893 39,9738	0,64 1,29 1,96 2,65 3,42 4,18 5,87 7,76 20,50 40,10 66,25 98,49 133,74	1006,1 1014,9 1023,7 1032,3 1040,8 1049,2 1065,7 1081,7 1157,3 1225,8 1281,3 1342,5 1392,4	0,9167 0,9373 0,9562 0,9755 0,9959 1,0159 1,0576 1,1028 1,3894 1,3894 1,8485 2,2621 3,2315 5,5843	1,285 1,281 1,292 1,304 1,318 1,334 1,362 1,389 1,501 1,486		
		Ca (N	IO ₃) ₂				
0,1 0,2 0,3 0,4 0,5 0,6 0,8 1,0 2.0 3,0	1,6144 3,1775 4,6917 6,1593 7,5824 8,9630 11,6039 14,0960 24,7090 32,9880	0,62 1,22 1,82 2,44 3,07 3,71 5,00 6,37 14,13 23,74	1007,5 1019,0 1030,0 1041,0 1053,0 1065,0 1087,0 1108,0 1205,0 1289,0	0,8730 0,8636 0,8544 0,8597 0,8737 0,9015 0,9475 1,0018 1,3610 1,7688	1,103 1,036 1,081 1,065 1,060 1,043 1,033 1,033 0,975 1,002		
·		CuS	5O4				
0,1 0,2 0,3 0,4 0,5 0,6 0,8 1,0 1,4	$1,5709 \\3,0933 \\4,5692 \\6,0009 \\7,3903 \\8,7391 \\11,3224 \\13,7634 \\18,2632$	0,28 0,51 0,73 0,95 1,17 1,38 1,81 2,30 3,43	1013.2 1028.8 1044.4 1060.4 1076.1 1091.0 1100.4 1148.8 1204.8	0,9445 0,9914 1,0436 1,0967 1,1523 1,2099 1,3306 1,4580 1,8011	0,590 0,578 0,562 0,544 0,529 0,517 0,494 0,474 0,438		
		K	21				
0,1 0,2 0,3 0,4 0,5	0,7400 1,4691 2,1876 2,8957 3,5936	0,46 0,91 1,35 1,78 2,23	1001,8 1006,4 1011,0 1015,5 1020,0	0.8912 0.8864 0.8822 0.8779 0.8735	1,844 1,838 1,838 1,844 1,849		

Приложение 11.1. Некоторые физико-химические свойства водных растворов электролитов при 25 °C

Концен	трация	Осмотическое	Плотность	Кинематическая	Коэффициент
моль/л воды	% (масс.)	давление л, МПа	р. кг/м ^э	$v \cdot 10^6, m^2/c$	$D' \cdot 10^9$, M^2/c^3
0,6 0,8 1,0 2,0 3,0 4 0	4,2815 5,6283 6,9378 12,9754 18,2773 22,9703	2,66 3,56 4,45 9,07 13,99 19,21	1024,4 1033,0 1041,5 1081,7 1118,4 1152,4	0,8694 0,8615 0,8538 0,8279 0,8159 0,8443	1,857 1,873 1,889 1,986 2,083 2,163
.,.	22,0100			0,0110	2,100
0,1	1,0010	0,45	1007,5	0,8905	1,831
0,2 0,3 0,4 0,5 0,6 0,8 1,0 2,0 3,0	1,9821 2,9440 3,8872 4,8122 5,7196 7,4835 9,1825 16,8205 23,2734	0,86 1,26 1,65 2,02 2,38 3,09 3,76 6,66 9,02	1011,2 1011,6 1022,2 1027,1 1032,5 1043,6 1055,0 1110,7 1155,0	0,8900 0,8906 0,8826 0,8782 0,8732 0,8566 0,8341 0,8463	1,787 1,760 1,736 1,718 1,701 1,683 1,674 1,536
		K ₂ :	SO₄		
0,1 0,2 0,3 0,4 0,5 0,6 0,7	1,7128 3,3680 4,9683 6,5165 8,0151 9,4664 10,8726	0,58 1,11 1,62 2,10 2,58 3,04 3,50	1016,5 1022,5 1037,0 1049,0 1061,0 1073,5 1085,5	0,9067 0,9150 0,9214 0,9316 0,9388 . 	1,301 1,245 1,198 1,164 1,141
		Li	CI		
0,1 0,2 0,3 0,4 0,5 0,6 0,8 1,0 2,0 3,0 4,0 5,0 6,0	0,4222 0,8409 1,2560 2,0760 2,4809 3,2807 4,0675 7,8171 11,2846 14,5007 17,4917 20,2806	0,46 0,93 1,41 1,89 2,39 2,89 3,94 5,04 11,33 19,15 28,80 40,20 53,50	999,6 1002,0 1004,4 1006,8 1009,1 1011,5 1016,1 1020,6 1042,0 1061,9 1080,6 1098,3 1115,1	0,9066 0,9169 0,9270 0,9368 0,9468 0,9574 0,9787 1,0000 1,1167 1,2447 1,3837 1,5420 1,7271	1,269 1,267 1,269 1,273 1,277 1,283 1,292 1,301 1,358 1,419
		Lil	NO ₃		
0,1 0,2 0,3 0,4 0,5 0,6 0,8 1,0 2,0 3,0 4,0 5,0 6,0	0,6347 1,3600 2,0263 2,6836 3,3321 3,9721 5,2269 6,4494 12,1173 17,1376 21,6153 25,6339 29,2606	0,46 0,93 1,39 1,88 2,36 2,85 3,87 4,94 10,77 17,55 25,20 33,48 42,20	1000,0 1004,0 1007,5 1011,0 1015,0 1018,0 1026,0 1033,0 1070,0 1135,0 1164,0 1191,0	0,9035 0,9097 0,9252 0,9211 0,9313 0,9450 0,9603 1,0273 1,0995 1,1905 1,2990 1,4167	1,240 1,243 1,248 1,254 1,260 1,267 1,280 1,293 1,332 1,332 1,332 1,292 1,238 1,157

Концен		Осмотическое	Плотность	Кинематическая	Коэффициент				
моль/л воды	% (масс.)	давление л, МПа	раствора р, кг/м ³	вязкость v·10°, м ² /с	диффузии лич/с				
$MgCl_2$									
0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 2.0 3.0 4.0	0,9434 1,8691 2,7777 3,6696 4,5453 5,4052 7,0794 8,6953 15,9994 22,2215 27,5853	0,64 1,30 2,00 2,73 3,53 4,36 6,17 8,27 22,85 45,50 76,62	1004,8 1012,3 1019,8 1027,1 1034,3 1041,4 1055,4 1069,0 1132,6 1190,1 1242,8	0,9197 0,9475 0,9766 1,0069 1,0368 1,0758 1,1524 1,2273 1,7620 2,5239	1,074 1,051 1,041 1,040 1,039 1,039 1,039 1,039 1,040 1,047 1,061				
		Mg (N	$(O_3)_2$						
0,1 0,2 0,3 0,4 0,5 0,6 0,8 1,0 2,0 3,0	1,4616 2,8811 4,2603 5,6009 6,9044 8,1725 10,6076 12,9170 22,8788 30,7953	0,64 1,29 1,98 2,71 3,50 4,31 6,05 7,92 20,36 38,00	1008,0 1018,5 1029,0 1038,5 1049,0 1057,0 1077,0 1095,0 1184,0 1264,0	0,9120 0,9350 0,9640 0,9920 1,0250 1,0650 1,1500 1,2300 1,7700	1,047 1,032 1,029 1,028 1,028 1,029 1,033 1,035 1,040 —				
		Mg	SO₄						
0,1 0,2 0,3 0,4 0,5 0,6 0,8 1,0 2,0 3,0	1,1896 2,3512 3,4858 4,5943 5,6777 6,7368 8,7851 10,7454 19,4055 26,5338	0,30 0,56 0,80 1,05 1,29 1,54 2,06 2,60 6,73 14,10	1009,1 1020,9 1032,5 1044,0 1055,3 1066,5 1088,5 1110,0 1210,7 1361,1	0,9335 0,9707 1,0107 1,0541 1,1005 1,1497 1,2585 1,3786 2,3700 4,5428	0,602 0,602 0,586 0,571 0,556 0,550 0,533 0,504 0,453 —				
		Na	CI						
$\begin{array}{c} 0,1\\ 0,2\\ 0,3\\ 0,4\\ 0,5\\ 0,6\\ 0,8\\ 1,0\\ 2,0\\ 3,0\\ 4,0\\ 5,0\\ 6,0 \end{array}$	0,5811 1,1555 1,7233 2,2846 2,8395 3,3882 4,4671 5,5222 10,4665 14,9190 18,9496 22,6156 25,9643	0,46 0,92 1,37 1,82 2,29 2,74 3,68 4,63 9,78 15,63 22,30 29,88 38,32	1001,1 1005,2 1009,1 1013,0 1016,9 1020,8 1028,6 1035,7 1072,2 1105,6 1136,9 1166,9 1194,1	0,9009 0,9054 0,9100 0,9147 0,9193 0,9242 0,9338 0,9440 1,0044 1,0840 1,1862 1,3070	1,483 1,475 1,475 1,475 1,475 1,475 1,477 1,483 1,513 1,513 1,556 1,585 1,585				
		Nat	NO.						
0,1 0,2 0.3 0,4	0,8429 1,6718 2,4869 3,2886	0,45 0,90 1,33 1,75	1002,7 1008,2 1013,7 1019,1	0,8958 0,8950 0,8943 0,8937	1,443 1,427 1,414 1,407				

Концентрация		Осмотическое	Плотность	Кипематическая	Коэффициент
моль/л воды	% (масс.)	л, МПа	раствора р. кг/м ³	$v \cdot 10^6$, m^2/c	$D \cdot 10^9$, м ² /с
0,5	4,0772	2,17	1024,5	0,8941	1,403
0,6	4,8531	2,58	1029,7	0,8960	1,399
0,8	6,3677	3,41	1040,1	0,8997	1,389
1,0	7,8350	4,23	1050,3	0,9036	1,379
2,0	14,5314	8,24	1098,4	0,9544	1,336
3,0	20,3206	12,15	1140,5	1,0141	1,318
4,0	25,3754	15,97	1183,6	1,1020	1,303
5,0	29,827 0	19,77	1221,0	1,1892	1,296
6,0	33,7775	23,77	1256,0	_	·—
		Na2	SO₄		
0.1	1.4406	0.59	1009.7	0.9236	1.042
0.2	2,7625	1.12	1022.0	0.9511	1.008
0,3	4,0873	1,62	1034,0	0,9793	0,975
0,4	5,3765	2,09	1045,8	1,0101	0,941
0,5	6,6315	2,57	1057,4	1,0426	0,909
0,6	7,8536	3,02	1068,7	1,0767	0,889
0,8	10,2043	3,92	1091,0	1,1502	0,861
1,0	12,4382	4,79	1112,6	1,2423	0,836
2,0	22,1244	9,37	1211,5	1,8317	
		NH	4C1		
0.1	0.5322	0.46	998.7	0.8938	1.836
0.2	1.0587	0.91	1000.4	0,8911	1,836
0,3	1,5796	1,35	1002,0	0,8886	1,840
0,4	2,0952	1,78	1003,6	0,8861	1,850
0,5	2,6053	2,23	1005,1	0,8838	1,860
0,6	3,1102	2,66	1006,6	0,8820	1,870
0,8	4,1043	3,54	1009,6	0,8784	1,892
1,0	5,0783	4,44	1012,5	0,8748	1,917
2,0	9,6658	9,02	1026,0	0,8606	2,030
3,0	13,8302	13,80	1037,8	0, 8 551	2,134
4,0	17,6277	18,79	1048,4	0,8542	2,199
5,0	21,1045	23,84	1057,9	0,8592	2,243
6,0	24,299 8	28,99	1066,5	0,8665	2,264

Приложение 11.2. Химическая теплота гидратации ионов при бесконечном разбавлении и температуре 25 °C

Ион	∆ <i>Н</i> , кДж/моль	Ион	ΔΗ, кДж/моль	Ион	<i>\Н.</i> кДж/моль
Ag+	490	I,	281	Y ³⁺	3672
Al ³⁺	4710	ln ³⁺	4162	C₂H₄O₂⁻	423
Ba ²⁺	1340	К+	339	C103	289
Be ²⁺	2516	La ³⁺	3332	CIO₄	226
Br ⁻	318	Li+	532	CN ⁻	348
Ca ²⁺	1616	Mg ²⁺	1955	CNO-	389
Cd ²⁺	1838	Mn ²⁺	1880	CNS-	310
Ce ³⁺	3600	Na ⁺	423	CO_3^{2-}	1352
C!-	352	Ni ²⁺	2140	HCO ₂	415
Co ²⁺	2089	Pb ²⁺	1516	HCO ₃	381
Cr ²⁺	1884	Ra ^{2 +}	1298	HS-	343
Cs+	281	Rb+	314	MnO₁	247
Cu+	611	S ²⁻	1340	NH. ⁺	327
Cu ²⁺	2131	Sc ³⁺	4011	NO_2^-	410
F-	486	Sn ²⁺	1587	NO ₃	310
Fe ²⁺	1955	Zn ^{2 +}	2077	SO ²	1110

Ион	∆Н, кДж/моль	Ион	∆ <i>Н</i> , кДж/моль	Ион	∆ <i>Н</i> , кДж/моль
Fe ²⁺	1955	Sr ²⁺	1487	OH-	511
Fe ³⁺	4421	TI+	343	SO ₄ ²⁻	1110
Ga ³⁺	4735	Te ³⁺	4237	H+	1110
Hg ²⁺	1856	Zn ²⁺	2077	H₃O+	461

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Технологические процессы с применением мембран: Пер. с англ. Л. А. Мазитова и Т. М. Мнацаканян./Под ред. Р. Лейси и С. Леб. М.: Мир, 1976. 380 с.
- 2. Хванг С. Т., Каммермеер К. Мембранные процессы разделения. М.: Химия, 1981. 464 с.
- 3. Дытнерский Ю. И. Баромембранные процессы. Теория и расчет. М.: Химия, 1986. 272 с.
- 4. Дытнерский Ю. И., Брыков В. П., Каграманов Г Г Мембранное разделение газов. М.: Химия, 1991. 344 c.

ГЛАВА 12

РАСЧЕТ ХОЛОДИЛЬНЫХ УСТАНОВОК

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

с— удельная теплоемкость, кДж/(кг·К);

- D. d -диаметр, м;
 - Е эксергия, кДж;
 - F площадь поверхности теплообмена, м²;
 - f кратность циркуляции;
 - g плотность орошения, кг/(м²·c);
 - *і* энтальпия, кДж/кг;
 - К коэффициент теплопередачи, Вт/(м²·К)
- L, l длина, определяющий размер, м;
 - т массовый расход, кг/с;
 - ₩ мощность, кВт;
 - Р давление, МПа,
- ΔP перепад давлення, кПа;
- Q тепловой поток, кВт,
- Q0 холодильная мощность, кВт;
- q удельное количество теплоты, кДж/кг;
- \dot{q}_{F} плотность теплового потока, Вт/м²; R флегмовое число;
- r удельная теплота парообразования, кДж/кг;
- S плошадь поперечного сечения, м²;
- s удельная энтропия, кДж/(кг К),
- Т абсолютная температура, К;
- t температура, °C;
- Δl разность температур, °C;
- v удельный объем, м³/кг, V объемная производительность, м³/с;
- ω скорость, м/с;
- <u>х, у</u> мольные доли, моль/моль;
- $\overline{x}, \overline{y}$ массовые доли, кг/кг;
 - z число ходов;
 - є холодильный коэффициент;

- 🐒 👝 тепловой коэффициент;
- п коэффициент полезного действия, степень термодинамического совершенства;
- θ температурный напор, °С;
- λ теплопроводность, **В**т/(м·К);
- µ динамическая вязкость, Па с;
- v кинематическая вязкость, м²/с;
- ρ плотность, кг/м³;
- т время, с;
- β коэффициент объемного расширения, K^{-1} ;
- α коэффициент теплоотдачи, Вт/(м²·K);

Индексы нижние:

- а абсорбер, аммиак;
- в вода;
- вс всасывание;
- вн внутренний диаметр;
- воз воздух;
- г газы, генератор;
- гр греющий пар;
- дф дефлегматор;
- д действительный;
- ж жидкость;
- из изоляция;
- к конденсация;
- н наружный;
- ср окружающая среда;
- ст стенка;
- т теоретический;
- т. р теплообменник растворов;
- т. п теплообменник паровой;
- тр трение;
- х хладоноситель;
- э электрический;
- max максимальный;
- min минимальный.

Индексы верхние:

- в воздух;
- кд конденсатор;
- к компрессор;
- и "- жидкость и пар в состоянии равновесия.

введение

Холодильная установка представляет собой комплекс машин и аппаратов, используемых для получения и стабилизации в охлаждаемых объектах температур ниже, чем в окружающей среде. Установка состоит из одной или нескольких холодильных машин, оборудования для отвода тепла в окружающую среду, системы распределения и использования холода.

В зависимости от тепловой нагрузки на холодильную установку, разнообразия объектов охлаждения, типа холодильных машин и вида потребляемой энергии применяют либо централизованную, либо локальную систему хладоснабжения. Централизованная система предполагает использование единого комплекса машин и аппаратов для выработки холода различных параметров и его распределения. Система может включать отдельные агрегатированные холодильные машины или представлять комбинацию холодильного оборудования, имеющего общие или взаимозаменяемые элементы (например, блок конденсаторов, ресиверы, коммуникации рабочего тела холодильной машины). Как правило, при проектировании централизованной холодильной установки применяют систему охлаждения технологических объектов промежуточным теплоносителем. Такой вариант хладоснабжения предполагает некоторос увеличение энергозатрат (по сравнению с непосредственным охлаждением потребителей холода рабочим телом холодильной машины), однако позволяет упростить технологическую схему, обеспечивает удобство монтажа и обслуживания оборудования, безопасность и надежность его эксплуатации. Изолированность контура рабочего тела холодильной машины допускает применение аммиака как наиболее дешевого и термодинамически эфективного рабочего тела. для отвода тепла в окружающую среду ооычно примедяют систему оборотного водоохлаждения. В целом централизованная система хладоснабжения обеспечивает высокую степень надежности при меньшем резерве оборудования и меньшей численности обслуживающего персонала.

При небольших тепловых нагрузках, существенной разбросанности объектов охлаждения, а также при непосредственном включении элементов холодильного цикла в схему основного производства, например при газоразделении, целесообразно использование локальной системы получения холода с непосредствениым охлаждением объектов рабочим телом холодильной машины. При этом несколько снижаются энергетические затраты.

В холодильных установках, применяемых в химической промышленности, используют почти все типы холодильных машин, но наибольшее распространение получнли паровые компрессионные н абсорбционные. Как показывает технпко-экономический анализ [1—3], применение абсорбционных холодильных машин обосновано при использовании вторичных энергетических ресурсов в виде дымовых и отработанных газов, факельных сбросов газа, продуктов технологического производства, отработанного пара низких параметров. В ряде производств экономически выгодно комплексное использование машин обоих типов при создании энерготехнологических схем.

Расчет холодильной установки включает следующие стадии: расчет холодильного цикла, тепловые расчеты, подбор холодильного оборудования и расчет коммуникаций контура рабочего тела, расчет систем хладоносителя и оборотного водоохлаждения, расчет тепловой изоляции низкотемпературных аппаратов и трубопроводов, оценку энергетической эффективности холодильной установки и ее технико-экономический анализ.

В настоящем пособни приведен расчет двух холодильных установок — на основе паровой компрессионной и абсорбционной холодильных машин — и дан сравнительный технико-экономический анализ этих варнантов хладоснабженпя.

12.1. КОМПРЕССИОННАЯ ПАРОВАЯ ХОЛОДИЛЬНАЯ УСТАНОВКА

Задание на проектирование. Рассчитать компрессионную холодильную установку для конденсации паров толуола из газовой смеси азот — толуол при следующих условиях: массовый расход газовой смеси $\dot{m_r} = 4.07 \text{ кг/с}$;

температура, давление и состав исходной смеси соответственно $t_r = 100$ °C, $P_r = = 0,1$ МПа, x = 0,06 мол. долей толуола;

степень извлечения толуола $\alpha_n \ge 0.9;$

система охлаждения технологических аппаратов — централизованная с промежуточным хладоносителем;

система водоохлаждения — оборотная с вентиляторными градирнями;

климатические данные местности (г Волгоград): среднемесячная температура воздуха в июле $l_{cp}^{a} = +24.7$ °C; средняя относительная влажность $q_{cp}^{a} = 0.5$;

рабочее тело холодильной машины — аммиак (R717);

вид энергии и источник энергоснабжения — электроэнергия конденсационной электростанции (КЭС).

Схема установки. Схема холодильной установки включает три контура: контур промежуточного хладоносителя для отвода тепла от охлаждаемых техпологических объектов; аммиачный контур холодильной машины; систему оборотного водоохлаждения для передачи тепла атмосферному воздуху (рис. 12.1).

Процесс выделения толуола из парогазовой смеси осуществляют конденсацией паров при охлаждении потока исходной смеси до температуры (**, при которой обеспечена заданная степень извлечения а_n. Жидкая фаза, в данном случае состоящая только из толуола, выделяется в конденсаторе при (** < 1 < 1*, где 1* и (** — температуры, соответствующие условиям насыщения при исходном и конечном составах газовой фазы.

Если $t^* > t_{b1}$ и $t^{**} < t_{b1}$ (где t_{b1} — температура охлаждающей воды из градирни), то необходимо провести процесс конденсации в две стадии: сначала в аппарате, охлаждаемом водой, а далее — используя холодильную установку. В данном случае парциальное давление паров толуола в исходной смеси $xP_r = 0.06 \cdot 0.1 = 6 \cdot 10^{-3}$ МПа, температура насыщения $t^*(x, P_r) =$ = 34.2 °C, температура охлаждающен воды $t_{u1} = 27$ °C (см. разд. 12.1.1). Поскольку разность температур t^* и t_{u1} не превышает температурных напоров в теплообменных аппаратах для охлаждения газов, очевидно, что процесс конденсации следует провести в конденсаторе l, охлаждаемом с помощью холодильной установки.

Обедненная газовая смесь из конденсатора направляется в теплообменник II, охлаждая исходную смесь до температуры *t**. Жидкая фаза из конденсатора поступает в емкость хранения при температуре *t*** Аппараты I и II установлены в помещениях основного производства и связаны коммуникациями хладоносителя с машинно-аппаратным отделением холодильной установки, размещенной в специальном здании.

Рис. 12.1. Схема компрессорной холодильной установки для выделения толуола из парогазовой смеси:

I - 4 — состояние рабочего тела в узловых точках цикла; I — конденсатор толуола; II — теплообменник газовых потоков; III — испаритель аммиака: IV — сепарационное устройство; V — компрессор; VI — маслоотделители; VII — обратный кланан; VIII — конденсатор аммиака: IX — вентиляторная градирия; X — насос для циркуляции воды; XI — ресивер; XII — дроссельное устройство; XIII — насос для циркуляции хладоносителя

Контур рабочего тела аммиачной компрессионной холодильной машины включает основное холодильное оборудование (компрессоры, кондепсаторы, испарители, автоматические дроссельные устройства) и вспомогательные аппараты (сепарационные устройства, маслоотделители, ресиверы, приборы автоматического регулирования и контроля, арматура). Пары аммиака из испарителя *III* отсасываются компрессором V и нагнетаются в конденсатор VIII, где сжижаются, отдавая тепло охлаждающей воде. Жидкий аммиак через дроссельное устройство XII подается в испаритель, где превращается в пар, воспринимая тепло.

Поток пара, уходящий из испарителя, обычно содержит капли жидкого аммиака; попадание их в цилиндры компрессоров создает оиасность аварийного режима работы, особенно при пуске установки или при резком возрастании тепловой нагрузки. Чтобы предотвратить всасывание влажного пара, на линии между испарителем и компрессором установлено сепарационное устройство IV (отделитель жидкости). В потоке пара из компрессора содержится значительное количество смазочного масла. Масляная пленка, попадающая на поверхности теплообменных аппаратов, заметно ухудшает иптенсивность теплообмена. В маслоотделителе VI большая часть масла задерживается и по мере накоплепия возвращается в картер компрессора.

Обратный клапан VII разгружает компрессор от высокого давлення нагнетания при автоматической остановке, а также защищает от прорыва аммиака в рабочее помещение при авариях. Расположенный ниже конденсатора линейный ресивер является сборником конденсата и выполняет две функции: сохраняет теплообменную поверхность конденсатора незатопленной и создает запас рабочего тела для компенсации неравномерности расхода жидкости при колебаниях тепловой нагрузки. Автоматическое дроссельное устройство XII постоянно обеспечивает оптимальное заполнение испарителя жидкостью, обычно на уровне верхиего ряда труб. Тепло конденсации аммиака отводится охлаждающей водой, циркулирующей в оборотной системе. Подогретую в конденсаторе воду подают на орошение насадки вентиляторной градирии IX: охлажденную воду откачивают насосом X и подают в трубное пространство конденсатора VIII.

12.1.1. Определение холодильной мощности и температурного режима установки

Тепловая нагрузка холодильной установки определяется тепловым потоком Q_I , отводимым в конденсаторе паров толуола. Примем, что температуры газовых потоков на входе и выходе конденсатора определяются условиями насыщения для газовой смеси исходного и конечного составов, т. е. t^* (x, P_r) и t^{**} (x', P_r). Температуру жидкого толуола на выходе из аппарата I (см. рис. 12.1) примем равной температуре обедненного газового потока t^{**} (x', P_r). Процесс в конденсаторе принят изобарным, давление в аппарате равно давлению исходной смеси P_r . При заданных значениях температуры и давления газовую фазу будем рассматривать как идеальную газовую смесь (что позволит при расчете энтальпии пренебречь эффектом смешения и влиянием давления). Величину \dot{Q}_{I} находим из уравнения баланса энергии для парогазового пространства конденсатора:

$$\dot{Q}_{l} = 1.05 [\dot{m}_{r} i_{r} (l^{*}, x) - (\dot{m}_{r} - \dot{m}_{*}) i_{r} (l^{**}, x') - \dot{m}_{*} i_{*} (l^{**}) + \dot{m}_{*} r (0 \, ^{\circ}\mathrm{C})],$$

где 1,05 — коэффициент, учитывающий приток тепла из окружающей среды за счет несовершенства тепловой изоляции конденсатора; i_r (t^* , x), i_r (t^{**} , x') и i_* (t^{**}) — энтальпии газовых и жидкой фаз, отсчитанные от 0 °C; r (0 °C) — теплота парообразования толуола при 0 °C.

Температуры *I** и *t***, соответствующие условиям насыщения парогазовой смеси при давлении *P*, и составах *x* и *x'*, рассчитываем по уравнению Антуана.

$$\ln P_V = A - B/(T+C).$$

Для насыщенных паров толуола A = 16,0137, B = 3096,52, C = -53,67 [4] при размерности единицы давления мм рт. ст.

Для смеси исходного состава $P_V^* = x P_r = 0.06 \cdot 0.1 = 6 \cdot 10^{-3}$ МПа, $t^* = 34.2$ °C. Примем температуру выходных потоков газа и жидкости $t^{**} = -10$ °C; тогда по

уравнению Антуана находим давление насыщенных паров толуола $P_V^{**}(t^{**}) = = 3,43$ мм рт. ст., что соответствует составу газовой фазы на выходе из конденсатора $x' = 4,57 \cdot 10^{-3}$ мол. доли. Вычислим достигаемую при этом степень извлечения толуола:

$$a_{\rm H} = \frac{m_{\rm H}}{m_{\rm r}\bar{x}} = \frac{(x-x')}{(1-x')x} = \frac{0.06 - 0.00457}{(1-0.00457)\,0.06} = 0.928.$$

Таким образом, охлаждение смеси до -10 °C обеспечивает заданную степень извлечения толуола ($\alpha_{\mu} > 0.9$).

При вычислении энтальпии можно, учитывая малый интервал изменения температуры и линейную форму зависимости $C_p(t)$, использовать в качестве средних значений теплоемкостей их истинные значения при температурах $0.5t^*$ и $0.5t^{**}$:

$$i_{r}(t^{*}, x) = [\bar{x}C_{\rho r}(t^{*}/2, \bar{x}=1) + (1-\bar{x})C_{\rho r}(t^{*}/2, \bar{x}=0)] t^{*};$$

$$i_{r}(t^{**}, \bar{x}') = [\bar{x}'C_{\rho r}(t^{**}/2, \bar{x}=1) + (1-\bar{x}')C_{\rho r}(t^{**}/2, \bar{x}'=0)] t^{**};$$

$$i_{\kappa}(t^{**}) = C_{\rho \kappa}(t^{**}/2, \bar{x}=1) t^{**}$$

В указанных соотношениях \overline{x} и $\overline{x'}$ — массовые доли толуола в газовых фазах ($\overline{x}=0,1736$ и $\overline{x'}=0,0149$); C_{pr} (t/2, x=1) и C_{px} (t/2, x=1) — удельные теплоемкости толуола в паровой и жидкой фазах; C_{pr} (t/2, x=0) — удельная теплоемкость газообразного азота. По данным [4, 5],

при 0,5*l** = 17,1 °C *C*_{pr} (*x*=1) = 1,11 кДж/(кг·К), *C*_{pr} (*x*=0) = 1,041 кДж/(кг·К); при 0,5*l*** = -5 °C *C*_{pr} (*x*=1) = 1,022 кДж/(кг·К), *C*_{pж} (*x*=1) = 1,62 кДж/(кг·К), *C*_{pr} (*x*=0) = 1,041 кДж/(кг·К).

Значения энтальпии газовых и жидкой фаз равны:

$$i_r$$
 $(t^*, \bar{x}) = 18.1 \text{ K} \square \#/\text{Kr};$ i_r $(t^{**}, \bar{x}') = -5.2 \text{ K} \square \#/\text{Kr};$ $i_\#(t^{**}) = -8.1 \text{ K} \square \#/\text{Kr}.$

Теплота парообразования толуола r (0 °C) = 423 кДж/кг [5].

Массовый расход жидкого толуола, извлекаемого из газовой смеси, составит

$$\dot{m}_{*} = \alpha_{*} \bar{x} \dot{m}_{r} = 0.928 \cdot 0.1736 \cdot 4.07 = 0.656 \text{ Kr/c}.$$

Тепловой поток, отводимый хладоносителем в конденсаторе толуола, равен:

$$\dot{Q}_{I} = 1.05 [4.07 \cdot 18.1 - (4.07 - 0.656) (-5.2) - 0.656 (-8.1) + 0.656 \cdot 423] = 393 \text{ kBt}.$$

Баланс энергии для аппарата // запишем в виде соотношения

$$0.95\dot{m}\left[i_{r}\left(t,\,\bar{x}\right)-i_{r}\left(t^{*},\,\bar{x}\right)\right] = (\dot{m}-\dot{m}_{*})\left[i_{r}\left(t',\,\bar{x}'\right)-i_{r}\left(t^{**},\,\bar{x}'\right)\right],$$

где коэффициент 0,95 учитывает потери тепла. Это уравнение позволяет найти температуру обедненной газовой смеси на выходе из установки (l'r = 67,5 °C) и тепловой поток, передаваемый в аппарате II (Q = 275,8 кВт).

Холодильная мощность, необходимая для выделения толуола в заданных условиях, должна учитывать теплопритоки из окружающей среды в контуре циркуляции хладоносителя и рабочего тепла холодильной машины, которые обычно составляют 10—15 % от тепловой нагрузки технологических аппаратов:

$$\dot{Q}_0 = 1, 1 \dot{Q}_1 = 1, 1 \cdot 393 = 432 \text{ kBr}$$

Если условно отнести все притоки тепла извне в аммиачном контуре к испарителю, то величина \dot{Q}_0 определяет тепловой поток, подводимый к рабочему телу в аппарате *III*.

Режим работы холодильной установки определяется прежде всего внешними условиями: температурами охлаждаемого объекта, стабильностью тепловой нагрузки и параметрами окружающей среды.

Интервал изменения температуры технологического потока в конденсаторах толуола определяется температурами t^* и t^{**} . Примем минимальную разность температур в аппарате / равной 10 °C; тогда температура хладоносителя на входе в конденсатор толуола составит

$$t_{x 2} = t^{**} - \Delta t_{\min} = -10 - 10 = -20$$
 °C.

Следует заметить, что минимальный температурный напор в технологических аппаратах оказывает большое влияние на общую энергетическую и экономическую эффективность низкотемпературных процессов и должен определяться в результате техникоэкономической оптимизации технологического режима установки.

Тепловая нагрузка \dot{Q}_{1} в общем случае может оказаться функцией времени, зависящей от особенностей технологии производства и отличающейся периодичностью и случайным характером отклонений от усредненных значений [6] В данном случае принято, что тепловая нагрузка \dot{Q}_{1} стабильна в течение года.

Отличительной особенностью холодильных машин является сильная зависимость режима работы от параметров окружающей среды: температуры и влажности атмосферного воздуха. В связи с этим следует различать расчетный и эксплуатационные режимы работы холодильной установки. Расчетный режим определяется условиями самого жаркого месяца для данной местности (обычно июля) и используется для подбора холодильного оборудования. Эксплуатационные режимы зависят от времени года и служат для расчета фактических энергетических затрат на производство холода.

Расчетную температуру атмосферного воздуха находят по среднемесячной температуре июля с учетом влияния максимальных температур в данной местности [22]

$$t_{\mu}^{o} = t_{cp}^{o} + 0.25 t_{max} = 24.7 + 0.25 \cdot 42 = 35 \text{ °C}.$$

Расчетную относительную влажность наружного воздуха $\varphi_{\text{H}}^{\text{в}}$ находят по расчетной температуре $l_{\text{H}}^{\text{в}}$ и влагосодержанию воздуха x_{cp} , определенному по среднемесячным значениям параметров атмосферного воздуха для июля. По диаграмме l - x влажного воздуха находим $\varphi_{\text{H}}^{\text{в}} = 33 \%$. Информация о температуре и влажности атмосферного воздуха и расчетные значения этих параметров для городов СССР приведены в СНиП II-A.6—72 [22]. По известным значениям $l_{\text{H}}^{\text{в}}$ и $\varphi_{\text{H}}^{\text{в}}$ находят температуру конденсации аммиака. Температура воды, охлажденной в градирне и подаваемой в конденсатор холодильной машины, равна

$$t_{\rm Bl} = t_{\rm HM}^{\rm B} + \frac{\Delta t_{\rm B}}{\eta_{\rm rp}} = 22,2 + \frac{4}{0,85} = 27 \,{\rm °C},$$

где $l_{\text{нм}}^{\text{в}}$ — температура наружного воздуха по мокрому термометру (по l - x диаграмме влажного воздуха при $l_{\text{h}}^{\text{в}} = 35 \,^{\circ}\text{C}$ и $\overline{\phi}_{\text{h}}^{\text{s}} = 33 \,\%$); $\Delta l_{\text{в}}$ — температура охлаждения воды в вентиляторных градирнях (обычно в пределах 3,5—5 °C); $\eta_{\text{гр}}$ — коэффициент эффективности водоохлаждающего устройства (для вентиляторных градирен 0,75— 0,85) [13]. Температура воды на выходе из конденсатора равна

$$t_{B2} = t_{P1} + \Delta t_{B}^{K1} = 27 + 4 = 31 \text{ °C}.$$

Подогрев воды в конденсаторе $\Delta l_{\rm B}^{\rm Ra}$ можно принять равным $\Delta l_{\rm B}$, пренебрегая эффектом смешения оборотной и свежей воды, добавляемой для компенсации ее убыли вследствие испарения в градирне.

12.1.2. Расчет холодильного цикла

Расчет цикла холодильной машины заключается в определении параметров рабочего тела в узловых точках и исходных данных для проектирования или подбора оборудования.

Температуры кипения и конденсации являются основными внутренними параметрами, определяющими схему и режим работы паровой компрессионной холодильной машины.

Температуру конденсации аммиака находим, принимая минимальную разность температур в пределах 3—5 °С:

$$t_{\rm s} = t_{\rm s\,2} + \Delta t_{\rm min}^{\rm sa} = 31 + 4 = 35 \,{}^{\circ}{\rm C},$$

что обеспечивает рекомендуемую [3, 10, 11] для аммиачных конденсаторов плотность теплового потока $\dot{q}_{\kappa}^{\kappa} = (4-6) \cdot 10^3 \text{ Вт/м}^2$

Температура охлаждаемого объекта определяется температурой хладоносителя, подаваемого в технологический аппарат, $t_{x2} = -20$ °C. Принимая минимальную разность температур в аммиачных испарителях в пределах 3-5 °C, находим температуру кипения аммиака:

$$t_0 = t_{x2} - \Delta t_{\min}^a = -20 - 4 = -24 \ ^{\circ}\text{C}.$$

По диаграмме *i* — lg *p* (см. Приложение 12.2) находим давление паров аммиака в испарителе и конденсаторе:

$$P_0 = 0,159$$
 МПа (при $t_0 = -24$ °C);
 $P_{\kappa} = 1,35$ МПа (при $t_{\kappa} = 35$ °C).

Степень повышения давление в компрессоре $P_{\kappa}/P_0 = 1,35/0,159 = 8,5$; разность давления $P_{\kappa} - P_0 = 1,350 - 0,159 = 1,191$ МПа. Для поршневых компрессоров (ОСТ 26.03-943--77) предельная разность давлений $P_{\kappa} - P_0 \leq 1,67$ МПа [9], что допускает (по условию прочности) использование схемы паровой компрессионной холодильной машины (ПХМ) с одноступенчатым сжатием пара. Для крупных машин при $P_{\kappa}/P_0 < 9$ одноступенчатая схема обеспечивает достаточно высокий к. п. д. холодильной машины и допустимые температуры сжатия паров аммиака t < 160 °C [3, 7, 9] В данном случае принят нерегенеративный цикл без дополнительного переохлаждения жидкого рабочего тела.

Температуру жидкого аммиака перед дроссельным устройством принимают на 2—3 °С ниже температуры конденсации ввиду небольшого переохлаждения в конденсаторах, т. е. $t_3 = t_{\kappa} - 2 = 35 - 2 = 33$ °С. Для исключения влажного хода компрессора пары аммиака перегревают на 5—10 °С в испарителе и во всасывающем трубопроводе за счет внешних теплопритоков; температура рабочего тела перед компрессором $t_1 = t_0 + 5 = -24 + 5 = -19$ °С.

Наносим характерные точки цикла на тепловую диаграмму s - T или $i - \lg P$ для аммиака (рис. 12.2). Последовательность построения цикла такова. На диаграмму наносим изобары P_{κ} и P_0 и изотермы t_3 (в области жидкости) и t_1 (в области перегретого пара) Далее на пересечении изобары P_{κ} и изотермы t_3 находим состояние рабочего тела перед дросселем (точка 3). Аналогично на пересечении линий P_0 =const и t_1 = =const находим состояние пара перед компрессором — точка ' Состояние пара в конце изоэнтропного процесса сжатия (точка 2) находим на пересечении линий s_1 =const и P_{κ} =const. Состояние рабочего тела после дросселя (точка 4) определяется пересечением линий i_3 =const и P_0 =const.

Рис. 12.2. Цикл холодильной машины в диаграммах 5-Т и i-lg P

На рис. 12.2. показаны основные процессы теоретического цикла машины: изоэнтропное сжатие в компрессоре — процесс 1-2; охлаждение сжатого пара, его конденсация и небольшое переохлаждение в конденсаторе — процесс 2-3; дросселирование — процесс 3-4; кипение аммиака и перегрев паров в испарителе и коммуникациях — процесс 4-1. Необходимые для расчетов значения параметров узловых точек холодильного цикла представлены ниже:

	Точки цикла					
Параметры	1	2	3	4		
Р, МПа	0,159	1,35	1,35	0,159		
<i>i</i> , кДж/кг <i>v</i> , м ³ /кг	1664 0,757	1992 0,145	574 1,69 · 10 ⁻³	574		

Данная информация может быть получена также без использования тепловых диаграмм, с помощью таблиц термодинамических свойств аммиака на линии насыщения и в области перегретого пара [7, 8] иля расчетными методами [4, 24]. Вычислим удельную массовую холодопроизводительность рабочего тела в цикле:

$$q_0 = i_1 - i_4 = 1664 - 574 = 1090 \text{ KJ} \text{K/Kr}, \qquad (12.1)$$

удельную работу изоэнтропного сжатия в компрессоре:

$$l_1 = i_2 - i_1 = 1992 - 1664 = 328 \text{ kJ} \text{ k/kr},$$
 (12.2)

холодильный коэффициент теоретического цикла:

$$\varepsilon_{\tau} = q_0 / l_c = 1090 / 328 = 3,32. \tag{12.3}$$

Следует обратить внимание на то, что переохлаждение рабочего тела перед дросселированием (точка 3) за счет внешнего холодного источника позволит увеличить удельную холодопроизводительность q_0 и холодильный коэффициент ε . Таким внешним источником холода могут быть технологические потоки (в данном случае жидкий толуол и обедненная газовая смесь на выходе из конденсатора толуола), температура которых заметно ниже температуры охлаждающей воды ($t^{**} < t_{0.2}$).

Отметим, что охлаждение исходной парогазовой смеси в аппарате II возможно водой из градирни, поскольку температура газового потока $I^* > I_{B1}$. В частности, при снижении температуры в точке 3 до 0 °C значения q_0 и є увеличнваются на 16 %. Ограничением, не позволившим в данном случае воспользоваться регенерацией холода, является условие применения централизованной системы охлаждения. Локальные холоднльные установки с непосредственным охлаждением технологических аппаратов кипящим рабочим телом позволяют не только использовать низкотемпературные технологические потоки для улучшения показателей холодильного цикла, но заметно повысить наиболее низкую температуру в установке t₀. Энергетические и экономические показатели локальных систем значительно выше, чем централизованных, несмотря на эксплуатационные неудобства или необходимость дополнительных мер по безопасности.

12.1.3. Подбор холодильного оборудования

Типовое холодильное оборудование подбирают в определенной последовательности. Вначале по тепловой нагрузке и характеристикам холодильного цикла рассчитывают объемную производительность компрессоров, определяют их тип и требуемое число (с учетом резерва). Далее из условия работы всех установленных компрессоров вычисляют нагрузку на теплообменные аппараты и на основании теплового расчета определяют тип и число испарителей и конденсаторов. Затем выполняют расчет и подбор вспомогательного холодильного оборудования и аммиачных коммуникаций.

Подбор холодильных компрессоров. Массовый расход *m* рабочего тела, необходимый для обеспечения заданной холодильной мощности, равен

$$\dot{m} = \dot{Q}_0/q_0 = 432/1090 = 0,396 \text{ kr/c.}$$
 (12.4)

Необходимая объемная производительность компрессоров по условиям всасывания (точка 1, рис. 12.2)

$$\dot{V}_{a} = \dot{m}v_{1} = 0.396 \cdot 0.757 = 0.300 \text{ m}^{3}/\text{c.}$$
 (12.5)

Суммарный объем, описываемый поршнями в единицу времени, определяется соотношением

$$\dot{V}_{\rm T} = \dot{V}_{\rm A} / \lambda = 0.300 / 0.592 = 0.507 \,{\rm m}^3/{\rm c}.$$
 (12.6)

Коэффициент подачи холодильных компрессоров определяют по графикам (рис. 12.3) как функцию степени повышения давления [8]

Теоретическая производительность V_1^* является паспортной характеристикой компрессоров объемного сжатия и служит основой для их подбора. Необходимый суммарный объем V_1 можно обеспечить при различных вариантах подбора. Число работающих компрессоров зависит от стабильности тепловой нагрузки установки и должно обеспечить экономичное регулирование холодильной мощности. Кроме того, для предприятий с непрерывным режимом работы необходимо предусмотреть резерв машинного оборудования. В данном случае выбираем компрессорный агрегат A220-7-2 ($V_1^*=0,167 \text{ м}^3/\text{с}$) [9], укомплектованный на базе компрессора П220 унифицированной серии (ОСТ 26.03.943—77). Число работающих агрегатов $n^* = V_1/V_1^* = 0,507/0,167 = 3$. Дополнительно устанавливаем один резервный агрегат того же типа. Общее число установленных агрегатов — 4.

Проверим соответствие мощности комплектного электродвигателя марки АОП2-92-4 условиям расчетного режима.

Рис. 12.3. Коэффициенты подачи λ холодильных компрессоров [8]

Рис. 12.4. Индикаторный к. п. д. холодильных компрессоров [8]

Действительная объемная производительность одного компрессора П220

$$\dot{V}_{a}^{*} = \lambda \dot{V}_{1}^{*} = 0.592 \cdot 0.167 = 0.099 \text{ m}^{3}/\text{c}.$$
 (12.7)

Массовая производительность одного компрессора в расчетном режиме

$$\dot{m}^{\kappa} = \dot{V}_{A}^{\kappa} / v_{1} = 0,099 / 0,757 = 0,131 \text{ kr/c.}$$
 (12.8)

Теоретическая мощность, потребляемая компрессором:

$$\hat{W}_{\tau}^{\kappa} = m^{\kappa} l_{s} = 0,131 \cdot 328 = 42,8 \text{ KBT}.$$
 (12.9)

Индикаторный к. п. д. компрессора η_i находим как функцию P_к/P₀. При P_к/P₀=8,5 η_i=0,76 (рис. 12.4). Индикаторная мощность, потребляемая компрессором, равна:

$$\dot{W}_{i}^{\kappa} = \dot{W}_{T}^{\kappa} / \eta_{i} = 42.8/0.76 = 56.4 \text{ kBt.}$$
 (12.10)

Мощность, расходуемую на преодоление сил трения в компрессоре, оценим по условной величине удельного давления трения p_i^{vp} (для аммиачных машин $p_i^{vp} = 60 \cdot 10^3 \Pi a$, для фреоновых $p_i^{p} = 40 \cdot 10^3 \Pi a$) [8] Тогда

$$\dot{W}_{Tp}^{\kappa} = p_i^{TP} V_T^{\kappa} = 60 \cdot 10^3 \cdot 0.167 \cdot 10^{-3} = 10 \text{ kBT}.$$

Эффективная мощность (на валу компрессора)

$$\dot{W}_{e}^{\kappa} = \dot{W}_{i}^{\kappa} + \dot{W}_{\tau p}^{\kappa} = 56.4 + 10 = 66.4 \text{ KBr.}$$
 (12.11)

Принимая к. п. д. передачи $\eta_n = 1$, находим коэффициент загрузки комплектного электродвигателя АОП-2-92-4 (номинальная мощность W = 100 кВт): $k_3 = 66,4/100 = 0,664$. Для асинхронного двигателя к. п. д. и соз φ являются функцией k_3 (как показано на рис. 12.5). В данном случае $\eta_{дв} = 0,85$, соз $\varphi = 0,7$, что находится в пределах рекомендуемых значений для асинхронных электродвигателей.

Электрическая мощность, потребляемая из сети компрессорным агрегатом А220-7-2, равна:

$$\dot{W}_{2}^{\kappa} = \dot{W}_{e}^{\kappa} / (\eta_{n} \eta_{aB}) = 66.4 / (1 \cdot 0.85) = 78.1 \text{ kBT.}$$
 (12.12)

Комплектный электродвигатель в расчетных условиях обеспечивает работу aгрегата и сохраняет запас мощности, необходимый для пускового периода работы холодильной установки.

При проектировании неагрегатированной холодильной установки основные теплообменные аппараты (конденсаторы и испарители) подбирают для всей установки и соединяют коллекторами с компрессорами и другим оборудованием. При этом нагрузка на аппараты определяется из условия работы всех установленных компрессоров, включая резервные. Общая схема расчета аппаратов холодильной установки соответствует изложенной в гл. 2. Массовый расход циркулирующего рабочего тела при четырех работающих компрессорах 4

$$\sum_{i=1}^{4} \dot{m}_{i} = \dot{m}^{\kappa} n^{\kappa} = 0,131 \cdot 4 = 0,524 \text{ kr/c}.$$

Тепловая нагрузка на испарители

$$\dot{Q}_0^{\mu} = q_0 \sum_{i=1}^{4} \dot{m}_i = 1090 \cdot 0.524 = 571 \text{ kBt}.$$

Тепловую нагрузку на конденсаторы определим по энергетическому балансу аммиачного контура холодильной установки:

$$\dot{Q}^{\kappa \mu} = \dot{Q}_{0}^{\mu} + n^{\kappa} \dot{W}_{i}^{\kappa} = 571 + 4 \cdot 56, 4 = 796, 6 \text{ } \kappa \text{Br}.$$
(12.13)

При этом расчетная нагрузка $\dot{Q}^{\kappa_{\pi}}$ оказывается с некоторым запасом, поскольку в аммиачных компрессорах часть тепла отводится водой, циркулирующей в окружающих полостях компрессора.

Подбор и расчет испарителей. Исходные данные: тепловая нагрузка \dot{Q}_{\parallel}^{*} =571 кВт; температура кипения аммиака $t_0 = -24$ °C; температура хладоносителя на выходе из испарителя $t_{x2} = -20$ °C.

В качестве хладоносителя используем водный раствор хлорида кальция, концентрация которого определяется из условия незамерзания раствора до температур, на 7—10 °С ниже t₀ [13]. Температура начала затвердевания раствора

$$t_3 \leq t_0 - (7 - 10 \ ^{\circ}\text{C}) = -24 - (10) = -34 \ ^{\circ}\text{C}.$$

Выбираем раствор массовой долей соли \bar{x} = 0,266, t_3 = - 34,6 °C, плотностью при 15 °C, равной ρ_{15} = 1250 кг/м³

При закрытой системе охлаждения обычно используют горизонтальные кожухотрубчатые испарители, в которых температура хладоносителя снижается на 3—6 °C. Примем $\Delta t_x = 3$ °C; тогда температура хладоносителя на входе в испаритель

$$t_{x1} = t_{x2} + \Delta t_x = -20 + 3 = -17$$
 °C.

Средний температурный напор в испарителях находим, упрощая уравнение (2.6) для случая $t_0 = \text{const}$:

$$\theta_{0} = \frac{t_{x1} - t_{x2}}{\ln \frac{t_{x1} - t_{0}}{t_{x2} - t_{0}}} = \frac{-17 - (-20)}{\ln \frac{-17 - (-24)}{-20 - (-24)}} = 5,36 \text{ °C.}$$
(12.14)

Средняя температура хладоносителя в испарителе

$$t_x = t_0 + 0_0 = -24 + 5,36 = -18,64$$
 °C.

Физические свойства водного раствора хлорида кальция массовой долей $\bar{x} = -0.266$ при $t_x = -18.64$ °C [7] плотность $\rho_x = 1258$ кг/м³, вязкость $v = 8.2 \cdot 10^{-6}$ м²/с, теплоемкость $c_x = 2.79$ кДж/(кг·К), теплопроводность $\lambda = 0.51$ Вт/(м·К), коэффициент объемного расширения $\beta = 3.4 \cdot 10^{-4}$ K⁻¹

Коэффициент теплопередачи аммиачных кожухотрубчатых испарителей колеблется в пределах 250—580 Вт/($M^2 \cdot K$) в зависимости от плотности, температуры и скорости хладоносителя [7, 10, 11] Для данных условий примем ориентировочно $K = = 350 \text{ Вт/}(M^2 \cdot K)$; тогда плотность теплового потока

$$\dot{q}_F = K0_0 = 350 \cdot 5,36 = 1876 \text{ Bt/m}^2$$

Необходимая поверхность теплообмена составит:

$$F = \dot{Q}_0^* / \dot{q}_F = 571\ 000 / 1876 = 304\ \text{m}^2$$
Подбираем [10, 11] два аппарата типа ИКТ-140 ($F^{*} = 154 \text{ м}^{2}$). Уточненное значение плотности теплового потока при выбранных условиях определяем по методике, изложенной в гл. 2. Плотность теплового потока по внутренней поверхности $\dot{q}_{F}^{\text{вн}} = = 1985 \text{ Вт/м}^{2}$ Тогда плотность теплового потока по среднему диаметру труб

$$\dot{q}_F = \dot{q}_F^{\text{BH}} d_{\text{BH}} / d_{\text{CP}} = 1985 \cdot 0.019 / 0.022 = 1714 \text{ BT} / \text{M}^2$$

Средний коэффициент теплопередачи

$$K = \dot{q}_F / \theta_0 = 1714 / 5,36 = 320 \text{ Bt} / (\text{m}^2 \cdot \text{K}),$$

т. е. несколько ниже принятого значения.

Тепловой поток, передаваемый поверхностью двух испарителей ИКТ-140, равен

$$\dot{Q}_0 = 2F^{\mu}q_F = 2 \cdot 154 \cdot 1714 = 528 \text{ kBt}.$$

Величина \dot{Q}_0 меньше расчетной тепловой нагрузки $\dot{Q}_0^n = 571$ кВт, поэтому устанавливаем два аппарата типа ИКТ-180 ($F^n = 193 \text{ м}^2$) [10, 11]. Поскольку технические характеристики испарителей ИКТ-140 и ИКТ-180 различаются только длиной труб, не будем иовторно уточнять плотность теплового потока \dot{q}_F . Суммарный тепловой поток в двух испарителях ИКТ-180 равен

$$\dot{Q}_0 = 2F''\dot{q}_F = 2 \cdot 193 \cdot 1714 = 662 \text{ kBt},$$

что обеспечивает расчетную тепловую нагрузку с запасом.

Подбор и расчет конденсаторов. Исходные данные: тепловая нагрузка $\dot{Q}^{\kappa a} = -796,6 \ \kappa B \tau$; температура конденсации аммиака $l_{\kappa} = 35 \ ^{\circ}C$; температура воды на входе в аппарат $l_{в1} = 27 \ ^{\circ}C$; температура воды на выходе из аппарата $l_{в2} = 31 \ ^{\circ}C$.

Прн оборотной системе водоснабжения холодильной установки обычно ирименяют кожухотрубчатые конденсаторы. Ориентировочно коэффициент теплопередачи для аммиачных аппаратов такого типа $K = 800 \text{ Bt}/(\text{m}^2 \cdot \text{K})$ [7, 8] Средний температурный напор в конденсаторах

$$\theta_{\kappa} = (t_{s2} - t_{s1}) / \ln \frac{t_{\kappa} - t_{s1}}{t_{\kappa} - t_{s2}} = (31 - 27) / \ln \frac{35 - 27}{35 - 31} = 5.77 \text{ °C.}$$
(12.15)

Плотность теплового потока

$$\dot{q}_F = K\theta_{\rm M} = 800 \cdot 5.77 = 4616 \ {\rm Bt} / {\rm M}^2$$

Необходимая поверхность теплообмена ориентировочно составит

$$F = \dot{Q}^{\kappa n} / \dot{q}_{F} = 796\ 600 / 4616 = 172\ \text{m}^{2}$$
.

Выбираем [10, 11] два конденсатора КТГ-90 ($F^{\kappa_2} = 90 \text{ м}^2$). Уточненное (см. гл. 2) значение плотности теплового потока (по внутренней поверхности) при выбранных условиях $\dot{q}_F^{\text{вн}} = 6125 \text{ Вт/м}^2$; расчетная плотность потока (по среднему диаметру труб)

$$\dot{q}_F = \dot{q}_F^{\text{av}} d_{\text{av}} / d_{\text{cp}} = 6125 \cdot 0.02 / 0.0225 = 5444 \text{ BT} / \text{M}^2$$

Коэффициент теплопередачи

$$K = \dot{q}_F / 0_{\kappa} = 5444 / 5.77 = 943 \text{ Bt} / (\text{m}^2 \cdot \text{K}),$$

т. е. больше принятого значения K = 800 Вт/(м²·K). Тепловой поток, передаваемый поверхностью двух конденсаторов КТГ-90, равен

$$\dot{Q} = 2F^{\kappa a}\dot{q}_F = 2 \cdot 90 \cdot 5444 = 980 \text{ KBT},$$

что обеспечивает с запасом тепловую нагрузку конденсаторов: Q^{kg} = 796,6 кВт.

Подбор вспомогательного оборудования. Вспомогательное оборудование аммиачного контура (маслоотделители, ресиверы, отделители жидкости) подбирают по техническим данным основного холодильного оборудования с учетом эксплуатационных норм. Маслоотделитель выбираем по диаметру нагнетательного патрубка компрессора и проверяем скорость паров в аппарате. Для компрессора П220 диаметр нагнетательного патрубка $d_{\mu} = 0,1$ м. В соответствии с этим подбираем [7, 12] маслоотделитель циклонного типа марки 100МО (диаметр корпуса D = 0,426 м). Скорость паров в сосуде не должна превышать 1 м/с [13] Рассчитаем скорость паров:

$$w = 4\dot{m}^{\kappa}v_2/(\pi D^2) = 4.0,131.0,145/(\pi \cdot 0,462^2) = 0,13 \text{ m/c} < 1 \text{ m/c}, \qquad (12.16)$$

где \dot{m}^{κ} — массовая производительность одного компрессора П220 в условиях расчетного цикла; v_2 — удельный объем паров на линии нагнетания при P = 1.35 МПа и температуре нагнетания t = 140 °C.

Некоторое количество масла все же уносится в систему и скапливается в нижней части аппаратов, откуда периодически удаляется через маслосборник (на схеме не показан). В холодильной установке данной производительности достаточно использовать один маслосборник марки 300СМ.

В качестве ресиверов используют горизонтальные цилиндрические сосуды. Емкость линейных ресиверов определяют, исходя из возможности создания запаса аммиака в количестве 45 % емкости испарительной системы с учетом их 50 %-ного заполнения в рабочем режиме [13]:

$$\sum V_{np} = 0.45 \sum V''/0.5 = 0.45 \cdot 2 \cdot 2.64/0.5 = 4.75 \text{ m}^3$$

В нашем случае установлены два испарителя ИКТ-180: объем межтрубного пространства каждого испарителя V^{*}=2,64 м³ Необходимая емкость обеспечивается установкой двух линейных ресиверов марки 2,5РВ [7, 12].

Емкость дренажного ресивера определяют, исходя из возможности приема жидкого аммиака из наиболее крупного аппарата (в данном случае испарителя) с учетом предельного заполнения не более 80 % объема:

$$\Sigma V_{ap} = 1.2V^{H} = 1.2 \cdot 2.64 = 3.17 \text{ m}^{3}.$$

Устанавливаем один дренажный ресивер марки 3,5РД емкостью 3,5 м³

Отделители жидкости устанавливаем после каждого испарителя и подбираем по диаметру парового патрубка испарителя. Для испарителя ИКТ-180 диаметр парового патрубка d = 150 мм; устанавливаем отделители жидкости марки 1500Ж [7, 12] с паровым патрубком диаметром d = 150 мм; диаметр сосуда D = 800 мм. Скорость паров в сосуде не должна превышать 0,5 м/с [13]

$$w = 4\dot{m}''v_1/(\pi D^2) = 4.0,262.0,757/(\pi 0.8^2) = 0.39 \text{ m/c} < 0.5$$

Массовый расход аммиака через один испаритель в условиях расчетного цикла находим как половину общего массового расхода аммиака в установке:

$$\dot{m}'' = 0.5 \sum_{i=1}^{4} \dot{m}_i = 0.5 \cdot 0.524 = 0.262 \text{ kr/c}.$$

При эксплуатации холодильной установки в верхней части конденсаторов и ресиверов скапливаются неконденсирующиеся газы (обычно воздух). При этом повышается общее давление в линии нагнетания и ухудшается интенсивность теплообмена в конденсаторах, что в конечном счете приводит к росту затрат энергии. Удаление воздуха осуществляется автоматическим воздухоотделителем (на схеме (рис. 12.1) не показан). Один воздухоотделитель типа AB-4 обеспечивает удаление воздуха из установки холодильной мощностью до 1700 кВт [13] Расчет коммуникаций. После подбора холодильного оборудования формируют монтажно-технологическую схему аммиачного контура холодильной установки, на основании которой определяют длину коммуникаций, число поворотов, переходов и других местных сопротивлений.

Расчет трубопроводов аммиачного контура — это определение категории трубопроводов, выбор вида и материала труб, расчет сечения трубопроводов и проверка фактического падения давления в коммуникациях. Все трубопроводы для аммиака, независимо от давления и температуры, относятся к категории I [13]. При диаметре условного прохода до 40 мм применяют бесшовные холоднотянутые трубы, при больших диаметрах бесшовные горячекатаные. При температуре эксплуатации выше — 40 °С используют трубы, изготовленные из стали 20. Диаметры трубопроводов, непосредственно присоединяемых к компрессорам и основным аппаратам, определяют по диаметру выходного патрубка, диаметры общих коммуникаций — по рекомендуемым значениям оптимальной скорости: для паров — 15 м/с, для жидкого аммиака — 0,5 м/с [6, 13]. Общая схема расчета трубопроводов соответствует принятой в гл. 1.

Допустимое падение давления на нагнетательном трубопроводе 15 кПа, что соответствует кажущемуся повышению температуры конденсации на 0,5 °C; при этом расход энергии увеличивается на 1 % [13].

Допустимое падение давления на всасывающем трубопроводе составляет 8 кПа, что соответствует кажущемуся понижению температуры кипения на 1 °С; при этом холодильная мощность снижается на 4 % [13]. Допустимое падение давления на жидкостной линии от ресивера до дроссельного устройства на испарителе составляет 25 кПа [6]

При выборе диаметра трубопроводов аммначного контура должно соблюдаться условие $\Delta P < \Delta P_{xon}$.

12.1.4. Расчет контура хладоносителя

При использовании закрытых охлаждаемых аппаратов и кожухотрубчатых испарителей применяют закрытые двух- или трехтрубные схемы циркуляции, в которых отсутствует свободный уровень хладоносителя, находящийся под атмосферным давлением. В данном случае использована двухтрубная схема (рис. 12.6). Хладоноситель после насосов / направляется в испарители 2 холодильной установки и далее через расходомер в фильтр 3 — к коллектору 4, установленному обычно в технологическом цехе.

Поток хладоносителя, охлажденный в испарителях до заданной температуры, разделяется по объектам охлаждения (на схеме конденсатор толуола 5), где подогревается. Потоки подогретого хладоносителя от всех объектов охлаждения объединяются коллектором 7 и по общему трубопроводу подаются к насосам. Для компенсации температурных изменений объема хладоносителя установлен расширительный бак 6 в самой верхней точке циркуляционного контура (на 1-2 м выше верхней отметки объектов охлаждения). Расширительный бак соединен с обратным коллектором, избыток хладоносителя при тепловом расширении сливается в приемный бак. В циркуляционном контуре обычно устанавливают датчики приборов местного и дистанционного контроля температуры, давления и расхода хладоносителя, исполнительные органы систем автоматического пуска и остановки насосов, подключения объектов охлаждения.

При проектировании контура хладоносителя необходимо рассчитать сечение трубопроводов, определить падение давления в отдельных элементах и в контуре в целом, подобрать насосы и определить расход энергии на циркуляцию хладоносителя, а также рассчитать объем расширительного бака.

Все коммуникации для хладоносителей, независимо от параметров, относятся к категории V; при этом используют электросварные трубы [13]

По уравнениям раздела [] рассчитаны параметры трубопроводов хладоносителя на внешних коммуникациях от холодильной станции до коллекторов в технологическом цехе и трубопроводов внутренней разводки от коллектора к аппаратам конденсации толуола.

Гидравлическое сопротивление испарителя ИКТ-180 рассчитывают как сумму сопротивлений трения в трубах и местных сопротивлений. Общее падение давления в циркуляционном контуре хладоносителя $\Delta P_c = 201,4$ кПа.

Насосы для циркуляции хладоносителя подбирают по объемной производительности и необходимому напору. Общий объемный расход хладоносителя

$$\dot{V}_x = \dot{Q}_0^u / (\rho_x c_x M_x) = 571 / (1258 \cdot 2,79 \cdot 3) = 0,054 \text{ m}^3/\text{c}$$

Необходимый напор насоса для замкнутого циркуляционного контура равен общему гидравлическому сопротивлению сети, т. е. $\Delta P_{\mu} \ge \Delta P_{c} = 201,4$ кПа. Для водных растворов обычно применяют центробежные насосы консольного типа. Устанавливаем два рабочих и один резервный насос 6К-12 (объемная производительность насоса $\dot{V}_{\mu} = -0,03$ м³/с, полный напор $\Delta P_{\mu} = 220$ кПа, к. п. д. насоса $\eta_{\mu} = 0,8$, мощность электродвигателя $\dot{W} = 14$ кВт [7]). Мощность на валу насоса при напоре, равном сопротивлению сети:

$$\dot{W}_{\mu} = \dot{V}_{\mu} \Delta P_{c} / \eta_{\mu} = 0.03 \cdot 201.4 / 0.8 = 7.55 \text{ kBt}$$

Коэффициент загрузки асинхронного двигателя (см. рис. 12.5)

$$k_3 = \dot{W}_{\rm H} / \dot{W} = 7.55 / 14 = 0.54.$$

К. п. д. двигателя $\eta_{ab} = 0.8$; к. п. д. иередачи $\eta_n = 1$. Электрическая мощность, потребляемая двигателем одного насоса, равна

$$\hat{W}_{n} = \hat{W}_{n} / (\eta_{n} \eta_{nu}) = 7,55 / (1 \cdot 0.8) = 9.44 \text{ kBt}.$$

Общий расход энергии на циркуляцию хладоносителя в холодильной установке $\dot{W}_x = 2\dot{W}_2 = 2 \cdot 9.44 = 18.88$ кВт.

Минимальный объем расширительного бака рассчитывают по условию максимального эксплуатационного изменения температуры хладоносителя V₆> VβM.

Объем контура хладоносителя равен сумме объемов трубного пространства двух испарителей ИКТ-180, конденсаторов толуола и объема коммуникаций. Объем трубного пространства испарителя $V_{\tau_p}^u = 0.95 \text{ м}^3$ [10] Конденсаторы толуола не рассчитывались,

поэтому оценим суммарный объем трубного пространства технологических аппаратов конденсации $\sum V_{\text{тр}}^{\kappa_{\text{п}}} = 4 \, \, \text{м}^3 \,$ Тогда

$$V = 2V_{\tau p}^{u} + \sum V_{\tau p}^{v, x} + V_{x} = 2V_{\tau p}^{u} + \sum V_{\tau p}^{v, x} + \pi D_{1 u u}^{2} L_{1}/4 + \pi D_{2 u u}^{2} L_{2}/4 = 2 \cdot 0.95 + 4.0 + \pi 0.313^{2} \cdot 250/4 + \pi 0.207^{2} \cdot 100/4 = 28.4 \text{ m}^{3}$$

Здесь $D_{1 \text{ вн}}$ и L_1 — внутренний диаметр и длина труб в коммуникациях хладоносителя от аппаратов коллектора; $D_{2 \text{ вн}}$ и L_2 — диаметр и длина труб между коллекторами 4 и 7 (см. рис. 12.6).

Максимальное изменение температуры хладоносителя при полном отключении установки $\Delta t = t^{8} - t_{x} = 35 - (-20) = 55 \text{ °C}$; коэффициент объемного расширения хладоносителя $\beta = 3.4 \cdot 10^{-4} \text{ K}^{-1}$ [7] Объем расширительного бака $V_{6} = 28.4 \cdot 3.4 \cdot 10^{-4} \cdot 55 \approx \approx 0.5 \text{ м}^{3}$

12.1.5. Расчет системы оборотного водоохлаждения

Проектирование системы оборотного водоохлаждения предполагает подбор и поверочный расчет вентиляторных градирен, расчет трубопроводов, подбор циркуляционных насосов и определение расхода энергии на работу системы водоохлаждения.

Подбор и расчет градирен выполним упрощенно, используя рекомендации [13]; более точные подходы к расчету водоохлаждающих систем различных типов изложены в [14, 15].

Подбор и расчет вентиляторных градирен. Исходные данные: тепловая нагрузка $\dot{Q} = 796.6$ кВт; расход охлаждаемой воды $\dot{m}_{\rm B} = 47.6$ кг/с; температура воды на входе в градирню $l_{\rm B2} = 31$ °C; температура охлажденной воды $l_{\rm B1} = 27$ °C. Состояние наружного воздуха: $l_{\rm B}^{\rm B} = 35$ °C, $\phi_{\rm B}^{\rm B} = 33$ %.

Предварительно определим тип градирен и их число, задаваясь ориентировочным значением удельной тепловой нагрузки q_F или плотностью орошения g. Для вентиляторной пленочной градирни ширину зоны охлаждения (т. е. охлаждение воды в градирне) примем равной подогреву в конденсаторах $\Delta t_{\rm B} = t_{\rm B2} - t_{\rm B1} = 4$ °C, пренебрегая тепловым эффектом притока свежей воды на подпитку системы (не более 10 %). Плотность орошения обычно находится в пределах 2,5-3 кг/($m^2 \cdot c$): примем g = 2,5 кг/($m^2 \cdot c$) [13] Удельная тепловая нагрузка (на сдиницу площади сечения градирни) равна

$$\dot{q}_F = gc_{\rm B}\Delta t_{\rm B} = 2.5 \cdot 4.18 \cdot 4 = 41.8 \text{ KBT/M}^2.$$
 (12.17)

Необходимая суммарная площадь поперечного сечения охлаждающих устройств

$$F_{\rm mc} = \dot{Q}/\dot{q}_F = 796.6/41.8 = 19.06 \,\,{\rm M}^2$$

что обеспечивается тремя градирнями марки ГПВ-320 [13].

Поверочный расчет градирни сводится к определению действительного теплового потока на основе уравнения [13]:

$$\dot{Q}_{\rm rp} = \beta \Delta I F_{\rm rp}, \tag{12.18}$$

где β — эмпирический коэффициент, имеющий смысл потока Рейнольдса [14], кг/(м² · c); F_{rp} — поверхность соприкосновения воды с воздухом, м²; ΔI_{cp} — средняя разность энтальпий влажного воздуха в потоке и в пограничном слое у поверхности воды, кДж/кг.

Средняя разность энтальпий для противотока равна:

$$\Delta I_{\rm cp} = [(I''_{\rm B2} - I_2) - (I''_{\rm B1} - I_1)] / \ln \frac{I''_{\rm B2} - I_2}{I''_{\rm B1} - I_1}, \qquad (12.19)$$

где I'_{s2} и I'_{s1} — энтальпии насышенного воздуха при температуре воды на входе l_{s2} и на выходе t_{s1} ; I_1 и I_2 — энтальпии воздуха на входе и на выходе.

Энтальпии I_1 , I_{s1}'' и I_{s2}'' находим по диаграмме I - x для воздуха (рис. 12.7): $I_1 = = 65 \text{ к} \Pi \text{ к}/\text{к}\text{г}$, $I_{s1}'' = 85,82 \text{ к} \Pi \text{ к}/\text{к}\text{г}$, $I_{s2}' = 106,04 \text{ к} \Pi \text{ к}/\text{к}\text{г}$. Энтальпию воздуха на выходе

из градирни найдем из уравнения теплового баланса градирпи:

$$\dot{Q}_{\rm rp} = \dot{m}_{\rm s}' c_{\rm s} \left(t_{\rm s2} - t_{\rm s1} \right) = \dot{m}_{\rm sx} \left(t_2 - t_1 \right) \left(1 - c_{\rm s} t_{\rm s1} / \varepsilon \right), \tag{12.20}$$

где $\dot{m}'_{\rm B}$ — массовый расход воды через одну градирню:

 $\dot{m}_{\rm B}' = \dot{m}_{\rm B}/3 = 47,6/3 = 15,87$ Kr/c;

*m*_{вх} — массовый расход воздуха [13]

$$\dot{m}_{\rm bx} = \dot{V}_{\rm bx} \rho_{\rm bx} = 16.9 \cdot 1.147 = 19.4 \ {\rm kr/c};$$

 $\varepsilon = (I_2 - I_1)/(x_2 - x_1)$ — отношение, характеризующее процесс изменения состояния воздуха; для летнего режима, близкого к изотермическому, $\varepsilon = 2500$ кДж/кг [13]

Из уравнения (12.20) иаходим

$$I_2 = I_1 + \frac{\dot{m'}_{\rm B}c_{\rm B}(t_{\rm B2} - t_{\rm B1})}{\dot{m}_{\rm BX}(1 - c_{\rm B}t_{\rm B1}/\varepsilon)} = 65 + \frac{15,87 \cdot 4,18(31 - 27)}{19,4(1 - 4,18 \cdot 27/2500)} = 79,3 \text{ KJ} \text{K/Kr}.$$

По диаграмме I - x находим конечное состояние воздуха в процессе (см. рис. 12.7). При $\varepsilon = 2500$ кДж/кг и $I_2 = 79,3$ кДж/кг $\varphi_2 = 50$ %, что вполне допустимо. Среднюю разность энтальпий находим по уравнению (12.19):

$$\Delta I_{\rm cp} = \left[(106,04-79,3) - (85,82-65) \right] / \ln \frac{106,04-79,3}{85,82-65} = 23,66 \text{ kJ} \text{ k/kr}.$$

Коэффициент β для щелевой и сотоблочной регулярной насадки рассчитывают по уравнению [13]:

$$\beta = 0.284 \, (\omega \rho)^{0.57} g_{\text{BP}}^{0.29} \, (L/d_3)^{-0.515}, \qquad (12.21)$$

где ($\omega \rho$) — массовая скорость воздуха в свободном сечении насадки; g_{sp} — плотность орошения на 1 м смоченного периметра; L — высота насадки; d_s — эквивалентный диаметр щели (d_s = 3,65 мм) [13].

Подставив численные значения, получим:

$$\begin{split} & \psi \rho = \dot{m}_{\rm BX} / F_{\rm BO3} = 19,4/4,1 = 4,73 \ {\rm Kr} / ({\rm M}^2 \cdot {\rm c})\,; \\ g_{\rm BP} = \dot{m}_{\rm B}' / (F_{\rm n.c} \,F_{\rm v}) = 15,87/(6,5\cdot690) = 3,5\cdot10^{-3} \ {\rm Kr} / ({\rm M}\cdot{\rm c})\,; \\ & L = F_{\rm rp} / (F_{\rm v}F_{\rm nc}) = 772/(690\cdot6,5) = 0,172 \ {\rm M}. \end{split}$$

Значения поверхности градирни F_{rp} , удельной поверхности насадки F_v , поперечного сечения $F_{n,c}$ и свободного сечения для воздуха $F_{воз}$ взяты из [13].

Уравнение (12.21) применимо для режима пленочного течения при $w\rho \leqslant 5 \, \kappa r/(m^2 \cdot c);$ $g_{вp} \leqslant 1.7 \cdot 10^{-2} \, \kappa r/(m \cdot c)$ и $L/d_s \leqslant 70$, что соответствует данному расчету. Коэффициент β в градирне равен

$$\beta = 0.284 (4.73)^{0.57} (3.5 \cdot 10^{-3})^{0.29} (172/3.65)^{-0.515} = 18.3 \cdot 10^{-3} \text{ kr}/(\text{m}^2 \cdot \text{c}).$$

Тепловой поток для одной градирни находим по уравнению (12.18):

$$\dot{Q}_{rp} = 18,3 \cdot 10^{-3} \cdot 23,66 \cdot 772 = 334 \text{ kBt}.$$

Возможная тепловая нагрузка трех градирен $\dot{Q} = 3\dot{Q}_{\rm rp} = 3.334 = 1002$ кВт, что больше расчетной на 25 %.

Расчет энергии на привод двух вентиляторов градирни ГПВ 320 равен:

$$W_{\text{BT}} = V_{\text{BO3}} \Delta P_{\text{BO3}} / (1000 \eta_{\text{B}} \eta_{\text{n}} \eta_{\text{AB}}) = \frac{16.9 \cdot 187}{(1000 \cdot 0.5 \cdot 1 \cdot 0.85)} = 7.4 \text{ kBT}.$$

При этом напор, развиваемый вентилятором, равен сумме сопротивления градирни и потери напора на выходе:

$$\Delta P_{\rm BT} = \Delta P_{\rm BO3} + \rho_{\rm BO3} w_{\rm BMX}^2 / 2 = 160 + 1.147 \cdot 6.9^2 / 2 = 187 \ \Pi a.$$

366

Скорость воздуха на выходе из градирни

 $w_{\text{BMX}} = (\dot{V}_{\text{BO3}}/2) / (\pi D_{\text{BT}}^2/4) = (16,9/2) / (\pi \cdot 1,25^2/4) = 6,9 \text{ m/c},$

где $D_{\text{вт}}$ — диаметр вентиляторов градирни.

Мощность, потребляемая вентиляторами трех градирен, равна:

$$\sum \hat{W}_{ar} = 3 \hat{W}_{ar} = 3.7, 4 = 22, 2 \text{ KBT}.$$

Коммуникации оборотной воды относятся к категории V; для них применяют электросварные трубы [13]. Гидравлический расчет коммуникаций оборотной системы проводится аналогично расчету контура промежуточного хладоносителя. Приводим результаты расчета, необходимые в дальнейшем для оценки энергетической эффективности установки.

Сопротивление напорной линии от насосов до градирни $\Delta P_1 = 9.8$ кПа. Сопротивление всасывающей линии от резервуара градирии до насоса $\Delta P_2 = 2$ кПа.

Гидравлическое сопротивление трубного пространства конденсатора КТГ-90 рассчитываем по уравнениям гл. 2; $\Delta P^{\kappa a} = 133.2 \text{ кПа}$. Напор, необходимый для работы центробежных форсунок водораспределителя градирни, находим по гидравлическим характеристикам форсунок: $\dot{m}_{\phi} = = \int (\Delta P_{\phi}) [16]$. Расход воды через одну форсунку

$$m_{\Phi} = m_{B}/(3n_{\Phi}) = 47.6/(3 \cdot 24) = 0.66 \text{ kr/c},$$

при этом $\Delta P_{\Phi} = 25$ кПа.

Общее падение давления в контуре оборотной воды

$$\Delta P_{\rm c} = \Delta P_1 + \Delta P_2 + \Delta P^{\kappa a} + \Delta P_{\phi} = 9.8 + 2 + 133.2 + 25 = 170 \text{ km}a.$$

Общий объемный расход воды равен

$$\dot{V}_{a} = \dot{Q}/(c_{a}\rho_{a}\Delta t_{a}) = 796.6/(996\cdot4.18\cdot4) = 0.048 \text{ m}^{3}/\text{c}.$$

Полный напор, развиваемый насосом (см. гл. 1), равен:

$$\Delta P_{\rm u} = \Delta P_{\rm c} + \rho_{\rm b} g H_{\rm f} = 170 + 996 \cdot 9.81 \cdot 2.5 = 194.5 \text{ kma},$$

где H_r = 2,5 м — геометрическая высота подъема воды, равная высоте градирни [13]

Устанавливаем два рабочих и один резервный насос консольного типа 6K-12 [7]. Объемная производительность насоса $0,03 \text{ м}^3/\text{с}$, полный напор $\Delta P_{\mu} = 220 \text{ к}\Pi a$, к. п. д. насоса $\eta_{\mu} = 0,8$, мощность электродвигателя $\dot{W} = 14 \text{ кBt}$. Мощность на валу насоса при напоре, равном сопротивлению сети:

$$\dot{W}_{\rm H} = \dot{V}_{\rm H} \Delta P_{\rm c} / \eta_{\rm H} = 0.03 \cdot 194.5 / 0.8 = 7.29 \text{ kBt}.$$

Коэффициент загрузки двигателя

$$k_3 = \dot{W}_{\rm H} / \dot{W} = 7,29/14 = 0,52.$$

Этот коэффициент слишком мал, поэтому целесообразно заменить комплектный электродвигатель двигателем меньшей мощности ($\dot{W} = 10$ кВт). Тогда при коэффициенте загрузки $k_3 = 7,29/10 = 0,73$ получим $\eta_{ab} = 0,85$.

Электрическая мощность, потребляемая двигателем одного водяного насоса (см. рис. 12.5), равна:

$$W_{s} = W_{\mu}/(\eta_{n}\eta_{ab}) = 7,29/(1.0,85) = 8,58 \text{ kBt}.$$

Общий расход энергии на циркуляцию воды

$$\Sigma W_{3} = 2 \cdot 8,58 = 17,15 \text{ KBT}.$$

Общий расход энергии на работу водоохлаждающих устройств равен сумме расходов энергии на приводы вентиляторов градирни и водяные насосы:

$$\hat{W}_{\rm B} = \sum \hat{W}_{\rm BT} + \sum \hat{W}_{\rm S} = 22,2 + 17,15 = 39,35 \text{ kBt}.$$

12.1.6. Расчет тепловой изоляции

Охлаждаемые объекты, оборудование и коммуникации холодильных установок, работающие при температурах ниже температуры среды, покрывают тепловой изоляцией, а также слоем паро- и гидроизоляционных материалов, предотвращающих проникновение в изоляцию влаги (паров из окружающего воздуха, капельной влаги от поверхностного конденсата). Для изоляцин используют эффективные влагостойкие теплоизоляционные материалы с объемной массой от 20 до 250 кг/м³, теплопроводностью от 0.028 до 0.075 Вт/(м·К). Расчет изоляции заключается в определении толщины изоляционного слоя, обеспечивающего предотвращение конденсации влаги из окружающего воздуха на поверхности изоляции, и в опредслении действительного теплопритока к объекту.

В данной установке тепловой изоляции подлежат испарители, отделители жидкости, воздухоотделитель, дренажный ресивер, коммуникации и арматура линии всасывания, а также весь контур хладоносителя.

В качестве примера приведем расчет тепловой изоляции всасывающей линии аммиачного контура.

Исходные данные: диаметр трубопровода $D_{\mu}=219$ мм, температура паров аммиака $t_{a}=$ = -24 °C, температура и влажность атмосферного воздуха в помещении цеха $t_{\mu} = 30$ °C, $\varphi_{\mu} =$ = 70 % [12]. Холодильные трубопроводы изолируют стандартными элементами из полистирольного пено-

пласта в виде сегментов. Теплопроводность пенополистирола ПСВ-С $\lambda_{n3} = 0.04$ Вт/(м-К) [13]. Минимальную толщину изоляции, найденную из условия исключения конденсации атмосферной влаги (*t*_{нз} ≥ *t*₀), рассчитывают по уравнению [13]:

$$(t_{\mu} - t_{a})/(t_{\mu} - t_{p}) = 1 + [(\alpha_{\mu} D_{\mu_{3}}^{\min})/(2\lambda_{\mu_{3}})] \ln (D_{\mu_{3}}^{\min}/D_{\mu}), \qquad (12.22)$$

где t_p — точка росы, которую находят по диаграмме I - x влажного воздуха: при $t_u = 30$ °C, $\varphi_u = 70$ %, $t_p = 23.6$ °C; $\alpha_u - коэффициент теплоотдачи от наружного воздуха к поверхности$ изоляции; $\alpha_{\rm H} = 7$ Вт/(${\rm M}^2 \cdot {\rm K}$) [6]; $D_{\rm H3}^{\rm min}$ — наружный диаметр изолированного трубопровода, м. Максимальная толщина слоя изоляции $\delta_{\min} = (D_{\text{H}3}^{\min} - D_{\text{H}})/2.$

Уравнение (12.22) решается методом последовательных приближений. В данном случае D_{из} = =294 мм, δ_{\min} =37,5 мм. Устанавливаем стандартные элементы марки СК-8 с $D_{H_3}^{a_H}$ =221 мм, $D_{H_3}^{a_H}$ =391 мм, l=500 мм и δ_{H_3} =85 мм. Снаружи слой изоляции покрывают слоем паро- и гидроизоляции — обычно гидроизолом марки ГН-1 [13].

Действительный коэффициент теплопередачи от наружного воздуха к потоку аммиака равен:

$$K_{I} = \frac{1}{\left(\frac{1}{2\lambda_{H3}} \ln \frac{D_{H3}^{H}}{D_{H3}^{H}} + \frac{1}{\alpha_{H}D_{H3}^{H}}\right)} = (12.23)$$
$$= \frac{1}{\left(\frac{1}{2 \cdot 0.04} \ln \frac{0.391}{0.221} + \frac{1}{7 \cdot 0.391}\right)} = 0.094 \text{ Br}/(M \cdot \text{K}).$$

Теплоприток через изоляцию к потоку аммиака во всасывающей линии длиной $L_{\rm ac} = 50$ м составляет

$$\Delta \dot{Q}_{\rm pc} = K_I \pi (t_{\rm H} - t_{\rm a}) L_{\rm BC} = 0.094 \pi [30 - (-24)] 50 = 0.8 \text{ kBt}.$$

Аналогично рассчитывают изоляцию других низкотемпературных аппаратов и коммуникаций установки, при этом для изоляции трубопроводов используют стандартные элементы из пенополистирола. Аппараты обычно изолируют пенополиуретаном в виде монолитного бесшовного слоя, наносимого методом напыления и вспенивания [13]. Для данной установки приток тепла через изоляцию составил: для трубопроводов хладоносителя длиной L=350 м $\Delta Q_{\star}=9,3$ кВт; для испарителей ∆Q"=1,5 кВт; для отделителей жидкости ∆Q_{0 ж}=0,6 кВт.

Суммарный приток тепла к низкотемпературным частям холодильной установки

$$\sum \Delta \dot{Q} = \Delta \dot{Q}_{\text{BC}} + \Delta \dot{Q}_{\text{B}} + \Delta \dot{Q}_{\text{o}} + \Delta \dot{Q}_{\text{o}} = 0.8 + 1.5 + 0.6 + 9.3 = 12.2 \text{ kBt},$$

что составляет 3,1 % от тепловой нагрузки Q_1 =393 кВт При расчете холодильного оборудования запас холодильной мощности принимался равным 10 %.

12.1.7. Определение параметров рабочего режима холодильной установки

Действительные параметры режима (прежде всего температуры кипения и конденсации) будут отличаться от принятых ранее в результате подбора типового оборудования.

При фиксированных значениях внешних параметров — температурах хладоносителя t_{x2} и охлаждающей воды I_{вI} — и постоянстве массовых расходов этих потоков задача сводится к определению рабочей точки холодильной машины. При этом производительность двух испарителей и трех рабочих компрессоров должна совпадать, а тепловая нагрузка двух конденсаторов должна соответствовать тепловому потоку, определяемому по уравнению энергетического баланса (12.13) Внутреннис параметры холодильной машины — температуры кипения и конденсации t_0 и t_{κ} , определяющие положение рабочей точки, находят совместным решением системы уравнений:

$$\dot{Q}_{0}^{\kappa} = q_{0} \dot{m}^{\kappa} n^{\kappa} = \frac{\lambda}{v_{1}} (i_{1} - i_{4}) \dot{V}_{\tau}^{\kappa} n^{\kappa}; \qquad (12.24)$$

$$Q_0^{\mu} = \dot{m}_x c_x (t_{x2} - t_0) \left[\exp\left(\frac{k^{\mu} F^{\mu}}{\dot{m}_x c_x}\right) - 1 \right]; \qquad (12.25)$$

$$\dot{Q}^{\kappa} = \dot{Q}_{0}^{\kappa} + \dot{W}_{i}^{\kappa} n^{\kappa} = \frac{\lambda}{v_{i}} \left[(i_{1} - i_{4}) + \frac{i_{2} - i_{1}}{\eta_{i}} \right] \dot{V}_{\tau}^{\kappa} n^{\kappa}; \qquad (12.26)$$

$$\dot{Q}^{\mathrm{KA}} = \dot{m}_{\mathrm{B}} c_{\mathrm{B}} \left(t_{\mathrm{K}} - t_{\mathrm{B1}} \right) \left[1 - \exp\left(-\frac{k^{\mathrm{KA}} F^{\mathrm{KA}}}{\dot{m}_{\mathrm{B}} c_{\mathrm{B}}} \right) \right].$$
(12.27)

Уравнение (12.24) дает аналитическое выражение суммарной холодильной мощности работающих компрессоров; уравнение (12.26) определяет тепловую нагрузку на конденсаторы как функцию объемных и энергетических к. п. д. компрессора (λ и η_i) и удельных величин, характеризующих холодильный цикл: холодопроизводительности $q_0 = i_1 - i_4$, работы $l_s = i_2 - i_1$ и объема всасывающих паров v_1 . Поскольку λ , η_i , q_0 , l_s и v_1 в конечном счете определяются температурами кипения и конденсации, то можно считать, что

$$\dot{Q}_{0}^{\kappa} = \int (t_{0}, t_{\kappa}) \ \varkappa \ \dot{Q}^{\kappa} = \int (t_{0}, t_{\kappa}).$$

Уравнения (12.25) и (12.27) позволяют рассчитать тепловые потоки, передаваемые в испарителях и конденсаторах при различных режимах работы. При постоянстве массовых расходов хладоносителя и воды ($m_x = \text{const}, m_B = \text{const}$), фиксированных значениях t_{x2} и t_{y1} и неизменной интенсивности теплообмена в аппаратах ($k^{\mu} = \text{const}, k^{\mu_{2}} = \text{const}$) характеристики испарителей и конденсаторов являются линейной функцией соответственно t_0 и t_{κ} :

$$\dot{Q}_{0}^{\mu} = f(t_{0}) \ \varkappa \ \dot{Q}^{\kappa \pi} = f(t_{\kappa}).$$

Положение рабочей точки находят решением системы уравпений (12.24) — (12.27) методом последовательных приближений. Вначале совмещением характеристик компрессоров и испарителей [уравнения (12.24) и (12.25)] при расчетном значении температуры конденсации $t_{\rm x}=35$ °C находят приближение значение $t_{\rm h}$. Далее совместным решеннем уравнений (12.26), (12.27) при постоянной температуре кипения $t_{\rm h}$ и акодят температуру конденсации $t_{\rm k}$. Повторение этих операций позволяет уточнить значения $t_{\rm h}$ и $t_{\rm k}$.

Графическая иллюстрация указанных вычислительных операций выполнена на рис. 12.8. Необходимые значения параметров, входящих в уравнения (12.24) — (12.27), рассчитаны по методике, изложенной ранее, и представлены в табл. 12.1 и 12.2.

Рис. 12.8. Определение параметров рабочего режима холодильной установки: *а* — температуры кипения; *б* — температуры коиденсации

Определяемые параметры		$t_{\kappa} = 35 \ ^{\circ}\text{C}$	при t ₀ , °С	t _н = 32,9 °С при t ₀ , °С			
	- 20	- 22	- 24	- 26	- 20	-22	-24
P_0 , MΠa P_x , MΠa P_x/P_0 λ v_1 , $w^3/\kappa r$ i_1 , $\kappa L \#/\kappa r$ i_3 , $\kappa L \#/\kappa r$ q_0 , $\kappa L \#/\kappa r$ \dot{m} , $\kappa r/c$ \dot{Q}_0^8 , $\kappa B T$	0,190 1,35 7,1 0,65 0,6419 1669 574 1095 0,507 556	0,174 1,35 7,76 0,626 0,6965 1666 574 1092 0,450 492	0,159 1,35 8,5 0,592 0,7569 1664 574 1090 0,392 427	0,145 1,35 9,3 0,559 0,8240 1660 574 1086 0,340 369	0,190 1,28 6,74 0,666 0,6419 1669 564 1105 0,520 574	0,174 1,28 7,36 0,639 0,6965 1666 564 1102 0,46 506	0,159 1,28 8,05 0,610 0,7569 1664 564 1100 0,404 444

Таблица 12.1. Расчет холодильной мощности компрессоров

Таблица 12.	2. Расчет	тепловой	нагрузки	на	конденсаторы
-------------	-----------	----------	----------	----	--------------

Определяемые	<i>t</i> ₀ = − 22,6 °С при <i>t</i> _к , °С									
параметры	25	30	35	40						
Р ₀ , МПа	0,17	0,17	0,17	0,17						
i_3 , °C $i_3 = i_4$, $\kappa \Pi \times / \kappa \Gamma$	23 527	28 551	33 574	38 600						
i ₂ , кДж/кг i ₁ , кДж/кг	1922 1665	1948 1665	1976 1665	2003 1665						
υ ₁ , м ³ /кг q ₀ , кДж/кг	0,7146 1138	0,7146 1114	0,7146 1091	0,7146 1065						
<i>l</i> s, кДж/кг <i>P</i> _к / <i>P</i> ₀	257 5,88 0,70	283 6,88 0,659	338 7,94 0.615	311 9,18 0.564						
η, η, κ. κ. / c	0,8 0,490	0,781	0,758	0,731						
Q*, кВт	716	682	647	604						

В расчетах принято:

число работающих компрессоров л^к = 3; теоретическая объемная производительность одного компрессора П220 V^к₇ = 0,167 м³/с; число испарителей ИКТ-180 — два; поверхность теплообмена в испарителях *F*^к = 2 ⋅ 193 = 386 м²;

средний коэффициент теплопередачи $K^* = 320 \text{ Br}/(\text{m}^2 \cdot \text{K})$;

массовый расход хладоносителя $m_x = 68.2 \text{ кг/c};$

теплоемкость $c_x = 2,79 \ \kappa \square ж / (кг \cdot K);$

температура хладоносителя на выходе из испарителей $t_{x2} = -20$ °C;

число конденсаторов КТГ-90 — два;

поверхность теплообмена $F^{\kappa_{A}} = 2 \cdot 90 = 180 \text{ м}^{2};$

коэффициент теплопередачи К^{кд}=943 Вт/(м²·K);

массовый расход воды $\dot{m}_{\rm B} = 47.6$ кг/с;

температура охлаждающей воды на входе в конденсатор t_{в1} = 27 °C.

В результате расчета установлены следующие значения основных параметров:

температура кипения $t_0 = -22,8$ °C, конденсации $t_{\kappa} = 32,9$ °C;

температура жидкого аммиака перед дроссельным устройством l₃=31 °C;

характеристики холодильного цикла: давление кипения $P_0 = 0.17$ МПа, конденсации $P_{\kappa} = = 1,28$ МПа;

степень повышения давления $P_{\kappa}/P_0 = 7,52;$

коэффициент подачи λ=0,632;

индикаторный к. п. д. компрессора η_i=0,767;

параметры узловых точек: $i_1 = 1665$ кДж/кг, $i_2 = 1964$ кДж/кг, $i_4 = 564$ кДж/кг; $v_1 = = 0,7207$ м³/кг;

удельная холодопроизводительность $q_0 = 1101 \text{ кДж/кг};$ работа цикла $l_s = 299 \text{ кДж/кг}.$ Определены основные показатели холодильной машины (компрессора):

массовый расход рабочего тела $\dot{m}_a = (\lambda/v_1) V_1^* n^* = 0.439 \text{ кг/с};$ действительная холодильная мощность $\dot{Q}_0^{h*} = \dot{m}_a q_0 = 483.7 \text{ кBr};$

коэффициент рабочего времени компрессоров (при расчетной нагрузке $Q_0 = 432$ кВт) $k_1 = -\dot{Q}_0/\dot{Q}_0^{\rm AM} = 432/483,7 = 0.89;$

суммарная индикаторная мощность $\dot{W}_{i} = m_{a}l_{s}/\eta_{i} = 171$ кВт; действительный тепловой поток в конденсаторах

$$\dot{Q}_{\kappa} = \dot{Q}_{0}^{\star M} + \dot{W}_{i} = 483.7 + 171 = 654.8 \text{ KBT};$$

суммарная эффективная мощность (на валу компрессоров)

$$\dot{W}_e = \dot{W}_i + n^* \dot{W}_{rp} = 171 + 3 \cdot 10 = 201 \text{ kBr};$$

коэффициент загрузки электродвигателей

$$k_3 = \dot{W}_c / \dot{W} n^{\kappa} = 201 / (3 \cdot 100) = 0.67;$$

к. п. д. асннхронного двигателя $\eta_{ab} = 0.85$; сов $\varphi = 0.7$; суммарная электрическая мощность, потребляемая из сети: $\dot{W}_s = \dot{W}_e/(\eta_n \eta_{ab}) = 236$ кВт; действительный холодильный коэффициент: $\varepsilon_a = Q_0^{NM}/\dot{W}_s = 2.05$. изменение температуры хладоносителя в испарителях: $\Delta t_x = Q_0^{NM}/m_x c_x = 2.54$ °C; температура хладоносителя на входе в испарители $t_{x1} = t_{x2} + \Delta t_x = -17.46$ °C; фактический температурый напор в испарителе $\theta_0 = 3.93$ °C; средняя температура хладоносителя $\overline{T_x} = 273.15 + (t_0 + \theta_0) = 254.3$ К; средняя температура охлаждающей воды в конденсаторах (рассчитывается аналогично) $\overline{T_b} = 302$ К.

Следует обратить внимание на то, что при расчете параметров режима холодильной установки целесообразно использовать информацию о характеристиках оборудования, представленную в справочной литературе [7, 9, 11] в графической форме. Для агрегатированных холодильных машин создаваемая холодильная мощность, потребляемая эффективная (на валу) и электрическая мощности, а также холодильный коэффициент обычно представлены как функции внешних режимных параметров температуры хладоносителя t_{x2} и охлаждающей воды t_{s1} . Это существенно облегчает оценку фактических показателей холодильной установки.

12.1.8. Энергетическая эффективность установки

Выполним анализ энергетической эффективности технологической установки для извлечения толуола; при этом последовательно оценим степень термодинамического совершенства холодильной машины, холодильной установки и технологической системы в целом. На рис. 12.9 дана схема распределения энергопотоков по основным подсистемам установки, показанной на рис. 12.1.

Степень термодинамического совершенства холодильной машины (контрольный объем которой ограничим аммиачным контуром З) оценим эксергетическим к.п.д. [18]:

$$\eta_{x,M} = \dot{\mathcal{E}}_{x,M}^{\text{BWX}} / \dot{\mathcal{E}}_{x,M}^{\text{BX}}, \qquad (12.28)$$

где $\dot{E}_{x,m}^{s,x}$ и $\dot{E}_{x,m}^{s,x}$ — потоки эксергии на входе в подсистему и выходе из нее, связанные уравнением баланса эксергии

$$\dot{E}_{x,m}^{Bx} = \dot{E}_{x,m}^{BHx} + \dot{D}_{x,m}.$$
(12.29)

Потери эксергии определятся соотношением

$$\dot{D}_{x-y} = \dot{E}_{x-y}^{\text{BX}} (1 - \eta_{x-y}). \tag{12.30}$$

Поток эксергии, вводимой в холодильную машину, определяется потребляемой электрической мощностью (с учетом коэффициента рабочего времени):

$$\dot{W}_{x M} = \dot{W}_{3}k_{T} = 236 \cdot 0.89 = 210 \text{ KBT}.$$

Здесь и далее использованы фактические показатели рабочего режима холодильной машины, найденные в разд. 12.1.7 совмещением характеристик основных ее эле-

Рис. 12.9. Схема распределения энергопотоков в технологической системе: 1 — подсистема конденсации толуола; 2 — подсистема циркуляции хладоносителя; 3 — аммиачный контур холодильной машины; 4 — подсистема охлаждающей воды

ментов. В частности, для температур кипения и конденсации приняты следующие значения: $t_0 = -22.8$ °C ($T_0 = 250.35$ K) и $t_{\kappa} = 32.9$ °C ($T_{\kappa} = 306.05$ K), температура окружающей среды принята равной расчетной температуре наружного воздуха $t_{\rm cp} = t_{\rm H}^{a} = 35$ °C ($T_{\rm cp} = 308.15$ K).

При $T_{\kappa} < T_{cp}$ отвод тепла в конденсаторе водой эквивалентен вводу дополнительного потока энергии из водоохлаждающей системы 4 в аммиачный контур 3 (см. рис. 12.9):

Таким образом, суммарный поток эксергии, вводимой в подсистему 3, составит $\dot{E}_{xm}^{Bx} = \dot{W}_{xm} + \dot{E} (\dot{Q}_x) = 210 + 4 = 214$ кВт.

Выходной полезный поток энергии равен эксергии, передаваемой в подсистему 2 от кипящего аммиака в испарителях [18]

$$\dot{E}_{\rm XM}^{\rm BbX} = \dot{E}(Q_0) = \dot{Q}_0^{\rm XM} k_{\tau} \frac{T_{\rm cp} - T_0}{T_0} = 483.7 \cdot 0.89 \frac{308.15 - 250.35}{250.36} = 99.4 \text{ KBT}.$$

Эксергетический к. п. д. процессов в аммиачном контуре, согласно уравнению (12.28), равен $\eta_{x,M} = 0,464$. Тогда потери эксергии в подсистеме 3 составят

$$\dot{D}_{\rm M} = 214 \ (1 - 0.464) = 114.7 \ \kappa B \tau$$

из которых часть рассеивается в окружающую среду за счет трения в механизме движения компрессоров и несовершенства процессов в электроприводе:

$$\dot{D}_{rp} = k_r (\dot{W}_e - \dot{W}_i) = 0.89 (201 - 171) = 26.7 \text{ KBT};$$

 $\dot{D}_3 = k_r (\dot{W}_a - \dot{W}_e) = 0.89 (236 - 201) = 31.1 \text{ KBT}.$

Основная часть потерь эксергии (56,9 кВт) обусловлена необратимостью процессое холодильного цикла. Следует указать, что потери эксергии за счет необратимости теплообмена в испарителях и конденсаторах аммиака отнесены соответственно к подсистемам 2 и 4 и не входят в величину $\dot{D}_{\rm XM}$.

Холодильная установка включает помимо аммиачного контура холодильной машины 3 также системы циркуляции хладоносителя 2 и охлаждающей воды 4. Термодинамическое совершенство холодильной установки (системы) оценим эксергетическим к. п. д.:

$$\eta_{xc} = \dot{E}_{xc}^{\text{DMX}} / \dot{E}_{xc}^{\text{BX}}.$$

Суммарный поток эксергии, вводимый в холодильную установку, складывается из электрических мощностей, затрачиваемых на привод компрессоров, циркуляцию хладоносителя и эксплуатацию водоохлаждающих устройств, а также эксергию, вносимую очищенной водой при подпитке водооборотной системы:

$$\dot{E}_{xc}^{BX} = \dot{W}_{xM} + \dot{W}_{x} + \dot{W}_{B} + \Delta \dot{m}_{B} e_{B}.$$

Величины \dot{W}_x и \dot{W}_a рассчитаны в разд. 12.1.4 и 12.1.5. Расход воды на подпитку можно найти по балансу влаги в воздухе для вентиляторной градирни (см. разд. 12.1.5); с учетом уноса капель воды воздухом примем его равным 2—3 % от общего расхода оборотной воды ($\dot{m}_a = 47.6 \text{ кг/c}$, $\Delta \dot{m}_a = 1.27 \text{ кг/c}$). Удельная эксергия очищенной воды равна затратам эксергии на ее очистку; ориентировочно величину e_a оценим по стоимости воды, полагая, что все затраты сводятся к расходу электроэнергии:

$$e_{\rm B} = 3.6 \mu_{\rm B} / \mu_{\rm B} = 3.6 \cdot 0.01 / 0.01 = 3.6 \ \kappa \Pi \, \text{m} / \kappa \Gamma$$

где ц_в и ц_э — цены 1 м³ воды и 1 кВт ч электроэнергии [19]. Для холодильной установки в условиях рабочего режима получим:

$$\dot{E}_{xc}^{BX} = 210 + 18,88 + 39,35 + 1,27 \cdot 3,6 = 272,8 \text{ KBT}.$$

Полезный эксергетический эффект холодильной установки определяется потоком эксергии холода, вводимой в аппарат конденсации толуола / (см. рис. 12.1) при средней температуре хладоносителя $\overline{T_x}$ = 254,3 К (см. разд. 12.1.1 и 12.1.7):

$$\dot{E}_{xc}^{abx} = \dot{E} (\dot{Q}_{I}) = \dot{Q}_{I} (T_{cp} - T_{x}) / \overline{T_{x}} = 393 (308.15 - 254.30) / 254.3 = 83.2 \text{ kBr}.$$

Эксергетический к. п. д. холодильной установки составит $\eta_{xc} = 83,2/272,8 = 0,305;$ поток потерянной эксергии равен

$$\dot{D}_{xc} = (1 - \eta_{xc}) \dot{E}_{xc}^{ox} = (1 - 0.305) 272.8 = 189.6 \text{ kBt}.$$

Энергетическое совершенство всей технологической системы, включающей аппараты парогазового контура и холодильную установку, оценим используя выражение для эксергетического к. п. д. [20, 21]:

$$\eta_{\tau c} = (\dot{E}_{\tau c}^{BBX} - \dot{E}^{\tau p}) / (\dot{E}_{\tau c}^{BX} - \dot{E}^{\tau p})$$
(12.31)

Величины $\dot{E}_{\tau c}^{BX}$ и $\dot{E}_{\tau c}^{BMX}$ характеризуют суммарные потоки эксергии, вводимые в контрольный объем технологической системы и выводимые из него в форме электроэнергии и эксергии материальных потоков газа, жидкого толуола и воды:

$$\dot{E}_{T\,c}^{ax} = \dot{m}_{r}e_{r} (T_{r}, P_{r}, \bar{x}) + \Delta \dot{m}_{B}e_{a} + \sum_{i=1}^{4} \dot{W}_{ii}, \qquad (12.32)$$

$$\dot{E}_{r\,c}^{\text{SNN}} = (\dot{m}_r - \dot{m}_{\star})e_r(T'_r, P'_r, \bar{x}') + \dot{m}_{\star} \cdot e_{\star}(T_{\star}, P_{\star}, \bar{x}=1).$$
(12.33)

Транзитные потоки эксергии $\dot{\mathcal{E}}^{\tau p}$ включают те ее формы, которые не трансформнруются в пределах контрольного объема системы. В данном случае химические превращения не происходят, поэтому удобно принять

$$\dot{E}^{\rm rp} = \dot{m}_{\rm r} e_{\rm r} \left(T_{\rm cp}, P_{\rm cp}, \bar{x} \right),$$
 (12.34)

где $e_r(T_{cp}, P_{cp}, \bar{x})$ — часть удельной эксергии исходной парогазовой смеси, обусловленная неравенством химических потенциалов компонентов в смеси и окружающей среде при давлении $P = P_{cp}$ и температуре $T = T_{cp}$.

Удельную эксергию потока вещества можно представить как сумму эксергии энтальпии e^{H} , эксергии экстракции e_{0} и эксергии e_{r} (T_{cp} , P_{cp} , \overline{x}), принятой на начало отсчета.

$$e_{r}(T_{r}, P_{r}, \overline{x}) = e_{r}^{H}(T_{r}, P_{r}, \overline{x}) + e_{r}(T_{cp}, P_{cp}, \overline{x});$$

$$e_{r}(T_{r}', P_{r}', \overline{x}') = e_{r}^{H}(T_{r}', P_{r}', \overline{x}') + e_{0}(T_{cp}, P_{cp}, \overline{x}') + e_{r}(T_{cp}, P_{cp}, \overline{x});$$

$$e_{m}(T_{m}', P_{m}, \overline{x} = 1) = e_{m}^{H}(T_{m}, P_{m}, \overline{x} = 1) + e_{0}(T_{cp}, P_{cp}, \overline{x} = 1) + e_{r}(T_{cp}, P_{cp}, \overline{x}).$$

Эксергии энтальпии характеризуют превратимую часть энтальпии материальных потоков постоянного состава; их значения определяются температурой и давлением, отличными от $P_{\rm cp}$ и $T_{\rm cp}$:

$$e_{r}^{H}(T_{r}, P_{r}, \bar{x}) = i_{r}(T_{r}, P_{r}, \bar{x}) - i_{r}(T_{cp}, P_{cp}, \bar{x}) - T_{cp}[s_{r}(T_{r}, P_{r}, \bar{x}) - s_{r}(T_{cp}, P_{cp}, \bar{x})];\\e_{r}^{H}(T_{r}', P_{r}', \bar{x}') = i_{r}(T_{r}', P_{r}', \bar{x}') - i_{r}(T_{cp}, P_{cp}, \bar{x}') - T_{cp}[s_{r}(T_{r}', P_{r}', \bar{x}') - s_{r}(T_{cp}, P_{cp}, \bar{x}')].$$

Для парогазовых смесей, принятых идеальными, при $P_r \approx P'_r \approx P_{cp} = 0,1$ МПа и $T_{cp} = = T_{\mu}^{s} = 308,15$ К, получим:

$$e_r^H(T_r, P_r, \bar{x}) = \overline{C_p}(\bar{x}) (T_r - T_{cp}) - T_{cp}\overline{C_p}(\bar{x}) \ln (T_r/T_{cp}) = 1,084 [373,15 - 308,15] - - 308,15 \cdot 1,084 \ln (373,15/308,15) = 6,53 \kappa \mu \kappa \kappa r;$$
$$e_r^H(T_c, P_r, \bar{x}') = \overline{C_p}(\bar{x}') (T_r' - T_{cp}) - T_{cp}\overline{C_p}(\bar{x}') \ln (T_r'/T_{cp}) = 1,042 [340,65 - 308,15] - - 308,15 \cdot 1,042 \ln (340,65/308,15) = 1,67 \kappa \mu \kappa \kappa r.$$

Эксергия экстракции e_0 (T_{cp} , P_{cp} , \vec{x}') равна минимальной работе извлечения газовой фракции состава \vec{x}' из исходной смеси при P_{cp} и T_{cp} [21]:

$$e_0(T_{cp}, P_{cp}, \overline{x'}) = \frac{\bar{R}}{M(x')} T_{cp} \left[\overline{x'} \ln \frac{x'}{x} + (1 - \overline{x'}) \ln \frac{(1 - x')}{(1 - x)} \right] =$$

= $\frac{8,314}{28,4} 308,15 \left[0,0148 \ln \frac{0,0045}{0,06} + (1 - 0,0148) \ln \frac{1 - 0,0045}{1 - 0,06} \right] = 1,64 \text{ KJ} \text{K/Kr}.$

При вычислении эксергий использованы массовые (\bar{x}, \bar{x}') и мольные (x, x') доли толуола в парогазовых смесях, а также средние удельные теплоемкости газовых смесей $\overline{C_p}(\bar{x})$ и $\overline{C_p}(\bar{x}')$, принятые равными истинным значениям теплоемкости смеси при среднеарифметических значениях температуры $(T_r + T_{cp})/2$ и $(T'_r + T_{cp})/2$.

При вычислении эксергий энтальпии и эксергий экстракции жидкой фракции, выводимой из установки при $T_* = T^{**}$ и $P_* = P_{cp}$, необходимо учесть, что давление насыщенных паров толуола при температуре окружающей среды меньше давления среды $[P_V(T_{cp}) < P_{cp}]$ и незначительно отличается от парциального давления паров толуола в исходной смеси при $P_r = P_{cp}$:

$$e_{\pi}^{H}(T_{\pi}, P_{\pi}, \overline{x}=1) = i_{\pi}(T_{\pi}, P_{\pi}, \overline{x}=1) - i_{\pi}(T_{cp}, P_{cp}, \overline{x}=1) - T_{cp}[s_{\pi}(T_{\pi}, P_{\pi}, \overline{x}=1) - s_{\pi}(T_{cp}, P_{cp}, \overline{x}=1)] \approx \overline{C_{p\pi}}(\overline{x}=1) \quad (T^{**} - T_{cp}) - T_{cp}\overline{C_{p\pi}}(\overline{x}=1) \ln(T^{**}/T_{cp}) = 1.64 \quad (263.15 - 308.15) - 308.15 \cdot 1.64 \ln(363.15/308.15) = 5.98 \quad \kappa \Pi_{\pi}/\kappa \Gamma;$$

$$e_0(T_{cp}, P_{cp}, \bar{x}=1) = \frac{\bar{R}}{M(x=1)} T_{cp} \ln \frac{P_V(T_{cp})}{xP_r} - \sum_{P_V(T_{cp})}^{r_{cp}} - \frac{dP}{\rho_{\kappa}(x=1)} =$$

$$=\frac{8,314}{92,137}308,15 \ln \frac{0,00624}{0,06 \cdot 0,1} + \frac{10^{6}(0,1-0,00624)}{853 \cdot 10^{3}} = 1,084 + 0,11 = 1,194 \text{ KJ} \text{K/Kr}.$$

При вычислении интеграла, определяющего минимальную работу изменения давления жидкой фазы, использовано условие несжимаемости.

Суммарный поток электроэнергии равен

$$\sum_{i=1}^{\infty} \dot{W}_{i} = \dot{W}_{x,w} + \dot{W}_{x} + \dot{W}_{s} = 210 + 18,88 + 39,35 = 268,3 \text{ kBT}$$

На основе изложенного можно вычислить эксергетический к.п. д. технологической системы: п _с =

$$=\frac{\dot{m}_{\pi}\left[e_{\pi}^{H}(T_{\pi}, P_{\pi}, \bar{x}=1)+e_{0}\left(T_{cp}, P_{cp}, x=1\right)\right]+\left(\dot{m}_{r}-\dot{m}_{\pi}\right)\left[e_{r}^{H}(T_{r}', P_{r}', x')+e_{0}(T_{cp}, P_{r}', \bar{x'})\right]}{\dot{m}_{r}e_{r}^{H}(T_{r}, P_{r}, \bar{x})+\sum_{j=1}^{4}\tilde{W}_{j}+\Delta\dot{m}_{b}e_{b}}$$
$$=\frac{0.656\left[5.98+1.194\right]+\left(4.07-0.656\right)\left[1.67+1.64\right]}{4.07\cdot6.53+268.3+1.27\cdot3.6}=\frac{16.0}{299.4}=0.053.$$

Потери эксергии в контрольном объеме технологической системы равны

 $\dot{D}_{\text{t.c}} = (1 - \eta_{\text{t.c}}) (\dot{E}_{\text{t.c}}^{\text{BX}} - \dot{E}^{\text{tp}}) = (1 - 0.53) 299.4 = 283.4 \text{ kBt}.$

Целесообразно выяснить, как распределены потери эксергии по основным подсистемам технологической установки (см. рис. 12.9). С этой целью представим эксергетический к. п. д. сложной системы как функцию эксергетических к. п. д. подсистем η_i и долей эксергий μ_i , вводимых в контрольный объем подсистем:

$$\eta_{\tau c} = 1 - \sum_{i=1}^{4} (1 - \eta_i) y_i.$$
(12.35)

Значения η_i и y_i рассчитаны для каждой подсистемы по соотношениям

$$\eta_i = \hat{E}_i^{\text{BMX}} / \hat{E}_i^{\text{BX}}$$
 и $y_i = \hat{E}_i^{\text{BX}} / (\hat{E}_{\tau c}^{\text{BX}} - \hat{E}_{\tau c}^{\text{TP}})$

Результаты расчета η_i и y_i , а также относительных $[(1 - \eta_i) y_i]$ и абсолютных (\dot{D}_i) значений потерь эксергии приведены ниже:

		Подсистемы									
параметры	1	2	3	4							
η _i y _i (1 — η _i)y _i D _i , κΒτ	0,146 0,366 0,313 93,6	0,403 0,395 0,117 35,0	0,464 0,715 0,383 114,7	0,091 0,147 0,113 39,8							

В контуре конденсации толуола (подсистема 1) потери эксергии (\sim 31 %) обусловлены необратимым теплообменом в технологических аппаратах 1 и 11 (см. рис. 12.1), в которых низкие значения коэффициентов теплоотдачи со стороны газовой фазы вынуждают поддерживать большие температурные напоры. Кроме того, охлаждение исходной смеси низкотемпературным газовым потоком, выходящим из конденсатора толуола, по существу означает уничтожение эксергии этого потока. Целесообразнее применить охлаждение водой, а имеющийся запас холода использовать для других технологических целей, где реализуются процессы при пониженных температурах. При локальной системе хладоснабжения возможна регенерация холода технологических потоков в холодильном цикле для переохлаждения жидкого аммиака перед дросселированием (точка 3 на рис. 12.2), при этом снижаются затраты энергии в холодильной машине.

При малых значениях x температура t^* , соответствующая состоянию насыщения, окажется значительно ниже l_{cp} ; в этом случае необходимо использовать обедненную газовую смесь и жидкую фазу для охлаждения смеси исходного состава от t_{cp} до температуры насыщения.

Заметно влияние потерь эксергии в контуре циркуляции хладоносителя (~ 12 %), которые можно полностью исключить при непосредственном охлаждении аппаратов / и // кипящим аммиаком.

В водооборотной системе полезный эффект в форме потока эксергии, вводимой в аммиачный контур, невелик [\dot{E} (\dot{Q}_{κ}) =4 кВт] и связан с небольшим понижением температуры конденсации (t_{κ} = 32,9 °C, t_{cp} = 35 °C). Этим объясняется термодинамическое несовершенство процессов ($\eta_4 \approx 0,091$) и значительные потери эксергии (≈ 13 %). Однако исключение водооборотной системы и непосредственное охлаждение конденсаторов атмосферным воздухом при $t_{\rm H}^{\rm a}$ =35 °C привело бы к повышению температуры конденсации на 10—12 °C за счет низких коэффициентов теплоотдачи со стороны воздуха [11]. Негативным следствием этого является рост потребляемой электрической мощности в подсистеме 3 (см. рис. 12.9).

Рассчитанные энергетические показатели холодильной установки характеризуют ее работу в наиболее тяжелых расчетных условиях. Эксплуатационные режимы в летние, зимние и осенне-весенние месяцы определяются среднемесячными значениями температуры и влажности окружающего воздуха, которые отличаются от расчетных [22].

_		Эксплуатационные режимы							
Показатели	Расчетный режим	асчетнын режим летний		зимний					
<i>t</i> _{x2} , °C	-20		- 20	- 20					
t_{n1} , °C	+27	+23	+17	+10					
ℓ¦, °C	+ 35	+24,7	+15	0 °C					
t ₀ , °C	-22,8	-23	-23,2	- 23,5					
t _x , °C	35	29	+23,5	+ 16,8					
Q ₁ , кВт	393	393	393	393					
Q ₀ , кВт	432	432	432	432					
Q ^{к™} , кВт	483,7	526	552	590					
<i>k</i> ,	0,89	0,82	0,78	0,73					
Ŵ _{хм} , кВт	210	191	174	154					
Ŵ _х , кВт	18,9	18,9	18,9	18,9					
Ŵ _₽ , кВт	39,35	39,35	30,1	15,3					
$\sum_{i=2}^{4} \dot{W}_{i}$, кВт	268,4	249	223	188,2					
/ En	2,05	2,24	2,46	2,8					
-д Пу м	0,46	0,43	0,38	0,26					
η _{x.c}	0,305	0,30	0,20	0,15					

Таблица 12.3. Энергетические показатели компрессионной холодильной установки

Для определения себестоимости холода и других технико-экономических показателей необходимо провести поверочные расчеты установленного оборудования при значениях $t_{cp}^{\mathfrak{g}}$ и $\phi_{cp}^{\mathfrak{g}}$, соответствующих условиям эксплуатационных режимов.

В табл. 12.3 приведены основные энергетические показатели компрессионной холодильной установки в различные периоды года. Анализ табличных данных показывает существенное улучшение энергетических характеристик холодильной машины в результате снижения температуры конденсации в осенне-весенний и зимний периоды, однако эксергетический к. п. д. холодильной установки в целом резко падает вследствие роста потерь от необратимости теплообмена в оборотной системе водоохлаждения.

Для того чтобы избежать обмерзания градирни в зимнее время, температуру охлажденной воды поддерживают не ниже 10-12 °C, отключая (полностью или частично) вентиляторы [6] Параметры атмосферного воздуха в этот период значительно ниже. В результате тепловой поток переносится в холодильной машине на температурный уровень, превышающий температуру атмосферного воздуха на 15-20 °C и более. В зимнее время более экономичным было бы использование воздушных конденсаторов с температурным напором 10-12 °C, при этом исключаются затраты энергии на циркуляцию воды и прочие расходы на эксплуатацию градирен. Летом, наоборот, применение оборотной системы позволяет существенно снизить температуру конденсации и уменьшить расход энергии. В конечном итоге предпочтительность использования конденсаторов с воздушным или водяным охлаждением определяется технико-экономическим расчетом, следует лишь иметь в виду, что при использовании аммиака и фреона-22 предельная температура конденсации ограничена условиями прочности для компрессоров по ГОСТ 6492—76 — температурой + 42 °C, для компрессоров по ОСТ 26.03-943—77 — температурой 50 °C [9, 23].

Выбор энергетически оптимальных вариантов схемы установки и некоторых внутренних режимных параметров, например l_0 и l_{κ} , возможен при отыскании максимума функции (12.35), если принять η_i и y_i , в свою очередь, функциями варьируемых переменных в установке. Следует иметь в виду, что энергетический оптимум не соответствует наименьшим издержкам в стоимостном выражении, поэтому термодинамический анализ применим в сочетании с экономическими критериями оптимизации (см. разд. 12.3).

12.2. АБСОРБЦИОННАЯ ХОЛОДИЛЬНАЯ УСТАНОВКА

Задание на проектирование. Рассчитать абсорбционную холодильную установку для условий предыдущего расчета (разд. 12.1) при следующих исходных данных:

холодильная мощность, температура хладоносителя, системы хладоснабжения и водоохлаждения и климатические данные местности те же, что в 12.1.1;

рабочее тело -- аммиак (R717);

абсорбент — водоаммиачный раствор;

вид энергии и источник энергоснабжения — насыщенный водяной пар теплоэлектроцентрали (ТЭЦ);

давление греющего пара $P_{tp} = 0.5$ МПа.

Схема установки. Схема абсорбционной холодильной установки включает абсорбционную холодильную машину, системы циркуляции хладоносителя и оборотного водоохлаждения. Внешние контуры хладоносителя и охлаждающей воды идентичны представленным в разд. 12.1, поэтому на рис. 12.10 не показаны.

Абсорбционная холодильная машина (АХМ) является термотрансформатором, в котором использована система совмещенных (прямого и обратного) циклов. Основная задача холодильной машины — отвод тепла от охлаждаемого объекта в окружающую среду при условии $T_x < T_{cp}$ — выполняется без затраты механической энергии в явном виде. При этом используется тепло низкого потенциала, в данном случае насыщенный пар от ТЭЦ. Тепло подводится к бинарному раствору аммиак — вода в генераторе / Образующийся пар с высоким содержанием аммиака дополнительно концентрируется в ректификаторе // и дефлегматоре ///, поступает в конденсатор ///, где сжижается. Далее жидкий аммиак сливается в ресивер, выполняющий те же функции, что и в компрессионной холодильной установке.

В совмещенном холодильном цикле АХМ энергетически целесообразно [3] применить регенеративный теплообмен между потоками жидкого аммиака и пара из испарителя. С этой целью в схему включен паровой теплообменник VI. В испарителе охлаждается поток хладопосителя вследствие кипения рабочего тела, образующиеся пары подогреваются в теплообменнике VI и поступают в абсорбер IX, где поглощаются раствором низкой концентрации из генератора. Процесс абсорбции сопровождается выделением тепла, отводимого охлаждающей водой. Раствор, обогащенный аммиаком, сливается в ресивер X, откуда перекачивается насосом XI в генератор.

В совмещенном прямом цикле АХМ использован регенеративный теплообмен между потоками слабого и крепкого раствора, при этом снижаются потери от необратимости теплообмена

Рис. 12.10. Схема абсорбционной холодильной установки:

I—8 — состояния рабочего тела в узловых точках совместного цикла; I генератор; II -- ректификатор; III -- дефлегматор; IV -- конденсатор; V, X -- ресиверы; VI -- теплообменник пар -- жидкость; VII, XIII -дроссельные устройства; VIII -- испаритель; IX -- абсорбер; XI -- водоаммиачный насос; XII теплообменник растворов

Рис. 12.11. Процессы абсорбционной холодильной машины в диаграмме $i-\bar{x}$

в генераторе и абсорбере, уменьшаются расходы греющего пара и охлаждающей воды. Крепкий раствор после теплообменника XII направляется на орошение насадки ректификационной колонны. Применение ее в АХМ обусловлено повышением эффективности холодильного цикла с ростом концентрации пара (при равном давлении температура кипения чистого аммиака ниже) Ректификационная колонна АХМ обычно комбинированная: нижняя часть насадочная, верхняя тарельчатая. Дальнейшее повышение концентрации пара происходит в дефлегматоре III за счет охлаждения потока пара. Стекающая флегма используется для орошения тарельчатой части ректификационной колонны. Обычно концентрация пара на выходе из дефлегматора более 0,995. Следует, однако, иметь в виду, что охлаждение пара приводит к ухудшению показателей совмещенного прямого цикла и увеличению расхода тепла в генераторе.

Основные энергетические потоки АХМ следующие: тепло греющего пара Q_r , которое подводнтся к раствору в генераторе и является основной частью расхода энергии в установке; тепло охлаждаемого объекта Q_n , которое подводится к аммиаку в испарителе и характеризует полезный эффект установки — ее холодильную мощность; тепло, которое отводится в конденсаторе, абсорбере и дефлегматоре охлаждающей водой и в конечном счете передается атмосферному воздуху в вентиляторных градирнях.

Механическая энергия используется только для привода насосов в контуре AXM и в системе циркуляции хладоносителя и воды. Основные материальные потоки AXM: количество пара, сжижаемого в конденсаторе, \dot{m}_d (кг/с); количество крепкого раствора, направляемого из абсорбера в генератор, m_l (кг/с); количество слабого раствора, поступающего из генератора в абсорбер, $\dot{m}_a = \dot{m}_l - m_d$ (кг/с).

12.2.1. Расчет цикла абсорбционной холодильной машины

Расчет цикла АХМ заключается в определении параметров рабочего тела в узловых точках, расчете удельных количеств тепла в аппаратах и теплового коэффициента машины. Режим работы абсорбционной холодильной машины, в отличие от компрессионной, определяется не только параметрами окружающей среды $l_{\rm H}^{\rm s}$, $\varphi_{\rm H}^{\rm s}$ и температурой охлаждаемого объекта $t_{\rm x2}$, но также наивысшей температурой греющего источника тепла (в данном случае насыщенного водяного пара) и его давлением: $t_{\rm rp} = 152$ °C, $P_{\rm rp} = 0.5$ МПа. Для построения цикла АХМ необходимо определить давление кипения и конденсации.

Параметры атмосферного воздуха и тип водоохлаждающих устройств приняты такими же, как для компрессионной установки, а температуру воды, подаваемой в конденсатор, абсорбер и дефлегматор, примем равной $t_{s1} = 27$ °C. Температура воды на выходе из конденсатора $t_{s2} = t_{s1} + \Delta t_s^{s_n} = 27 + 4 = 31$ °C. Низшая температура конденсации $t_s = t_{s2} + \Delta t_{min}^{s_n} = 31 + 4 = 35$ °C. Тогда давление конденсации определяется по диаграмме энтальпия — концентрация для водоаммиачного раствора (см. Приложение 12.1). Принимая концентрацию пара после дефлегматора $y_d = 0,995 \approx 1$, при $t_s = 35$ °C находим $P_s = 1,35$ МПа. Давление в генераторе отличается от P_s на величину потерь в трубопроводах. Пренебрегая потерями, примем $P_{r2} = P_s = 1,35$ МПа.

Низшая температура кипения раствора в испарителе $t_0 = t_{x\,2} - \Delta t_{\min}^{\mu} = -20 - 4 = -24$ °C, тогда при концентрации раствора $x_d = 0.995$ находим $P_0 = 0.159$ МПа. Давление в абсорбере ниже P_0 на величину потерь напора в коммуникациях ($\Delta P_a \leq 0.015$ МПа [1]): $P_a = P_0 - \Delta P_a = 0.144$ МПа.

Наносим линии $P_0 = \text{const}$, $P_{\kappa} = \text{const}$ и $P_a = \text{const}$ в диаграмме i-x (рис. 12.11). Определим параметры узловых точек процессов машины. Состояние слабого раствора на выходе из генератора (точка 2) находим графически по высшей температуре кипения раствора в генераторе t_2 и давлению P_{κ} , принимая минимальную разность температур в генераторе $\Delta t_{\min}^r = 7 - 10$ °C [1, 3, 16]

$$t_2 = t_{\rm rp} - \Delta t_{\rm min}^i = 152 - 7 = 145 \,^{\circ}{\rm C}.$$
 (12.36)

При $t_2 = 145$ °С и $P_{\kappa} = 1,35$ МПа концентрация слабого раствора $\overline{x}_a = 0,177$, энтальпия $i_2 = 497$ кДж/кг.

Концентрацию крепкого раствора после абсорбера \bar{x}_r находим по давлению P_a и низшей температуре раствора t_4 , которую находим, принимая минимальную разность температур в абсорбере $\Delta t_{\min}^{a} = 4 - 10 \text{ °C} [1, 3]$:

$$t_4 = t_{a1} + \Delta t_{\min}^a = 27 + 4 = 31 \text{ °C.}$$
(12.37)

С учетом переохлаждения раствора в абсорбере относительно насыщенного состояния (точка 4c) на величину $\Delta t_n^a = 2,5 - 7$ °С [1, 3] получим:

$$t_c = t_4 + \Delta t_n^a = 31 + 3 = 34 \ ^{\circ}\text{C}.$$

Действительную концентрацию раствора после абсорбера находим графически по температуре t_c и давлению P_a (точка 4c): $\bar{x}_r = 0,320$. При полной абсорбции концентрация раствора (точка 4b) составила бы $\bar{x}_r^m = 0,338$, т. е. недонасыщение раствора $\Delta x_r^a = 0,338 - 0,320 = 0,018$ кг/кг. Состояние раствора после абсорбера определяется точкой 4, которая находится на пересечении изотермы t_4 и линии $\bar{x}_r = \text{const.}$ Действительная зона дегазации составит: $\bar{x}_r - \bar{x}_a = 0,320 - 0,177 = 0,143$. Минимально допустимая зона дегазации для одноступенчатых водоаммиачных АХМ составляет 0,06 [1, 3], т. е. данную схему можно использовать.

Кратность циркуляции раствора $f = \dot{m}_i / \dot{m}_d$ находим из уравнения материального баланса аммиака в генераторе:

$$\dot{m}_{l}\bar{x}_{r} = (\dot{m}_{l} - \dot{m}_{d})\bar{x}_{a} + \bar{x}_{d}\dot{m}_{d}.$$
 (12.38)

Тогда

 $J = (\bar{x}_d - \bar{x}_b) / (\bar{x}_r - \bar{x}_b) = (0.995 - 0.177) / (0.32 - 0.177) = 5.72 \text{ kg/kg}.$ (12.39)

Состояние крепкого раствора после теплообменника на входе в ректификатор (точка *I*) примем насыщенным при давлении P_{κ} и при $\bar{x}_r = 0.32$; тогда $i_1 = 250 \text{ кДж/кг}$ н $t_1 = 111 \text{ °C}$.

Энтальпию слабого раствора после теплообменника (точка 3) находим по уравнению теплового баланса аппарата с учетом тепловых потерь в окружающую среду:

$$\eta_{\tau,p}(f-1)(i_2-i_3) = f(i_1-i_4).$$
(12.40)

Коэффициент тепловых потерь теплообменника растворов
 $\eta_{\text{т. p}}\!=\!0,\!95$ [1]. Тогда

$$i_3 = i_2 - (f - 1)\eta_{r,p})(i_1 - i_4) = 497 - (5,72/[(5,72 - 1)0,95])[250 - (-88)] = 66 \text{ k} \square \text{ k}/\text{k}/\text{k}r.$$

На диаграмме $i - \bar{x}$ находим по i_3 и \bar{x}_a точку 3. Температура $t_3 = 46$ °C. Состояние раствора после дросселирования жидкости (точка 3a) на диаграмме совпадает с точкой 3 (по условию процесса i = const). Энтальпию жидкости после насоса ввиду малой сжимаемости жидкости можно принять $i_{4a} = i_4$. Состояние пара на выходе из дефлегматора (точка 5) принимаем насыщенным при $P_{\kappa} = 1,35$ МПа и $\bar{y}_d = 0,995$, тогда $i_5 = 1360$ кДж/кг и $t_5 = 56$ °C. Точка 6, характеризующая состояние раствора на выходе из конденсатора, найдена по условию $P_{\kappa} = \text{const}$ (см. рис. 12.11).

Процесс в испарителе АХМ, где кипит водоаммиачный раствор, идет при переменной температуре кипения t_0 . Низшая температура t'_0 была определена ранее и использована для определения P_0 . Высшая температура кипения обычно выше t'_0 на 3—10 °С (в зависимости от x_d), однако состояние смеси на выходе из испарителя (точка 8) должно находиться в области влажного пара для удаления воды из аппарата: $t_8 = t'_0 + 3 = -24 + 3 = -21$ °C.

По изотерме t'_8 и изобаре P_0 определяем состояние кипящей жидкости (точка 8), далее по изотерме t'_8 в области влажного пара находим равновесное состояние пара (точка 8"). Тогда состояние влажного пара (точка 8) находим по условию аддитивности:

$$i_{8} = i_{8}'' - \left[\left(i_{8}'' - i_{8}' \right) / \left(\overline{y}_{6}'' - \overline{x}_{8}' \right) \right] \left(\overline{y}_{8}'' - \overline{y}_{d} \right);$$
(12.41)

$$i_8 = 1240 - [(1240 - (-187))/(1 - 0.87)](1 - 0.995) = 1185$$
 кДж/кг.

Состояние пара после парового теплообменника можно принять сухим насыщенным при $P_0 = 0,159$ МПа и $\bar{y}_d = 0,995$. Тогда $i_{8a} = 1312$ кДж/кг и $t_{8a} = 9$ °C. Разность температур на теплом конце парового теплообменника $\Delta t_1 = t_6 - t_{8a} = 35 - 9 = 26$ °C. Энтальпию потока жидкости перед дроссельным устройством (точка 6a) находим из урав-

нения теплового баланса теплообменника:

$$i_{6a} = i_6 - (i_{8a} - i_8) = 166 - (1312 - 1185) = 39$$
 кДж/кг.

При $i_{6a} = 39 \ \kappa \square w / \kappa \Gamma$ и $\overline{x}_d = 0.995$ находим $t_{6a} = +8.2 \ ^{\circ}C$. Разность температур на холодном конце парового теплообменника $\Delta t_2 = t_{6a} - t_8 = 8.2 - (-21) = 29.2 \ ^{\circ}C$. Значения температурных напоров $\Delta t = 25 - 30 \ ^{\circ}C$ обеспечивают компактность аппарата при сравнительно низких значениях коэффициента теплопередачи. Состояние жидкости после дросселя (точка 7) на диаграмме $i - \overline{x}$ совпадает с точкой 6a, хотя давление и температура потока после дросселирования иные: $P_0 = 0.159 \ M \Pi a$, $t_7 = -24 \ ^{\circ}C$. При принятом значении концентрации пара в точке 5 и определенном ранее состоянии жидкости на входе в ректификатор (точка 1) флегмовое число R можно найти по уравнению материального баланса укрепляющей части колонны, включая дефлегматор:

$$(1+R)\overline{y}_{1}''-R\overline{x}_{1}=\overline{y}_{5}.$$
 (12.42)

где $\overline{x'_1}$ — концентрация стекающей жидкости в сечении ректификатора, где вводится крепкий раствор (точка 1); принято $\overline{x'_1} = x_r = 0.32$; y''_1 — концентрация пара в этом сечении, находится по давлению P_k и температуре t''_1 Неравновесность пара и жидкости в этом сечении колонны оценивают [16] по величине переохлаждения жидкости $\Delta t = 4$ °C. Тогда

$$t_1'' = t_1 + \Delta t = 111 + 4 = 115 \text{ °C};$$
 $P_s = 1,35 \text{ M}\Pi a;$ $\overline{y}_1'' = 0,9.$

Флегмовое число равно:

$$R = (\bar{y}_5 - \bar{y}_1'') / (\bar{y}_1'' - \bar{x}_1') = (0.995 - 0.9) / (0.9 - 0.32) = 0.164 \text{ kr/kr.}$$
(12.43)

Способы определения оптимального флегмового числа рассмотрены в гл. 6. Температура флегмы при использовании дефлегматора несовмещенного типа может быть найдена по температуре пара в точке 5 с учетом неравновесности состояний флегмы и пара в виде разности температур Δt ; при этом температура флегмы выше, а концентрация ниже, чем пара [16] Принимая $\Delta t = 4$ °C, находим температуру и концентрацию флегмы при $P_{\kappa} = 1.35$ МПа:

$$t_R = t_5 + \Delta t = 56 + 4 = 60 \text{ °C}; \qquad \overline{x}_R = 0,608.$$

Тогда концентрацию пара на выходе из колонны находим по уравнению материального баланса дефлегматора:

$$(1+R)\bar{y}_{1\,s} = \bar{y}_5 + R\bar{x}_R,\tag{12.44}$$

откуда

$$\overline{y}_{1,a} = (\overline{y}_5 + R\overline{x}_R) / (1+R) = (0.995 + 0.164 \cdot 0.608) / (1+0.164) = 0.94.$$

Энтальпию и температуру пара в точке *l*а при $P_{\kappa} = 1,35$ МПа и $\tilde{y}_{1a} = 0,94$ находим по диаграмме i - x: $i_{1a} = 1550$ кДж/кг, $t_{1a} = 102$ °C. Значения параметров узловых точек цикла АХМ сведены в табл. 12.4.

Расчет удельных количеств тепла в АХМ. Удельные количества тепла представляют собой энергетические потоки, подводимые к рабочему телу АХМ (или отводимые от него) и отнесенные на единицу (1 кг) количества иара, сжижаемого в конденсаторе в единицу времени. В соответствии с этим различают удельные количества тепла генератора, дефлегматора, конденсатора, испарителя, абсорбера, а также величины, характеризующие регенеративный теплообмен в аппаратах VII и XII (см. рис. 12.10). Расчет основан на уравнениях тепловых балансов соответствующих аппаратов.

Удельное количество теила дефлегматора находят из уравиения

$$(1+R)i_{1a} = i_5 + Ri_R + q_{n\phi}. \tag{12.45}$$

Отсюда

 $q_{a\phi} = (1+R)i_{1,a} - i_5 - Ri_R = (1+0,165)1550 - 1360 - 0,164 \cdot 44 = 437 \text{ KJ} \text{ KJ} \text{ K/Kr}.$

380

Состояние рабочего	Параметры									
тела в точках цикла — (к рис. 12.11)	1, °C	Р, МПа	<u>,</u> у, кг/кг	кДж/кг						
Жидкость, точки:										
1	111	1,35	0,320	250						
1R	60	1,35	0,608	44						
2	145	1,35	0,177	497						
3	46	1,35	0,177	66						
3a	46	0,144	0,177	66						
4	31	0,144	0,32	- 88						
4c	31	1,35	0,32	-88						
6	35	1,35	0,995	166						
6a	8,2	1,35	0,995	39						
7	-24	0,159	0,995	39						
Тар, точки:										
la	102	1,35	0,94	1550						
5	56	1,35	0,995	1360						
8	-21	0,159	0,995	1185						
8a	+9	0,159	0,995	1312						

Удельное количество тепла генератора находят из уравнения

$$q_r + fi_1 = i_5 + (f - 1)i_2 + q_{\Lambda\Phi}.$$
(12.46)

Отсюда

$$q_r = i_5 - i_2 + f(i_2 - i_1) + q_{A\phi} = 1360 - 497 + 5,72(497 - 250) + 437 = 2713 \text{ kJ} \text{ k/k}/\text{kr}$$

Удельное количество тепла абсорбера находят из уравнения

$$i_{8a} + (j-1)i_3 = ji_4 + q_a. \tag{12.47}$$

Отсюда

$$q_{a} = i_{8a} - i_{3} + f(i_{3} - i_{4}) = 1312 - 66 + 5.72 [66 - (-88)] = 2127 \text{ KJ} \text{K/Kr}.$$

Удельные количества тепла в конденсаторе, испарителе и паровом теплообменнике, где циркулирует *m*_d кг/с рабочего тела, находят как разность энтальпий потоков на входе и выходе соответствующего аппарата:

Удельное количество тепла в теплообменнике растворов

 $q_{\text{T,n}} = f(i_1 - i_4) = 5.72 [250 - (-88)] = 1933 \text{ KJ} \text{K/KF}.$

Сумма удельных количеств тепла, подводимых к рабочему телу AXM (если пренебречь тепловым эквивалентом работы насоса), равна:

Отведенное тепло (с учетом тепловых потерь в теплообменнике растворов) равно:

$$\sum q_{o\tau} = q_s + q_{\kappa p} + q_{a\phi} + (1 - \eta_{\tau p})q_{\tau,p} = 2127 + 1194 + 437 - (1 - 0.95)1933 = 3855 \text{ kJ} \text{ k/kr}.$$

Несовпадение баланса соответствует точности расчета по тепловой диаграмме.

Удельная техническая работа адиабатного процесса в насосе равна

$$I_n = f(i_{4a} - i_4). \tag{12.48}$$

381

Считая жидкость несжимаемой при повышении давления от P_a до P_{κ} , можно определить величину l_{μ} как работу изохорного процесса:

$$l_{\rm s} = \int v \left(P_{\rm s} - P_{\rm s} \right) = 5.72 \cdot 1.126 \cdot 10^{-3} \left(1.35 - 0.144 \right) 10^3 = 7.73 \, \text{ k} \, \text{J} \, \text{k} / \text{kr}.$$
(12.49)

Удельный объем водоаммиачного раствора находим по данным [1].

Энергетическая эффективность цикла AXM оценивается тепловым коэффициентом, равным отношению количеств тепла, характеризующих целевой эффект и все затраты в AXM. Пренебрегая работой насоса ($l_{\rm H} \ll q_{\rm r}$), получим:

$$\zeta = q_0/q_r = 1146/2713 = 0,422. \tag{12.50}$$

12.2.2. Подбор оборудования

Оборудование абсорбционной холодильной установки включает оборудование аммиачного контура (аппараты, водоаммиачные насосы и коммуникации абсорбционной холодильной машины), оборудование циркуляционных контуров хладоносителя и оборотной воды. Поскольку внешние системы хладоносителя и охлаждающей воды идентичны рассчитанным в компрессионной установке, расчет этих систем здесь не рассматривается. Подбор оборудования АХМ проводится в определенной последовательности: вначале определяют материальные потоки в машине и рассчитывают тепловые нагрузки на аппараты, далее осуществляют подбор и поверочный расчет аппаратов АХМ, а затем — подбор водоаммиачных насосов и расчет аммиачных коммуникаций. Некоторые этапы проектирования АХМ не отличаются от приведенных ранее (в разд. 12.1) и здесь не приводятся.

Расчет материальных потоков и тепловых нагрузок на аппараты. Внешнюю тепловую нагрузку на абсорбционную холодильную установку рассчитывают так же, как в разд. 12.1.1. Она составляет $\dot{Q}_i = 393$ кВт; тогда необходимая холодильная мощность (с учетом потерь холода) равна $\dot{Q}_0 = 432$ кВт.

Массовый расход пара, поступающего в конденсатор и далее в испаритель, равен:

$$m_d = Q_0/q_0 = 432/1146 = 0.377$$
 Kr/c.

Массовый расход крепкого раствора

 $\dot{m}_i = f \dot{m}_d = 5,72 \cdot 0.377 = 2,156 \text{ kr/c}.$

Массовый расход слабого раствора

 $\dot{m}_a = \dot{m}_1 - \dot{m}_d = 2,156 - 0,377 = 1,779 \text{ Kr/c}.$

Массовый расход флегмы

 $\dot{m}_{\phi,\tau} = R\dot{m}_{d} = 0,164 \cdot 0,377 = 0,062 \text{ kr/c}.$

Тепловые нагрузки аппаратов АХМ равны:

испарителя $\dot{Q}_{0}^{*} = \dot{Q}_{0} = 432$ кВт; конденсатора $\dot{Q}_{*} = \dot{m}_{d}q_{*a} = 0.377 \cdot 1194 = 450$ кВт; абсорбера $\dot{Q}_{a} = \dot{m}_{d}q_{a} = 0.377 \cdot 2127 = 802$ кВт; генератора $\dot{Q}_{r} = \dot{m}_{d}q_{r} = 0.377 \cdot 2713 = 1023$ кВт; дефлегматора $\dot{Q}_{a\phi} = \dot{m}_{d}q_{a\phi} = 0.377 \cdot 437 = 165$ кВт; теплообменника растворов $\dot{Q}_{r,p} = \dot{m}_{d}q_{r,p} = 0.377 \cdot 1933 = 729$ кВт; теплообменника пара $\dot{Q}_{r,p} = \dot{m}_{d}q_{r,p} = 0.377 \cdot 127 = 48$ кВт

С учетом тепловых потерь через изоляцию тепловая нагрузка генератора составит

$$\dot{Q}_{r}^{a} = \dot{Q}_{r}/\eta_{r} = 1023/0.95 = 1077 \text{ KBr.}$$
 (12.51)

Тогда расход греющего пара равен

$$m_{\rm rp} = \dot{Q}_{\rm r}^{\rm a} / (i_{\rm rp}^{\prime\prime} - i_{\rm rp}^{\prime}) = 1077 / (2754 - 638) = 0.509 \,\,{\rm kr}\,/{\rm c}$$
 (12.52)

где η_{τ} — коэффициент тепловых потерь в генераторе; $\eta_{\tau} = 0.9 - 0.96$; i_{rp}'' , i_{rp}' — энтальпии соответственно воды и пара в состоянии насыщения при $P_{rp} = 0.5$ МПа [14]

Тепловая нагрузка на водоохлаждающее устройство (градирни) составит

$$\dot{Q} = \dot{Q}_{\kappa} + \dot{Q}_{a} + \dot{Q}_{a\phi} = 450 + 802 + 165 = 1417 \text{ KBT}.$$

Электрическая мощность, потребляемая водоаммиачным насосом, составляет

$$\dot{W}_{\rm B} = \dot{m}_l l_{\rm B} / (\eta_{\rm B} \eta_{\rm AB}) = (2,156 \cdot 7,73) / (0,7 \cdot 0.83) = 28 \text{ kBt}.$$

Подбор аппаратов АХМ. Подбор и поверочный расчет основных теплообменных аппаратов (испарителя, конденсатора, дефлегматора и теплообменников для регенерации тепла) проводится по общей схеме, представленной в гл. 2. При расчете абсорбера, выпарного элемента генератора и ректификационной колонны следует использовать материал гл. 3, 5 и 6. Примеры расчета этих аппаратов даны в литературе [8].

После подбора аппаратов и расчета коммуникаций, систем циркуляции хладоносителя и охлажденной воды определяют фактические параметры установки совмещением характеристик элементов АХМ (см. разд. 12.1.7).

При проектировании абсорбционных холодильных установок следует использовать параметрический ряд АХМ, принятый в СССР [23]

12.2.3. Энергетическая эффективность установки

Анализ термодинамического совершенства процессов в технологической установке, включающей АХМ, проводят на основе тех же понятий эксергетического к. п. д. и баланса эксергий для контрольных объемов отдельных подсистем и установки в целом (см. рис. 12.9). Отличительной особенностью подсистемы *З*, включающей водоаммиачный контур АХМ, является дополнительный ввод эксергий теплового потока в генераторе — этот поток эксергии является основным и определяет ее энергетическую эффективность:

$$\dot{E}(\dot{Q}_{r}^{n}) = \dot{Q}_{r}^{n}(T_{rp} - T_{cp})/T_{rp} = 1077(425, 15 - 308, 15)/425, 15 = 296 \text{ kBt}.$$

Суммарный поток эксергии, вводимой в подсистему АХМ, равен

$$\dot{E}_{AXM}^{BX} = \dot{E}(\dot{Q}_{F}^{a}) + \dot{W}_{B} = 296 + 28 = 324 \text{ kBt}.$$

Видно, что затраты электроэнергии в АХМ не превышают 10 % от общих затрат эксергии, причем $E_{\text{АХМ}}^{\text{вх}} > E_{\text{х},\text{м}}^{\text{вх}}$ при равной холодильной мощности, создаваемой в подсистеме 3. Полезный эффект в форме потока эксергии холода, вводимого в подсистему 2 (контур хладоносителя), равен

$$\dot{E}(\dot{Q}_0) = \dot{Q}_0 (T_{cp} - \overline{T_0}) / \overline{T_0} = 432 (308, 15 - 249, 15) / 249, 15 = 102,3 \text{ kBr}.$$

Процесс кипения в испарителе АХМ происходит при переменной температуре; условно примем среднетермодинамическую температуру рабочего тела равной наинизшей температуре кипения $t_0 = -24$ °C ($\overline{T_0} = T_0 = 249,15$ К). Потери эксергии от необратимости теплообмена в испарителях отнесены к подсистеме 2 (так же сделано в разд. 12.1.8).

В конденсаторе, абсорбере и дефлегматоре из водоаммиачного контура в подсистему охлаждающей воды отводятся потоки эксергии:

$$\begin{split} \dot{E}(\dot{Q}_{x}) &= \dot{Q}_{x}(\overline{T_{x}} - T_{cp})/\overline{T_{x}} = 450\,(308,15 - 308,15)/308,15 = 0;\\ \dot{E}(\dot{Q}_{a}) &= \dot{Q}_{a}(\overline{T_{a}} - T_{cp})/\overline{T_{a}} = 802\,(311,65 - 308,15)/311,65 = 7,9\,\text{ kBT};\\ \dot{E}(\dot{Q}_{a\phi}) &= \dot{Q}_{a\phi}(\overline{T_{\phi n}} - T_{cp})/\overline{T_{\phi n}} = 165\,(333,15 - 308,15)/333,15 = 12,4\,\text{ kBT}. \end{split}$$

При вычислении среднетермодинамических температур рабочего тела в конденсаторе, абсорбере и дефлегматоре принято:

$$\overline{l_{\kappa}} = l_{\kappa} = 35 \text{ °C} (\overline{T_{\kappa}} = 308, 15);$$

$$t_{a} = (t_{3,a} + t_{4})/2 = (46 + 31)/2 = 38,5 \text{ °C} (T_{a} = 311,15 \text{ K});$$

 $\overline{t}_{\psi,a} = t_{p} = 60 \text{ °C} (\overline{T}_{\phi,a} = 333,15 \text{ K}).$

Потери эксергии от необратимости теплообмена с охлаждающей водой отнесены к подсистеме 4.

Суммарный поток эксергии на выходе из подсистемы АХМ равен

$$\dot{E}_{\Lambda XM}^{\text{num}} = \dot{E}(\dot{Q}_0) + \dot{E}(\dot{Q}_n) + \dot{E}(\dot{Q}_n) + \dot{E}(\dot{Q}_{10}) = 102,3 + 0 + 7,9 + 12,4 = 122,6 \text{ KBT}.$$

Эксергетический к. п. д. процессов в водоаммиачном контуре АХМ находим по уравнению, аналогичному (12.28):

$$\eta_{AXM} = \dot{E}_{AXM}^{\mu_{MX}} / \dot{E}_{AXM}^{\mu_{X}} = 122.6/324 = 0.378.$$

Потери эксергии в подсистеме АХМ составят $\dot{D}_{AXM} = (1 - \eta_{AXM}) \dot{E}_{AXM}^{B^X} = (1 - 0.378) 324 = = 201.5 \text{ кВт.}$

Термодинамическое совершенство холодильной установки, включающей подсистемы хладоносителя 2, АХМ 3 и охлаждающей воды 4, определим, используя соотношения разд. 12.1.8. Получим:

$$\begin{split} \vec{E}_{xc}^{ux} &= \vec{E} \left(\dot{Q}_{r}^{x} \right) + \dot{W}_{u} + \dot{W}_{x} + \dot{W}_{y} + \Delta \dot{m}_{u} e_{u} = 296 + 28 + 18,88 + 43 + 2,26 \cdot 3,6 = 394 \text{ KBT}; \\ \vec{E}_{xc}^{uux} &= \vec{E} \left(\dot{Q}_{I} \right) = \dot{Q}_{I} \left(T_{cp} - \overline{T_{x}} \right) / \overline{T_{x}} = 393 \left(308,15 - 254,3 \right) / 254,3 = 83,2 \text{ KBT}; \\ \eta_{xc} &= \vec{E}_{xc}^{uux} / \vec{E}_{xc}^{ux} = 83,2/394 = 0,211; \\ \vec{D}_{xc} &= \left(1 - \eta_{xc} \right) \vec{E}_{x}^{vx} = (1 - 0,211) \, 394 = 310,8 \text{ KBT}. \end{split}$$

Затраты электроэнергии в системе циркуляции хладоносителя \dot{W}_x приняты те же, что в разд. 12.1. Расходы воды на подпитку $\Delta \dot{m}_{\rm B}$ и электрическая мощность, вводимая в водоохлаждающую систему, рассчитаны по тепловой нагрузке на градирни: $\dot{Q} = 1417$ кВт.

Сравнивая значения эксергетических к. п. д. холодильных установок на базе компрессионной и абсорбционной холодильных машин, видим, что процессы с использованием АХМ менее совершенны (примерно в 1,5 раза). Это связано с низкой эффективностью совмещенных циклов в АХМ и потерями эксергии в дефлегматоре и абсорбере. Более экономичные варианты работы АХМ приведены в [1, 3, 16, 23].

Термодинамическое совершенство процессов в технологической системе выделения толуола с использованием АХМ оценим по методике, изложенной в разд. 12.1.8; при этом $\dot{E}_{\tau c}^{\text{вых}}$ и $\dot{E}^{\tau p}$ сохраняют те же значения, а поток вводимой эксергии находится по уравнению

$$\dot{E}_{1c}^{\mu x} - \dot{E}^{\tau p} = \dot{m}_{r} e_{r}^{\mu} (T_{r}, P_{r}, \bar{x}) + \dot{E}_{xc}^{\mu x} = 4,07 \cdot 6,53 + 394 = 420,6 \text{ kBt}.$$

Эксергетический к. п. д. системы в целом находим по уравнению (12.31): $\eta_{\tau c} = 16/420, 6 = 0,038$, что примерно в 1,5 раза ниже, чем в установке с компрессионной холодильной машиной. Суммарные потери эксергии также значительно больше, чем в сравниваемом варианте:

$$\dot{D}_{rc} = (1 - \eta_{rc}) (\dot{E}_{rc}^{nx} - \dot{E}^{rp}) = (1 - 0.038) 420.6 = 404.6 \text{ kBr}.$$

Ниже дано распределение потерь эксергии по основным подсистемам абсорбционной холодильной установки (см. рис. 12.9):

Параметры	Подсистемы									
	1	2	3	4						
η_i	0,146	0,685	0,378	0						
$\frac{y_i}{y(1-\eta_i)}$	0,261	0,288 0,091	0,770 0,479	0,169						
<i>D</i> , кВт	93,6	38,2	201,4	71,4						

Анялиз данных показывает, что несовершенство процессов в водоаммначном контуре приводит к возрастанию потерь эксергии в АХМ и водоохлаждающей системе (подсистемы 3 и 4). Эксергетический к. п. д. подсистемы 4 принят равным нулю, поскольку нет полезно используемого потока эксергии нагретой воды; при этом сохраняют силу соображения, высказанные в разд. 12.1.8 о роли водооборотной системы.

В табл. 12.5 представлены основные энергетические показатели абсорбционной холодильной установки в различпые периоды года. Анализ данных показывает, что в весенне-осенний и зимний периоды такие энергетические показатели, как тепловой коэффициент АХМ и удельный расход греющего пара, заметно улучшаются вследствие снижения температуры охлаждающей воды, роста в связи с этим удельной холодопроизводительности q_0 и уменьшения кратности циркуляции $\int [см. уравнения (12.37), (12.39), (12.46)]$. Однако степень совершенства АХМ резко падает. Это вызвано тем, что в облегченных условиях эксплуатации возрастает относительная доля потерь от необратимости теплообмена, в частности при использовании греющего пара тех же параметров ($P_{rp} = 0.5 M\Pi a, t_{rp} = 152 \, ^{\circ}C$).

Термодинамический анализ АХМ показывает [1, 16], что при определенных температурах объекта охлаждения l_{x2} и охлаждающей воды l_{n1} существует оптимальный режим работы, обеспечивающий наибольший тепловой коэффициент. Этот режим определяется прежде всего оптимальными значениями температуры нагрева раствора в генераторе l_2 и концентрации слабого раствора \overline{x}_n . Отклонение этих величин в любую сторону вызывает уменьшение теплового коэффициента. В холодное время года снижение температуры охлаждающей воды l_{n1} приводит к смещению оптимума в сторону бо́льших концентраций x_a и меньших температур слабого раствора l_2 , однако использование греющего пара тех же параметров сохраняет l_2 и x_n прежними. В результате возрастают тепло дефлегмации и тепловая нагрузка генератора (относительно возможных оптимальных значений). Для улучшения энергетических показателей работы АХМ в зимнее время необходимо использовать греющий пар более низких параметров либо уменьщить подачу крепкого раствора в генератор.

Термодинамическое совершенство установки в целом в зимнее время ухудшается в pesультате возрастания относительной доли потерь в оборотной системе водоохлаждения. В этом случае необходим сравнительный технико-экономический анализ для определения оптимального способа отвода тепла в атмосферу.

	D	.Эксплуатационные режимы							
	Расчетный режим	летний	весенне-осенний	зимняй					
t _{rp} , °C	152	152	152	152					
tx 2, °C	20	- 20	-20	-20					
<i>t</i> _{в 1} , °C	+27	+ 23	+17	+10					
t₿, °C	+ 35	+ 24,7	+ 15	0 °C					
t₀, °C	24	- 24	- 24	24					
t _⊮ , °C	35	29	23,5	16,8					
Ċ _I , кВт	393	393	393	393					
¢₀, кВ т	431	431	431	431					
Ċӻ, кВт	1077	988	915	840					
<i>т</i> і _{гр} , кг/с	0,509	0,467	0,432	0,397					
Ŵи, кВт	28	24	22	16					
Ŵк, кВт	18,9	18,9	18,9	18,9					
Ŵг, кВт	4 <u>3</u>	43	34	22					
ня. м Э	0,401	0,436	0,471	0,513					
η _{χ.c}	0,211	0,178	0,142	0,082					

Таблица 12.5. Энергетические показатели абсорбционной холодильной машины

12.3. СРАВНИТЕЛЬНЫЙ ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ КОМПРЕССИОННОЙ И АБСОРБЦИОННОЙ ХОЛОДИЛЬНЫХ МАШИН

Сопоставление энергетических к. п. д. компрессионной и абсорбционной холодильных машин показывает, что АХМ термодинамически менее совершенна, совмещение прямого и обратного циклов приводит к резкому ухудшению энергетических показателей (см. табл. 12.3 и 12.5). Однако термодинамическое совершенство не является единственным критерием, определяющим предпочтительность той или иной схемы. Выбор наиболее целесообразного варианта осуществляется на основе сравнительных расчетов экономической эффективности капиталовложений. Оптимальному варианту соответствует минимум приведенных затрат, которые при сроке строительства до года и неизменности во времени годовых эксплуатационных расходов определяют по формуле

$$3 = E_{\mu}K + S,$$
 (12.53)

где К — единовременные капитальные затраты, руб.; Е_н — нормативный коэффициент эффективности (в энергетике E_n=0,12 год⁻¹); S -- годовые эксплуатационные расходы (ежегодные издержки), руб/год.

В данном случае использован разностный метод расчета экономии по приведенным затратам, позволяющий упростить задачу, учитывая только те затраты, по которым варианты различаются. Поскольку в компрессионной и абсорбционной машинах используются различные формы энергии, сопоставление вариантов должно учитывать не только затраты на получение холода в контуре холодильной машины, но и капитальные вложения и эксплуатационные издержки на производство данного вида энергии.

Сравним три варианта:

 Компрессионная холодильная машина получает электроэнергию от конденсационной электростанции (система КХМ — КЭС).

2. Абсорбционная холодильная машина получает тепло в виде насыщенного водяного пара (Р_{гр}=0,5 МПа) от теплоэнергоцентрали (система АХМ - ТЭЦ).

3. Абсорбционная холодильная машина получает тепло в виде насыщенного водяного пара (Р_{гр}=0,5 МПа) от котла-утилизатора, использующего вторичные энергоресурсы предприятия (система АХМ — ВЭР). Этот вариант особенно актуален для химической и нефтехимической отраслей промышленности, обладающих огромными ВЭР.

При расчете используем укрупненные показатели для оценки капитальных вложений и эксплуатационных издержек.

Ниже приведены ориентировочные значения удельных капиталовложений в оборудование, расходов и стоимости условного топлива и воды:

конденсационная электростанция — 110—160 руб/кВт [19]; примем цкэс = = 135 руб/кBT;

теплоэлектроцентраль — 160—180 руб/кВт [19]; примем цтэн = 165 руб/кВт;

оборудование утилизационной установки для получения пара от ВЭР — 10 000 руб/т пара [19];

компрессионная холодильная машина — $u_{KXM} = 25$ руб. за 1 м³/ч \dot{V}_{τ} [1, 8]; абсорбционная холодильная машина — $u_{AXM} = 100$ руб/кВт [1, 8]; системы технического водоснабжения — $u_{в} = 48$ руб. за 1 м³/ч [8];

удельный расход условного топлива на производство электроэнергии [19]

на $K \ni C - b_{\kappa \ni C} = 0.36 \cdot 10^{-3} \text{ т/(кВт·ч)},$ на ТЭЦ $b_{\tau \ni \mu} = 0.29 \cdot 10^{-3} \text{ т/(кВт·ч)};$

удельный расход условного топлива на отпущенное тепло от ТЭЦ [19]: b₁ = $= 42.7 \cdot 10^{-3} \text{ т}/\Gamma \square \text{ж};$

замыкающие затраты на топливо (газ) в районе Нижнего Поволжья [19]: З_т = =40 руб/т. у. т;

стоимость воды при оборотной системе ц_в =0,01 руб/м³

Общая норма амортизационных отчислений, включая ремонт, принята для всех объектов $P_a = 7,5$ %. При расчете использованы значения энергетических показателей холюдильных машии (таол. 12.5 и 12.5), усредненные за год; длительность расоты оборудования в течение года $\tau = 8000$ ч (в летний и зимпий периоды $\Delta \tau_1 = \Delta \tau_2 = 2000$ ч, в весение-осенний $\Delta \tau_3 = 4000$ ч). Для расчета электрической мощности ТЭЦ, иоставляющей тепло для АХМ, использованы основные показатели за 1980 г установленная мощность, производство электроэнергии по теилофикационному циклу и отпуск тепла (19). Принято на 1.10³ ГДж тепла 15 кВт установленной мощности ТЭЦ.

Ежегодная экономия приведенных затрат при использовании абсорбционной машины рассчитана по разностному методу:

$$\Delta 3 = E_{\rm s} \Delta K + \Lambda S, \qquad (12.54)$$

где ΔҚ — разность капиталовложений; ΔS — экономия ежегодных издержек на эксплуатацию. Величина ΔS складывается из экономии на топливо и воду и разницы амортизационных отчислений:

$$\Delta S = \Delta S_{T} + \Delta S_{B} + \Delta S_{B}$$

При сравнении систем КХМ — КЭС и АХМ — ТЭЦ топливная составляющая рассчитана по формуле [2]

$$\Delta \mathbf{S}_{\mathrm{r}} = \mathbf{3}_{\mathrm{r}} \left(b_{\mathrm{K} \mathbf{\Theta} \mathrm{C}} \mathbf{\tau} \sum \hat{W}_{\mathrm{K} \mathrm{X} \mathrm{M}} / \eta_{\mathrm{s}} - b_{\mathrm{r}} \dot{Q}_{\mathrm{r}} \mathbf{\tau} / \eta_{\mathrm{r}} - b_{\mathrm{T} \mathbf{\Theta} \mathrm{H}} \mathbf{\tau} \sum \hat{W}_{\mathrm{A} \mathrm{X} \mathrm{M}} / \eta_{\mathrm{s}} \right), \tag{12.55}$$

где $\sum \hat{W}_{KXM}$, $\sum \hat{W}_{AXM}$ — суммарные электрические мощности, потребляемые соответственно в компрессионной и абсорбционной установках; $\eta_{,}=0.9$ — коэффициент, учитывающий потери в электрических сетях и неучтеппый расход энергии (на КИП); \dot{Q}_{r} — тепловая нагрузка на генератор АХМ; $\eta_{r}=0.9$ коэффициент потерь тепла во внешних сетях.

При использовании тепла ВЭР в уравнении (12.55) исчезает величина $b_\tau \dot{Q}_r \tau / \eta_\tau$ — расход топлива на ТЭЦ для производства греющего пара. Экономия при сокращении расхода воды на подпитку оборотной системы определяется по соотношению:

$$\Delta S_{\rm B} = \eta_{\rm b} \left(\Delta \dot{m}_{\rm BKXM} - \Delta \dot{m}_{\rm BAXM} \right) \tau. \tag{12.56}$$

Разница амортизационных отчислений определена по формуле:

$$\Delta S_a = P_a \Delta K. \tag{12.57}$$

Результаты вычнслений представлены в табл. 12.6. Анализ их показывает, что в данных условиях применение абсорбционной холодильной машины целесообразно только при использованни ВЭР Однако в иных условиях, например при сезонности нагрузки на холодильную машину и резерве тепла ТЭЦ в летнее время, возможен иной результат.

		Сравнинаемые варнанты				
Показатель	Обозначение или расчетное соотношение	КХМ — КЭС	АХМ — ТЭЦ	АХМ — ВЭР		
Холодопроизводительность: в единицу времени, кВт	Q ₀	431	431	431		
годовая, ГДж	$Q'_0 = \dot{Q}_0 \tau$	$12,4 \cdot 10^{3}$	$12,4 \cdot 10^{3}$	12,4 · 10 ³		
тора АХМ:						
в единицу времени, кВт	$\overline{Q_{i}} = \sum \dot{Q}_{i} \Delta \tau_{i} / \sum \Delta \tau_{i}$		914	914		
годовая, ГДж	$Q'_{\rm f} = \widetilde{Q_{\rm f}} \tau$	_	$26,3 \cdot 10^{3}$	$26 \cdot 10^3$		
Расход греющего пара, т/ч	$\dot{m}_{rp} = \sum \dot{m}_{rp} \Delta \tau_i / \sum \Delta \tau_i$		1,55	1,55		

Таблица 12.6. Расчет экономии приведенных затрат для различных вариантов холодильных установок

		Сравниваемые варианты				
Показатель	Обозначение или расчетное соотношение	КХМ КЭС	АХМ ТЭЦ	АХМ ВЭР		
Потребляемая электриче-	$\sum \dot{\boldsymbol{W}} = \sum \left(\sum \dot{\boldsymbol{W}}\right) \Delta \tau_i / \sum \Delta \tau_i$	2 2 1	75	75		
Годовой расход электроэнер-	$\tau \sum \dot{W}$	1,77·10 ⁶	6·10 ⁵	6·10⁵		
гии, кВт·ч Экономия условного топли-						
ва: за год, т/год		0	- 714 - 0.058	+467 ± 0.038		
на ГГДж холода, т/ГДж Экономия затрат на топливо	По уравнению (12.55)	0	-28560	+ 18690		
АЗт, руб/год Экономия затрат на воду А.S. руб/год	По уравнению (12.56)	0	-230	230		
Капиталовложения в КЭС,	$K_{K \ni C} = u_{K \ni C} \sum \dot{W} / \eta_{s}$	33150		11250		
руо. Установленная мощность ТЭШ кВт [.]						
по теплу	$\dot{W}_{\tau} = 15Q_{\tau}^{\prime} \cdot 10^{-1}$ $\dot{W}_{\tau} = \sum \dot{W}_{\tau} \cdot \frac{1}{2} \sqrt{n}$		395 83			
суммарная	$\vec{W}_{r} + \vec{W}_{s}$	_	478			
Капиталовложения в ТЭЦ,	$K_{TP\mathfrak{U}} = \mathfrak{u}_{TP\mathfrak{U}}(\dot{W}_{T} + \dot{W}_{s})$	—	78870	—		
руб. Капиталовложения заме- щенной мощности КЭС, руб.	$K_{K \ni C}^{\mathfrak{su}} = \mathfrak{u}_{K \ni C} \dot{W},$	_	53325	•		
Капиталовложения, руб.: в компрессионную холо-	$\mathbf{K}_{\mathbf{K}\mathbf{X}\mathbf{M}} = \mathbf{u}_{\mathbf{K}\mathbf{X}\mathbf{M}} \sum \dot{\mathbf{V}}_{\tau} \cdot 3600$	60120	_			
дильную машину в абсорбционную машину в оборотное водоснабже-	$K_{AXM} = u_{AXM} \dot{Q}_0$ $K_{\rm B} = u_{\rm B} \dot{V}_{\rm B} \cdot 3600$	 8300	43100 13500	43100 13500		
в утилизатор ВЭР Суммарные капиталовложе-	$K_{y\tau} = 10 \ 000 \dot{m}_{rp}$ $\sum_{k} K$	101570	82145	15500 72100		
ния в систему, руб. Разность капиталовложе-	ΔΚ	0	19425	2950 0		
ний, руб. Экономня приведенных за- трат по капитальным вложе-	$\Delta K E_{H}$	0	2331	3540		
ниям, руб./год Экономия амортизационных	$\Delta S_{a} = P_{a} \Delta K$	0	1460	2210		
отчислении, руб./год Суммарная экономия экс- плуатационных издержек,	Δ <i>S</i>	0	- 27330	20670		
руб./год Экономия приведенных за-						
трат, руо.: за год за I ГДж холода	Δ3 Δ3/ <i>Q</i> 6		- 24999 - 2,02	24210 + 1,95		

Продилжецие таба Ат

Приложение 12.2. Диаграмма $\lg P - i$ для аммиака (низкое давление): t=0 °C; $t'_0=100,0$ ккал/кг; $s'_0=1,0$ ккал/(кг·К) (1 ккал/кг=4,19 кДж/кг)

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Бадылькес И. С., Данилов Р. Л. Абсорбционные холодильные машины. М.: Пищ. пром., 1966. 355 c.
- 2. Орехов И. И., Обрезов В. Д. Холод в процессах химической технологии. Л.: Изд. ЛГУ, 1980. 256 с.
- 3. Розенфельд Л. М., Ткачев Л. Г. Холодильные машины и аппараты. М.: Госторгиздат, 1960. 652 c.
- 4. Рид. Р., Праусниц Дж., Шервуд Т Свойства газов и жидкостей. Л.. Химпя, 1982. 592 с.
- 5. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972. 720 c.
- 6. Кирылев Е. С., Герасимов Н. А. Холодильные установки. Л.: Машиностроение, 1980. 622 с.
- 7 Холодильная техника. Энциклопедический справочник. М.: Госторгиздат Т. 1. 1960. 544 с.; т. 2. 1962. 488 с.
- 8. Кошкин Н. Н. и др. Тепловые и коиструктивные расчеты холодильных машин. Л.: Машиностроение, 1976. 464 с.
- 9. Холодильные компрессоры: Справочник. М.: Легкая и ниш. пром., 1981. 280 с.
- 10. Данилова Г Н. и др. Теплообменные аппараты холодильных установок. Л.: Машиностросние, 1973. 328 c.
- 11. Теплообменные аппараты, приборы автоматизации и испытания холодильных машии/Под ред. А. В. Быкова. М.: Легкая и ниш. пром., 1984. 248 с. 12. Свердлов Г З., Янвель Б. К. Курсовое и дипломное проектирование холодильных установок
- и систем кондиционирования воздуха. М.: Пищ. пром., 1978. 264 с.
- 13. Проектирование холодильных сооружений: Справочник. М.: Пиш. пром., 1978. 255 с.
- 14. Справочник по теплообменникам. М.: Энергоатомиздат, 1987 Т 1, 560 с.: т. 2, 352 с.
- 15. Тепловые и атомные электрические станции: Справочник. М.: Энергоиздат, 1982. 624 с.
- 16. Блиер Б. М., Вургафт А. В. Теоретические основы проектирования абсорбционных термотрансформаторов. М.: Пиш. пром., 1971. 203 с.
- 17 Кошкин Н. Н. и др. Холодильные машины. М.: Пищ. пром., 1973. 512 с.
- 18. Соколов Е. Я., Бродянский В. М. Энергетические основы грансформации тепла и процессов охлаждения. М.: Энергоиздат. 1981. 320 с.
- 19. Теплоэнергетика и теплотехника. Общие вопросы: Справочник. М.: Энергия, 1980. 529 с.
- 20. Лейтес И. Л., Сосна М. Х., Семенов В. П. Теория и практика химической энерготехнологии. М.: Химия, 1988. 280 с.
- 21. Хейвуд Р Термодинамика равновесных процессов. М.: Мир, 1983. 492 с.
- 22. СНИП II-А.6-72. Строительная климатология и геофизика.
- 23. Холодильные машины: Справочник. М.: Легкая пром., 1982. 223 с.
- 24. Теплофизические основы получения искусственного холода: Справочник. М.: Пищ. пром., 1980. 231 c.

ГЛАВА 13

МЕХАНИЧЕСКИЕ РАСЧЕТЫ ОСНОВНЫХ УЗЛОВ И ДЕТАЛЕЙ ХИМИЧЕСКИХ АППАРАТОВ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- Е модуль продольной упругости материала;
- I момент инерции;
- М изгибающий момент;
- *Р* усилие деформации;
- р давление;
- ₩́ момент сопротивления;
- пормальное напряжение;
- т касательное напряжение.

ВВЕД ЕНИЕ

Настоящее пособие по проектированию предназначено в первую очередь для студентов химикотехнологических вузов, поэтому цель данной главы — не точное изложение существующих методик, закрепленных нормативно-технической документацией (ГОСТами, отраслевыми нормалями и т. п.), а описание общего порядка расчета с выделением наиболее важных моментов, гле будущим инженерам-технологам поясняется связь между свойствами обрабатываемых веществ, технологическими особенностями процесса и прочностью и надежностью аппаратуры.

Конструктивное оформление машин и аппаратов, применяемых в химической промыиленности, неразрывно связано с их функциональным назначением и полностью определяется характером и технологическими параметрами протекающих в них процессов. При этом конструкция химического оборудования должна не только отвечать требованиям самых совершенных технологий, но обладать также прочпостью, высокой надежностью, быть легкой, эстетичной и требовать как можно меньшего расхода дорогостоящих и дефицитных материалов.

Для обеспечения сочетания прочности и надежности химической аппаратуры с ее экономичностью и малой материалоемкостью на стадии проектирования необходимо провести подробный механический (прочностной) расчет каждого узла и детали вновь создаваемого оборудования. При этом могут быть выполнены два вида механических расчетов: проектировочный и поверочный. В первом случае основные размеры разрабатываемого элемента конструкции рассчитывают исходя из характера действующих на него нагрузок, температуры эксплуатации, материала и необходимого запаса прочности. Во втором случае, когда размеры элемента конструкции обусловлены какими-либо иными соображениями, например требованиями технологии, расчет сводится к определению напряжений, действующих в материале рассчитываемого элемента и их сравнению с допускаемыми напряжениями.

Прежде чем перейти к основам механического расчета, следует ввести некоторые понятия и определения, которые окажутся полезными для понимания изложенного ниже материала.

13.1. ОБЩИЕ СВЕДЕНИЯ

Расчетную температуру определяют на основании тепловых расчетов или опытных данных. При положительных температурах за расчетную принимают наибольшую температуру стенки. При работе элементов химической аппаратуры в условиях любых отрицательных температур за расчетную температуру принимают 20 °C. В тех случаях, когда по тем или иным причинам нельзя воспользоваться ни расчетными, ни опытными данными либо нагрев элементов аппаратуры неравномерен, за расчетную следует принимать наибольшую температуру среды, но не ниже 20 °C. Расчетную температуру используют для определения физико-механических характеристик материалов и допускаемых напряжений.

Под рабочим давлением понимают максимальное внутреннее избыточное или наружное давление, возникающее при нормальном протекании рабочего процесса, без учета гидростатического давления среды и без учета допустимого кратковременного повышения давления при срабатывании предохранительного клапана или других предохранительных устройств.

Под условным (номинальным) давлением принято понимать наибольшее избыточное давление при расчетной температуре 20 °С, при котором обеспечивается длительная работа аппарата или сосуда при той же температуре. Ряд условных давлений нормализован (ГОСТ 9493—80) в пределах от 0,10 до 100 МПа. Значения условных давлений в МПа выбирают из ряда [1] 0,10; 0,16; 0,25; 0.30; 0,40; 0,60; 0,80; 1,00; 1,25; 1,60; 2,0; 2,50; 3,20; 4,0; 5,0; 6,30; 8,0; 10,0; 12,5; 16,0; 20,0; 25,0; 32,0; 40,0; 50,0; 63,0; 80,0; 100. Приведенный ряд распространяется на промышленные резервуары и газгольдеры.

Под расчетным понимают давление, для которого проводят расчет элементов аппаратуры на прочность. Его принимают, как правило, равным рабочему давлению или выше последнего. При расчете элементов, разделяющих пространства с разными давлениями (например, в аппаратах с рубашками), за расчетное принимают либо давление в каждом из этих пространств, либо давление, требующее большей толщины стенки рассчитываемого элемента. Если на элемент сосуда или аппарата действует гидростатическое давление, составляющее 5 % или более от рабочего, то расчетное давление для этого элемента следует увеличить на это же значение.

Под пробным понимают давление, при котором проводят испытание сосуда или аппарата.

Допускаемое напряжение для выбранного материала приближенно можно определить по формуле

$$[\sigma] = \eta \sigma^*, \tag{13.1}$$

где η — коэффициент; σ* — нормативное допускаемое напряжение.

				Донус	каемое	напря:	жение	о* МПа	для	сталей	марок			
Рас- чет- ная темпе- рату- ра, °С	ВСт.3	20, 20K	09F2C, 16FC, 17FC, 17F1C, 10F2C1	10Г2	12XM	12MX	15XM	15X5M	15X5M-Y	08X22H6T, 08X21H6M2T	03X21H21M4F6	03X18H11	03X16H15M3	06XH28MДT. 03XH28MДT
20	140	147	183	180	147	147	155	146	240	240	180	160	153	147
100	134	142	160	160				(141)	235	207	173	133	140	138
150	131	139	154	154				138	230	200	171	125	130	130
200	126	136	148	148	145	145	152	134	225	193	171	120	120	124
250	120	132	145	145	145	145	152	127	220	173	167	115	113	117
300	108	119	134	134	141	141	147	120	210	167	149	112	103	110
350	98	106	123	123	137	137	142	114	200		143	108	101	107
375	93	98	116	108	135	135	140	110	180		141	107	90	105
400	85	92	105	92	132	132	137	105	170	-	140	107	87	103
410	81	86	104	86	130	130	136	103	160		-	107	83	
420	75	80	92	80	129	129	135	101	155		-	107	82	_
430	70	75	86	75	127	127	134	99	140	-		107	81	_
4 40		67	78	67	126	126	132	96	135			107	81	-
450		61	71	61	124	124	131	94	130		_	107	80	
460	_	55	64	55	122	122	127	91	126		_		_	
470		49	56	49	117	117	122	89	122					-
480		44	53	44	114	114	117	86	118				-	
490		· 		-	105	105	107	83	114			_	—	-
500			-	-	96	96	99 7:	79	108	~				-
520			_		69	69	14	66	85			_	_	
540					50	47	57	54	58				-	.—
560					- 33		41	40	45	~~~				

Таблица 13.1 Допускаемые напряжения оля сталеи

Для взрыво- и пожароопасных сред η принимают равным 0,9, в остальных случаях $\eta = 1,0.3$ начения σ^* для ряда сталей приведены в табл. 13.1; более подробные сведения см. [2].

Значения *модуля продольной упругости Е* в зависимости от выбранного материала при расчетной температуре определяют по табл. 13.2.

Коэффициент прочности сварных швов (ϕ) характеризует прочность сварного шва по сравнению с прочностью основного материала. Значение этого коэффициента зависит от метода сварки и типа сварного соединения (табл. 13.3). Для бесшовных элементов сосудов и аппаратов $\phi = 1$

При расчете сосудов и аппаратов необходимо учитывать прибавку к расчетным толщинам элементов (с) Исполнительную толщину стенки элемента определяют по формуле

$$s \geqslant s_{\rm p} + c, \tag{13.2}$$

где прибавка к расчетпой толщине (sp) равна

$$c = c_1 + c_2 + c_3. \tag{13.3}$$

Прибавки c_2 (для компенсации минусового допуска) и c_3 (для компепсации утонения в процессе изготовления аппаратуры), как правило, иевелики и учитываются технологами по обработке металлов. Гораздо существеннее прибавка c_1 для компенсации коррозни и (или) эрозии элементов сосуда или аппарата. Таким образом, формула (13.3) может быть записана в виде

$$c = c_1 = \Gamma T_a, \tag{13.4}$$

где П — скорость коррозии или эрозии; T_a – срок службы аппарата.

Cranu	<i>Е</i> ·10 ⁻⁵ МПа при температуре, «С													
Claim	20	100	150	2 00	250	300	350	400	450	500	550	600	650	700
Углеродис- тые и низко- легирован-	1,99	1,91	1,86	1,81	1,76	1,71	1,64	1,55	1,40	_	-	_	_	-
ные Жаропроч- иые и жаро- стойкие	2,00	2,00	1,99	1,97	1,94	1,90	1,85	1,80	1,74	1,67	1,60	1,52	1,43	1,32
аустенитные Теплоустой- чивые и кор- розионно- стойкие хро- мистые	2,15	2,15	2,05	1.98	1,95	1,90	1,84	1,78	1,71	1,63	1,54	1,40	-	

Таблица 13.2. Модуль продольной упругости для сталей

Таблица	13.3.	Коэффициент	прочности	сварных	шв ов	(φ)
			- F			N 1 4	,

	ም		
Вид сварного шва	при контроле 100 % длины шва	при контроле от 10 до 50 % длины шва	
Стыковой или тавровый с двусторонним сплошным прова- ром, выполненный автоматической или полуавтоматиче- ской сваркой	1,0	0,9	
Стыковой с подваркой корня шва или тавровый с двусто- ронним сплошным проваром, выполненный вручную	1,0	0,9	
Стыковой, доступный сварке только с одной стороны и имеющий в процессе сварки металлическую подкладку со стороны корня шва	0,9	0,8	
Тавровый, с конструктивным зазором свариваемых деталей	0,8	0,65	
Стыковой, выполненный автоматической или полуавтома- тической сваркой с одной стороны, с флюсовой или кера- мической полклалкой	0,9	0,8	
Стыковой, выполненный вручную с одной стороны	0,9	0,65	

Для конструктивных элементов, имеющих защитные покрытия, c=0. При двустороннем контакте с коррозионной и (или) эрозионной средой прибавку c_1 необходимо соответственно удваивать.

13.2. РАСЧЕТ ТОЛЩИНЫ ОБЕЧАЕК

Расчет толщины обечаек проводят в соответствии с ГОСТ 14249-80 [2]

Исполнительную толщину тонкостенной гладкой цилиндрической обечайки, нагруженной внутренним избыточным давлением, рассчитывают по формуле

$$s \ge pD/(2[\sigma]\varphi - p) + c. \tag{13.5}$$

Эта формула применима при следующих условиях: во-первых, для труб и обечаек с $D \ge 200$ мм должно соблюдаться условие $(s-c)/D \le 0,1$, для труб и обечаек с D < 200 м— $(s-c)/D \le 0,3$; во-вторых, расчетная температура обечайки из углеродистой стали не должна превышать 380 °C, из низколегированной — 420 °C, нз аустенитной — 525 °C.

В соответствии с ГОСТ 9617—76 [3] внутренний диаметр сосуда или анпарата, применяемого в химической, нефтехимической, нефтеперерабатывающей и смежных с ними отраслях промышленности и изготовляемого из стальных листов или поковок, должен быть выбран из следующего ряда: 400; (450); 500; (550); 600; (650); 700; 800;

900; 1000; (1100), 1200; (1300); 1400; (1500); 1600; (1700); 1800; (1900), 2000; 2200; 2400; 2500; 2600; 2800; 3000; 3200; 3400; 3600; 3800; 4000; 4500; 5000; 5600; 6300; 7000; 7500; 8000; 8500; 9000; 9500; 10 000; 11 000; 12 000; 14 000; 16 000; 18 000; 20 000 мм. Значения, указанные в скобках. можно применять только для рубашек сосудов и аппаратов. Эмалированные сосуды и аппараты, аппараты с перемешивающими устройствами, а также сосуды и аппараты из никельсодержащих сталей допускается изготовлять диаметром 250, 300 и 350 мм. Рубашки эмалированных сосудов и аппаратов можно принимать равными 1550, 1750 и 1950 мм.

Рис. 13.1 Номограмма для расчета на устойчивость в пределах упругости цилиндрических обечаек, работающих под наружным давлением

396

Рис. 13.2. Примеры использования номограммы на рис. 13.1:

I — определение расчетной толщины стенки; II — определение допускаемого наружиого давления; III — определение допускаемой расчетной длины (I); о начало отсчета; ● — промежуточные точки; × — конечный результат

Рис. 13.3. К расчету плоских крышек

Внутренний диаметр сосуда или аппарата, изготовляемого из цветных металлов и сплавов, должен быть выбран из следующего ряда: 200; 250; 300; 350; 400; 450; 500; 550; 600; 650; 700; 800; 900; 1000; 1100; 1200; 1300; 1400; 1500; 1600; 1700; 1800; 1900; 2000; 2200; 2400; 2600; 2800; 3000; 3200; 3400; 3600; 3800; 4000 мм.

Наружный диаметр сосуда или аппарата, изготовляемого из стальной трубы, выбирают из следующего ряда: 133; 159; 168; 219; 273; 325; 377; 426; 480; 530; 630; 720; 820; 920; 1020; 1120; 1220; 1320; 1420 мм.

Толщину стенки гладкой цилиндрической обечайки, нагруженной наружным давлением, выбирают большей из двух, рассчитанных по формулам

$$s \ge 10^{-2} K_2 D + c;$$
 (13.6)

$$s \ge 1.1 \rho D/2 [\sigma] + c, \tag{13.7}$$

с последующей проверкой по формуле (13.8)

Коэффициент K_2 определяют по номограмме, приведенной на рис. 13.1. Пример использования этой номограммы для расчета приведен на рис. 13.2.

Допускаемое наружное давление определяют по формуле

$$[p] = \frac{[p]_{P}}{\sqrt{1 + ([p]_{P}/[P]_{E})^{2}}}.$$
(13.8)

Допускаемое давление из условия прочности определяют по формуле

$$[p]_{p} = 2 [\sigma](s-c) / [D + (s-c)]$$
(13.9)

Допускаемое давление из условия устойчивости в пределах упругости определяют по формуле

$$[p]_{E} = \frac{18 \cdot 10^{-6} E}{n_{y} B_{1}} \frac{D}{l} \left[\frac{100 (s-c)}{D} \right]^{2} \sqrt{\frac{100 (s-c)}{D}}, \qquad (13.10)$$

где В₁ — меньшее из двух, вычисленных по формулам

$$B_1 = 1,0; \quad B_1 = 8,15 \frac{D}{l} \sqrt{D/100(s-c)}$$
(13.11)

n. запас устойчивости, равный 2,4

397

Коэффициент запаса прочности n_3 рекомендуется принимать равным 2.4: Расчетная длина $l = L + l_3$, где L длина собственно цилиндрической обечайки; $l_3 -$ длина, учитывающая влияние на устойчивость цплпндрической обечайки примыкающих к ней элементов. Так, для обечаек, сочетающихся с выпуклыми (например, эллиптическими или полусферическими) диищами и крышками, $l_3 = H/3$ (H -высота днища или крышки без отбортовки); для обечаек, сочетающихся с коническими днищами без отбортовки, $l_3 = D/3$ (g α – половина угла при вершине конуса); для обечаек, сочетающихся с коническими днищами с отбортовкой, выбирают напбольшее значение l_3 из двух, вычисленных по формулам

$$l_3 = r \sin \alpha; \qquad l_3 = D/3 \lg \alpha, \qquad (13.12)$$

где r — раднус скругления между цилиндрической отбортовкой и конической частью днища.

Если полученное по помограмме (см. рис. 13.1) значение K₂ лежит ниже соответствующей штрихпунктирной линии, значение [*p*] может быть определено по формуле

$$[p] = 2{}_{*}4K_{2} \cdot 10^{-6}E/n_{y}. \tag{13.13}$$

Гладкие конические обечайки, работающие под внутренним или наружным давлением, рассчитывают по тем же формулам, что и конические днища (см. разд. 13.3).

13.3. РАСЧЕТ ТОЛЩИНЫ ДНИЩА

Толщину стенки эллиптического или полусферического днища определяют по формуле

$$s \ge \rho R / (2\varphi[\sigma] - 0.5\rho) + c,$$
 (13.14)

где R — раднус кривизны в вершине днища; $R = D^2/4H$ (H — высота днища без учета цилиндрической отбортовки); R = D для эллиптических днищ с H = 0.25D; R = 0.5D для полусферических днищ с H = 0.5D

Если длина цилиндрической отбортовки (h_1) у эллиптического днища больше $0.8[D(s-c)]^{1/2}$, а у полусферического днища больше $0.3[D(s-c)]^{1/2}$, то толщина днища должна быть не меньше толщины обечайки, рассчитанной при q = 1 (см. разд. 13.2).

Для днищ, нэготовленных из целой заготовки (без сварочной операции); коэффициент $\varphi = 1$. Для сварных диищ этот коэффициент определяют по табл. 13.3.

Толщину стенки эллиптических и полусферических днищ, нагруженных наружным давлением, принимают равпой большему из двух значений, рассчитанных по формулам

$$s \ge \frac{K_{g}R}{510} \sqrt{\frac{n_{g}\rho}{10^{-6}E}} + c;$$
 (13.15)

$$s \ge pR/2 [\sigma], \tag{13.16}$$

где коэффициент К, при приближенных расчетах можно принять равным 1,0 для полусферических днищ и 0,9 — для эллиптических.

Формулы (13.14) — (13.16) применимы для расчета эллиптических днищ при соблюдении следующих условий:

$$0.002 \le (s-c)/D \le 0.1, \qquad 0.2 \le H/D \le 0.5.$$

Кроме того, их можно применять лишь тогда, когда расчетная температура стенок полусферического и эллиптического днищ, изготовленных из углеродистой стали, не превышает 380 °C, из низколегированной стали 420 °C, из аустенитной — 525 °C.

Толщину стенок гладких конических днищ с тороидальным переходом (отбортовкой), нагруженных внутренним избыточным давлением, рассчитывают по формуле

$$s \ge \frac{\rho D_{\mathbf{k}}}{2\varphi[\sigma] - \rho} \quad \frac{1}{\cos \alpha} + c, \tag{13.17}$$

где расчетный диаметр конического днища $D_{\kappa} = 0.8D$ (D - диаметр отоортовки или основания конуса); α — половина угла при вершине конуса. $\Box = \frac{2}{3}$

Толщину стенки гладких конических днищ. нагруженных наружным давлением, в первом приближении определяют по формулам (13.6) и (13.7) с последующей проверкой по формуле (13.8). При предварительном определении толщины стенки в качестве расчетной длины *l* принимают длину *l_e*, определяемую по формуле

$$l_E = (D - D_o)/2\sin\alpha, \qquad (13.18)$$

где D_o — диаметр отверстия для штуцера, расположенного в вершине конуса.

При расчетах по формулам (13.6) и (13.7) величину *D* заменяют величиной *D_E*, в качестве которой принимают наибольшую из рассчитанных по формулам

$$D_E = (D + D_v) / 2\cos\alpha; \tag{13.19}$$

$$D_{E} = \frac{D}{\cos \alpha} - 0.31 (D + D_{o}) \sqrt{\frac{(D + D_{o})}{(s - c)}} \, \text{tg } \alpha.$$
(13.20)

При проверке по формуле (13.8) в нее иодставляют значение

$$[p]_{P} = 2[\sigma] (s-c)/(D_{\kappa}/\cos\alpha + s - c), \qquad (13.21)$$

а значение $[p]_E$ определяют по формуле (13.10), в которую вместо D и l подставляют соответственно значения D_E и l_E . При расчете по формуле (13.10) выбирают меньшее из двух значений B_1 , вычисленных по формулам

$$B_1 = 1,0; \quad B_1 = 8,15 \frac{D_E}{l_E} \sqrt{\frac{D_E}{100(s-c)}}.$$
 (13.22)

Следует иметь в виду, что методика расчета толщины стенки гладких конических днищ, нагруженных наружным давлением, применима лишь при условии $\alpha \leqslant 75$ °C.

При расчете плоских крышек, работающих под внутренним давлением, необходимо иметь в виду, что такие крышки диаметром более 500 мм не применяют.

Для определения толщины плоской крышки используют выражение

$$s_{\rm sp} \ge k D_{\rm c} \, _{\rm ff} \sqrt{\rho / [\sigma]} + c, \tag{13.23}$$

где k — коэффициент конструкции крышки; для предварительных расчетов можно принять k=0,41; D_{c.n} — средний диаметр прокладки (рис. 13.3, стр. 397).

13.4. ШТУЦЕРА И ФЛАНЦЫ

Подсоединение трубопроводов к сосудам и аппаратам осуществляется с помощью вводных труб или штуцеров. Штуцерные соединения могут быть разъемными (резьбовыми, фланцевыми, сальниковымн) и неразъемными (сварными, паяными, клеевыми). Наиболее употребительны разъемные соединения с помощью фланцевых штуцеров. Стальные фланцевые штуцера представляют собой короткие куски труб с приваренными к ним фланцами либо с фланцами, удерживающимися на отбортовке, либо с фланцами, откованными заодно со штуцером. В зависимости от толщины стеиок натрубки штуцеров могут быть тонко- или толстостенными. Штуцера не рассчитывают на прочность, а выбирают. Типы штуцеров определены действующими стандартами, сводную таблицу которых можно найти в [4] Типы штуцеров зависят от номинального (условного) давления и температуры среды. Стандартизованы штуцера условным диаметром от 20 до 500 мм, для условных давлений до 16,0 МПа и температур от -70 до +600 °C. Конструкции стандартных стальных приварных фланцевых штуцеров приведены иа рис. 13.4. Основные размеры фланцевых штуцеров стандартизовалы: для каждого вида штуцера оговорен наружный диаметр патрубка d_1 , условный диаметр штуцера $D_{\rm y}$, толщина патрубка $s_{\rm T}$ и общая высота штуцера $H_{\rm T}$. Присоединение фланцевых штуце-

Рис. 13.4. Конструкции приварных фланцевых штуцеров: a — с приварным плоским фланцем и тонкостенным патрубком; б — с приварным фланцем встык и тонкостенным патрубком; в — кованый толстостенный; г — с приварным фланцем встык и толстостенным патрубком; д — вариант конструкции толстостенного штуцера

ров к корпусу аппарата, днищу или крышке выполняется с определенным вылетом *H* (рис. 13.4, *a*), который зависит от условного диаметра и условного давления, а также от толщины изоляции аппарата (если он имеет тепловую изоляцию). Вылет фланцевых штуцеров стандартизован. Соответствующие таблицы имеются в [4]. Вылеты бесфланцевых штуцеров не стаидартизованы, однако их рекомендуется принимать равными вылету соответствующих фланцевых штуцеров.

По назначению все фланцевые соединения в химическом аппаратостроении подразделяют на фланцы для трубной арматуры и труб (сюда же относятся все фланцы для штуцеров и аппаратов) и фланцы для аппаратов (с их помощью осуществляется крепление крышек, дниш и т. п.). Фланцевое соединение состоит из двух симметрично расположенных фланцев, уплотнительного устройства (прокладки) и крепежных элементов (болтов или шпилек, шайб, гаек).

По способу кренления (к трубе, арматуре, патрубку штуцера, аппарату) фланцы делятся на приварные плоские. приварные встык, резьбовые, свободные на приварном кольце, свободные на отбортовке (рис. 13.5). Кроме того, фланцы различают по характеру поверхности, обеспечивающей крепление уплотняющего устройства (с соединительным выступом, под прокладку овального сечения, с выступом и впадиной, шипом и пазом и т. п.). Конструкцию фланцевого соединения принимают в зависимости от

Рис. 13.5. Конструкции фланцев:

а плоские приварные; б -- приварные встык; в — резьбовые; свободные на приварном кольце; д — свободные на отбортовке

Рис. 13.6. Конструкции прокладок фланцевых соединений: а — плоская; б — гофрированная; в — овального сечения; г восбмиугольного сечения

Рис. 13.7. Диаграмма для определения коэффициента у: 1 — плоский фланец; 2 — угловой приварной фланец

рабочих параметров аппарата: плоские приварные фланцы — при $p \leq 2.5$ МПа, $l \leq 300$ °С и числе циклов нагружения за время эксплуатации до 2000; приварные встык фланцы — при $p \geq 2.5$ МПа, $l \leq -40$ °С или l > 300 °С. Свободные на отбортовке фланцы применяют в основном при сочетании патрубков и фланцев, выполненных из разнородных материалов, сварка которых либо невозможна, либо требует особой технологии. Резьбовые фланцы рекомендуются для арматуры, соединительных частей и трубопроводов с линзовым уплотнением. Соединения со свободными фланцами на приварном кольце рекомендуется применять при высоких температурах и требовании независимой координации соединяемых частей по отверстням для болтов и шпилек.

Во фланцевых соединениях при $p \le 4,0$ МПа и $t \le 300$ °С применяют болты, а при p > 4,0 МПа и t > 300 °С — шпильки. Для уплотнения фланцевых соединений применяют неметаллические, асбометаллические, металлические и комбинированные прокладки стандартных форм (рис. 13.6). Рекомендации по выбору прокладок приведены в табл. 13.4.

Проверочный расчет болтов и прокладок фланцевых соединений начинают с определения расчетной температуры фланцев $l_{\phi} = l_{p}$ и болтов (шпилек) $l_{0} = 0.95 l_{p}$. Затем определяют расчетные нагрузки на соединение. Расчетная нагрузка, действующая от внутреннего избыточного давления ($p_{p,n}$), равна

$$Q_{a} = 0.789 D_{c}^{2} \,_{n} \rho_{p,n}, \qquad (13.24)$$

где D_{с п} — средний диаметр прокладки.

Усилие, возникающее от разности температур фланца и болта (шпильки) в период эксплуатации, равно

$$Q_{l} = \gamma n \int_{0} E_{0} t_{\phi} \left(\alpha_{\phi}^{\prime} - 0.95 \alpha_{0}^{\prime} \right), \qquad (13.25)$$

где γ — коэффициент, определяемый по диаграмме (рис. 13.7); n — число болтов (шпилек); $f_6 \approx 0.95 d_6^2$ — площадь поперечного сечения болта (шпильки) по внутреннему

Конструкция прокладки	Материал	р, МПа	1. °C
Плоская неметаллическая	Резина Асбест Паронит		От — 30 до 100 До 550 От — 200 до 400
	Фторопласт	Независимо	От -200 до 250
Плоская металлическая (для уплотнения цип — паз)	Алюминий Латунь Сталь	≥2,5	От -200 до 300
Плоская или гофрированная со- ставная	Асбест в металлической оболочке из алюминия, ме-	≤6.4	От — 200 до 550
Овального или восьмиугольного сечения	ди, латуни, стали Сталь	≥6.4	От 200 до 550

Таблица 13.4. Выбор прокладок

	Прокладки плоские неметаллические из			Прокладки плоские металлические из			Прокладки плоские составные асбестовые с оболочкой из			Прокладка		
Параметр	резины	картона	паронита	фторопласта	алюмнния	латуни	стали	алюминня	меди	латуни	стали	овальная или восьмиуголь- ная метал- лическая
т q, МПа [q], МПа	0,5—1,0 2,0—4,0 1820	2,5 20 130	2,5 20 130	2,5 10 40	4,0 60 —	4,75 90	5,56,5 125180 	3,25 38 —	3,5 46	3,5 46	3,75 53—6 	5,5—6,5 3 125—180 —

Таблица 13.5. Значения т, q, [q] для различных прокладок

диаметру резьбы; d_{δ} — наружный диаметр болта (шпильки); E_{δ} — модуль упругости первого рода материала болта (шпильки) при рабочей температуре; α'_{ϕ} , α'_{δ} — коэффициент линейного расширения материала соответственно фланцев и болтов (шпилек).

Расчетное осевое усилие для болтов (шпилек) Р₆ принимают бо́льшим из следующих трех значений:

$$P_{61} = \pi D_{c} {}_{n} b_{0} q; \quad P_{62} = \xi \left(\alpha_{1} Q_{a} + R_{n} \right); \quad P_{63} = Q_{a} + R_{n} + Q_{t}, \quad (13.26)$$

где P_{61} , P_{62} , P_{63} — соответственно усилие, действующее на болты при предварительном обжатии прокладок, усилие затяжки болтов при монтаже и предельное усилие, действующее на болты в процессе эксплуатации; b_0 — эффективная ширина прокладки ($b_0 = b$ при $b \le 0.015$ м; $b_0 = 0.12b^{1/2}$ при b > 0.015 м); b — ширина прокладки; q — удельная нагрузка на прокладку (табл. 13.5); $\xi = [\sigma]_{20}/[\sigma]_i$ — отношение допускаемых напряжений для материала фланцев или болтов (шпилек) при монтаже (t=20 °C) и при расчетной температуре t (принимают меньшее из значений ξ); α_1 — коэффициент жесткости фланцевого соединения ($\alpha_1 = 1$ для соединений с резиновыми прокладками; $\alpha_1 = 1.3$ для всех остальных случаев); R_n — расчетная сила осевого сжатия фланцев, требуемая для обеспечения герметичности соединения (реакция прокладки):

$$R_{\rm n} = 2\pi D_{\rm c,f} b_0 m p_{\rm p,B}, \tag{13.27}$$

где *т* — коэффициент, зависящий от конструкции и материала прокладки (см. табл. 13.5); *р*_{р в} — расчетное внутреннее давление.

Затем выполняют проверку прочности болтов (шпилек) по условию

$$\sigma = 1,3P_6/(nf_6) \leqslant [\sigma]_6, \tag{13.28}$$

где [σ]₆ — допускаемое напряжение для материала болтов (шпилек) при температуре, соответствующей действию максимальной нагрузки *P*₆.

Прочность неметаллических прокладок проверяют по формуле

$$q_{\rm p} = P_{62} / (\pi D_{\rm c} \, {}_{\rm n} b_0) \leqslant [q], \qquad (13.29)$$

где q_р — расчетное давление на прокладку при монтаже; [q] — допускаемая удельная нагрузка на прокладку (см. табл. 13.5).

13.5. ОПОРЫ АППАРАТОВ

Химические аппараты устанавливают на фундаменты чаще всего с помощью опор. Без опор на фундаменты устанавливают только сосуды и аппараты с плоским днищем, предназначенные для работы под наливом. Аппараты, работающие в горизонтальном положении, независимо от того, где их монтируют (внутри помещения или вне его), устанавливают на седловых опорах (рис. 13.8, a). Аппараты вертикального типа с соотношением $H/D \ge 5$, размещаемые на открытых площадках, оснащают так называемыми юбочными опорами — цилиндрическими (рис. 13.8, b) или копическими

Рис. 13.8. Типы опор аппаратов:

а — седловая; б — юбочная цилиндрическая; а — юбочная коническая; г — опорные лапы (повернуты на 90°); д — вертикальная опорная стойка круглого сечения; к — наклонная опорная стойка круглого сечения; ж — вертикальная опорная стойка некруглого сечения

(рис. 13.8, *в*) Чаще всего конические юбочные опоры применяют для аппаратов колонного типа. Вертикалыные аппараты, устанавливаемые в помещении, могут монтироваться либо на подвесных лапах, либо на стойках. Подвесные опорные лапы (рис. 13.8, *г*) применяют в том случае, если аппарат размещают между перекрытиями или на специальных стальных конструкциях. Если аппарат устанавливают на полу того или иного этажа, то при H/D < 5 используют опорные стойки, которые могут быть вертикальными (рис. 13.8, *д*) или наклонными (рис. 13.8, *е*), круглого (рис. 13.8, *д*, *е*) или некруглого (рис. 13.8, *ж*) сечения. Опорные стойки круглого сечения применяют, как правило, для аппаратов малых объемов. Чтобы сохранить прочность обечаек и днищ аппаратов при воздсйствии на них опорных нагрузок, между опорой и элементами аппарата иногда помещают специальную подкладку. Подвесные опорные лапы рекомендуется располагать выше центра масс аппарата.

Число опор, определяемое конструктивными соображениями, проверяют расчетным путем: лап должно быть не менее двух, стоек — не менее трех.

При размещении горизонтальных аппаратов на седловых опорах необходимо учитывать возможность температурного удлинепия аппарата. В этих случаях скольжение опоры аппарата, устанавливаемого на бетонном фундаменте, должно происходить по опорному листу; опоры аппарата, устанавливаемого на металлоконструкции, по листу, предусмогренному в этой конструкции.

При определении нагрузки на подвеспую опорную лапу все действующие на аппарат нагрузки приводят к осевой силе *P* (определяемой максимальным весом аппарата при эксплуатации или при гидравлических испытаниях) и моменту *M* (зависящему от кон-

струкции аппарата, условий его монтажа и других факторов). Расчетная схема показана на рис. 13.9. (При расчетах, имеющих чисто учебную цель, момент *М* можно принять равным нулю.) Нагрузку на одну опору рассчитывают по соотношению

$$Q = \lambda_1 P/z + \lambda_2 M/(D+2e), \qquad (13.30)$$

где e — расстояние от стенки аппарата до середины опорной площадки лапы; λ_1 , λ_2 — коэффициенты, зависящие от числа опор z:

2	3	4
1	1	2
1	1,3	1

За максимальную приведенную нагрузку на юбочные опоры колонных аппаратов принимают большее из значений:

$$Q = 4M_1/D + P_1;$$
 $Q = 4M_2/D + P_2,$ (13.31)

где D — внутренний диаметр аппарата; M_1 , M_2 — расчетные изгибающие моменты в нижнем сечении опорной обечайки соответственно при эксплуатации и при гидравлическом испытании; P_1 , P_2 — осевые сжимающие силы, действующие в нижнем сечении опорной обечайки соответственно при эксплуатации и при гидравлическом испытании. (Определение M_1 , M_2 , P_1 , P_2 см. в СТ СЭВ 1644—79 [5].)

Реакция опоры горизонтального аппарата, установленного на двух седловых опорах,

 λ_1

 λ_2

$$Q = 0.5G,$$
 (13.32)

где G — наибольшая из сил тяжести аппарата в рабочем режиме или при гидравлическом испытании.

Реакция опоры горизонтального аппарата, установленного на нескольких седловых опорах,

б

$$Q_i = \psi_i G/z, \tag{13.33}$$

где ψ_i — коэффициент, определяемый по рис. 13.10.

 $e = a + \frac{2}{3}H$

Рис. 13.10. Графики для определения коэффициента ф:

з схема распределения нагрузок; б расчетные графики; і порядковый номер опоры

После определения реакции опоры необходимо проверить, достаточна ли площадь А_пнижнего подкладного листа опоры. При этом удельная нагрузка от лапы на фундамент или металлоконструкцию не должна превышать следующих допускаемых изпряжений [σ]₀:

для стали и чугуна — 100 МПа; для бетона (в зависимости от марки) — 15—25 МПа; для дерева — 2 МПа; для кирпичной кладки — 0,8 МПа.

Иными словами,

$$A_{\mathfrak{n}} \geqslant Q / [\sigma]_{\phi}. \tag{13.34}$$

Прочность угловых сварных швов, соединяющих ребра опор с корпусом аннарата, проверяют по условию

$$Q/(0,7kl_{\rm ur}) \leqslant [\tau], \tag{13.35}$$

где k — катет шва; $l_{\rm m}$ — общая длина швов; $[\tau] = 0,6\varphi[\sigma]$ — допускаемое напряжение для материала швов; φ — коэффициент прочности сварного шва ($\varphi=0,8-1$); $[\sigma]$ — допускаемое нормальное напряжение в материале опор при расчетной температуре.

13.6. ВЕРТИКАЛЬНЫЕ ВАЛЫ ПЕРЕМЕШИВАЮЩИХ УСТРОЙСТВ

При вращении валов может наступить момент, когда при определенной частоте вращения вынужденная частота колебаний совпадает с собственной, наступают резонансные явления, проявляющиеся в вибрировании вала. При этом с повышением или понижением частоты вращения вибрация вала прекращается. Проверку вала мешалки на виброустойчивость проводят по условию

$$1,35\omega_1 \leqslant \omega \leqslant 0,7\omega_1,\tag{13.36}$$

где w — угловая скорость вала; w₁ — первая критическая угловая скорость вала:

$$\omega_1 = \sqrt{IE/m_{\rm B}} (\alpha_1/L)^2, \qquad (13.37)$$

где $I = \pi d^4/64$ — момент инерции поперечного сечения вала; d диаметр вала; E — модуль упругости материала вала при расчетной температуре; $m_n = \pi d^2 \rho/4$; ρ — плотность материала вала (для стали $\rho = 7,85 \cdot 10^3$ кг/м³); L — длина вала (рис. 13.11);

 α_1 — корень частотного уравнения вала мешалки, который выбирают в зависимости от расчетной схемы вала (см. рис. 13.11), относительной координаты $\overline{e_1}$ центра массы *m* мешалки и относительной массы мешалки \overline{m} по графикам на рис. 13.12:

$$\overline{e}_1 = l_1/L;$$
 (13.38) $\overline{m} = m/m_{\rm n}L.$ (13.39)

Вал мешалки проверяют на прочность из условия совместного действия изгиба и кручения. Опасное сечение рассчитывают по формуле

$$[\sigma] \geqslant \sqrt{3\tau^2 + \sigma^2},\tag{13.40}$$

Рис. 13.12. Графики для определения коэффициента α₁:

а, б — для консольных валов; в — для валов с нижней концевой опорой

где [σ] — допускаемое напряжение для материала вала при расчетной температуре; $\tau = M_{\rm xp}/W_{\rm k}$ — касательное напряжение в опасном сечении вала; $M_{\rm xp}$ — крутящий момент в опасном сечении; $W_{\rm k} \approx 0.2d^3$ — момент сопротивления кручению в опасном сечении; $\sigma = M_{\rm H}/W$ — нормальное напряжение в опасном сечении; $M_{\rm H}$ — изгибающий момент в опасном сечении; $W \approx 0.1d^3$ — момент сопротивления изгибу в опасном сечении.

Максимальный крутящий момент с учетом пусковых нагрузок рассчитывают по формуле М _____ М ____ (13.41)

$$M_{\rm sp} = kN/\omega, \qquad (13.41)$$

где N — номинальная мощность привода мешалки, Вт; ω — угловая скорость вала мешалки, рад/с; k — коэффициент динамической нагрузки (для турбинных и трехлопастных мешалок в аппарате без перегородок k = 1.5, в аппарате с перегородками — 1,2; для рамных и лопастных мешалок k = 2).

Максимальный изгибающий момент от действия приведенной центробежной силы P_u и опасное сечение вала определяют из эпюры изгибающих моментов, построенной для выбранной схемы вала:

$$P_{\rm u} = m_{\rm np} \omega^2 r$$
,

где $m_{np} = m + g m_B L$ — приведенная сосредоточенная масса вала мешалки; $r = l' / / [1 - (\omega/\omega_1)^2]$ — радиус вращения центра тяжести приведенной массы вала и мешалки.

Коэффициент приведения распределенной массы к сосредоточенной массе мешалки g = 0.24 (для схемы на рис. 13.11, a). Для схемы на рис. 13.11, b: $g = 12/[(4,6-3\overline{e_1})^4\overline{l_1^2} \times (\overline{l_1}+3)]$, для схемы на рис. 13.11, $e - g = 1/(32\overline{e_1^2e_2})$, где $\overline{e_2} = l_2/L$.

Эксцентриситет центра массы мешалки с учетом биения вала

$$l' = l + 0.5\delta,$$
 (13.42)

где δ — допускаемое биение вала (для предварительных расчетов можно принять $\delta = 0,0001$ м). Для расчетных схем вала на рис. 13.11, *а*,*б* эксцентриситет центра массы мешалки можно принять равным $l = 4 \cdot 10^{-.5} L$ [м], а для схемы на рис. 13.11, *в* — $l = 2 \cdot 10^{-.5} L$ [м]

13.7. ОСНОВНЫЕ ЭЛЕМЕНТЫ КОЖУХОТРУБЧАТЫХ АППАРАТОВ

К основным элементам кожухотрубчатых аппаратов можно отнести трубные решетки, трубы и кожухи. Решетки представляют собой перегородки, предназначенные для отделения трубного пространства от межтрубного и для крепления труб. Кожухи обычно состоят из отдельных цилиндрических обечаек, сваренных между собой встык, эбразующих корпус и ограничивающих снаружи межтрубное пространство в аппарате. Концы труб в трубных решетках закрепляют развальцовкой, сваркой, пайкой или развальцовкой в сочетании со сваркой. Наиболее распространено размещение отверстий под трубы в трубных решетках по вершинам квадратов, по вершинам равносторонних греугольников и по концентрическим окружностям. Первый вариант предпочтительнее при необходимости периодической чистки межтрубного пространства. Минимальный шаг (между трубами зависит от паружного диаметра труб d_н следующим образом:

При этом должны быть соблюдены следующие условия: при развальцовке $t \ge d_{\mu} + 5$ мм; при сварке $t \ge d_{\mu} + 6$ мм.

Рис. 13.13. Схемы линзовых компенсаторов: з — линза; δ — полулниза; в — многолинзовый элемент

В кожухотрубчатых аппаратах могут развиваться весьма значительные напряжения за счет неодинакового температурного удлинения жестко соединенных между собой деталей (например, труб и кожуха). Для ликвидации этого нежелательного явления кожух аппарата снабжают специальными устройствами — компенсаторами. В промышленности широко используют сальниковые и линзовые компенсаторы. Однако чаще всего в кожухотрубчатых аппаратах и в аппаратах типа «труба в трубе» применяют линзовые компенсаторы. Они стандартизованы для давления $p_y \leq 2,5$ МПа и температуры от — 70 до 700 °С. Основные типы компенсаторов представлены на рис. 13.13. Размеры линзовых компенсаторов стандартизованы и сведены в таблицы ([4], с. 364).

При расчете линзового компенсатора вначале вычисляют разность между линейным гемпературным расширением труб и кожуха:

$$\Delta_{\kappa} = [\alpha_{\kappa}(t_{\kappa} - t_0) - \alpha_{\tau p}(t_{\tau p} - t_0)] t\Delta t,$$

где α_{k} , $\alpha_{\tau p}$ — коэффициенты линейного расширения материалов кожуха и труб; l_{k} , $l_{\tau p}$ — средняя температура стенки кожуха и стенок труб; l_{0} — температура сборки аппарата (20 °C); l — расстояние между трубными решетками; Δt — средняя разность гемператур кожуха и труб, равная

$$\Delta t = 0.5 \left[\left| t_r^1 + t_r^2 \right| - \left| t_m^1 + t_m^2 \right| \right], \tag{13.43}$$

где l_{τ} , l_{μ} — температуры среды в трубном и межтрубном пространствах (температуры l_{τ} и $l_{\tau p}$ обычно не совпадают); верхние индексы I и 2 относятся соответственно к условиям на входе. в аппарат и на выходе из него.

Расчетное число линз в компенсаторе определяют по соотношению

$$z_a = \Delta_8 / \Delta_a, \tag{13.44}$$

где Δ_n — компенсирующая способность одной линзы, принимаемая по табл. 13.6. Полученное значение z_n округляют до ближайшего целого числа.

Усилие в компенсаторе рассчитывают по формуле

$$P_{\kappa} = [a_{\tau}(t_{\tau} - t_{0}) - a_{\kappa}(t_{\kappa} - t_{0})] lE_{\kappa}/M_{\kappa}, \qquad (13.45)$$

где E_{κ} — модуль упругости материала компенсатора; M_{κ} — параметр многолинзового компенсатора; $M_{\kappa} = z_{n} \Pi_{\kappa}$, где

$$\Pi_{\kappa} = 0.06\alpha_{n} (1 - \beta_{\kappa}) D_{\mu}^{2} / (\pi s_{n}^{3}).$$
(13.46)

407

Лаваемие о МПа	Условный проход	$\pm \Delta_{s}$, мм, за период эксплуатации,						
	кожуха <i>D</i> _у , мм	300	600	1 000	2 000	5 000	10 000	
0.95	400—450	9,0	8,0	7,0	6,0	5,0	4,0	
0,25	5005000	10,0	9,0	8,0	7,0	6,0	4,5	
0.60	400450	7,0	6,5	6,0	5,0	4,0	3,2	
0,00	500-3600	8,0	7,5	7,0	6,0	4,5	3,8	
1.00	400—1400	4,5	4,0	3,7	3,0	2,4	2,0	
1,00	1600 - 3000	4,0	3,5	3,3	2,8	2,3	1,8	
1.60	4001400	3,5	3,3	2,9	2,4	1,9	1,5	
1,00	1600-2200	3,0	2,8	2,6	2,2	1,7	1,4	
2,50	400-800	2,5	2,2	1,9	1,6	1,2	1,0	

Tаблица 13.6. Компенсирующая способность одной линзы линзовых компенсаторов Δ_n

Здесь Π_{κ} — параметр однолинзового компенсатора; $\beta_{\kappa} = D/D_{n}$; D_{n} , s_{n} — наружный диаметр и толщина стенки линзового компенсатора; D_{μ} — внутренний диаметр кожуха; α_{n} — коэффициент, зависящий от β_{κ} :

βĸ	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90
α_n	5,80	3,90	2,60	1,70	1,00	0,40	0,25	0,10	0,05

Правильность выбора линзового компенсатора проверяют по условию

$$C_Q + C_P \leqslant \Pi_{\kappa}, \tag{13.47}$$

где C_Q — жесткость компенсатора; C_P — распорное усилие от внутреннего давления. Значения C_Q и C_P определяют по таблице технических характеристик линзовых компенсаторов ([4], с. 365).

Расчет на прочность трубных решеток нормализован [4], учитывает целую гамму факторов, связанных с особенностями работы кожухотрубчатых аппаратов различного назначения, а также с особенностями конструктивного исполнения решеток. Ниже приведены формулы для приближенного расчета высоты (толщины) трубных решеток.

Для большинства типов неподвижно закрепленных решеток, применяемых в аппаратах с плавающими головками и с U-образными трубами, их высоту рассчитывают по формуле

$$h = k D_{\Lambda} p / ([\sigma]_{\mu} \overline{\phi}) + c, \qquad (13.48)$$

где k = 0,43; $D = (D_{\text{H}} + D_{\text{B}})/2$ — средний диаметр цилиндрической обечайки кожуха аппарата; ρ — большее из давлений, возникающих в трубном (ρ_{T}) или межтрубном (ρ_{M}) пространствах; $[\sigma]_{\text{H}}$ — допускаемое напряжение на изгиб материала решетки; $\varphi = 1$ — коэффициент ослаблений решетки отверстиями; c — прибавка на коррозию и эрозию.

Высоту средней части подобных решеток определяют по той же формуле при k = 0.35 - 0.55 (в зависимости от конструкции решетки) и при

$$\varphi = (D_{\rm s} - zd_{\rm s})/D_{\rm s}, \tag{13.49}$$

где z — число труб на диаметре решетки; d_и — наружный диаметр труб.

Высоту средней части трубных жестко закрепленных решеток в аппаратах с компенсатором на кожухе определяют по формуле

$$h = 0.525l \sqrt{\frac{\rho_{\rm T}}{(1 - 0.7d_{\rm H}/l) \, [\sigma]_{\rm H}}} + c.$$
(13.50)

где /= (1,18-1,30) /, в зависимости от конструкции решетки.

Высоту наружной части подобных решегок можно рассчитать ио формуле (13.48) Одновременно высоту трубных решеток (в м) проверяют исходя из надежности закрепления труб в трубной решетке. Так, при развальцовке труб

$$h \ge 0.125d_{\rm w} + 0.005 + c.$$
 (13.51)

Высота трубных решеток при закреплении труб сваркой (без развальцовки) определяется только условиями прочности решетки. Высота решеток (в м) при закреплении труб пайкой должна отвечать условию

$$h > h_c + 0.005,$$
 (13.52)

где $h_c \ge P_{\tau p}/(\pi d_n[\tau]_{c,n})$ — глубина паяного шва; $P_{\tau p}$ — расчетная осевая сила, действующая в месте закрепления трубы в решетке; $[\tau]_{c,n}$ — допускаемое напряжение среза для шва.

При расчете прямоточных аппаратов с жестко закрепленными решетками и компенсатором на кожухе (или без него), а также аппаратов с подвижными решетками и с плавающими головками силу *Р*_{тр} выбирают наибольшей из следующих значений:

$$P_{\rm rp} = 0.785 p_{\rm w,r} \left(\frac{D^2}{z - d_{\rm w}^2} \right); \qquad P_{\rm rp} = 0.785 p_{\rm w,m} \left(\frac{D^2}{z - d_{\rm w}^2} \right), \qquad (13.53)$$

где р_{ит} и р_{им} — давления в трубном и межтрубном пространствах в период гидравлических испытаний.

При расчете неподвижных решеток аппаратов с плавающими головками и с U-образными трубами силу *Р*_{тр} принимают наибольшей из следующих значений:

$$P_{\tau p} = 0.785 d_{\mu}^2 p_{\mu \tau}; \qquad P_{\tau p} = 0.785 d_{\mu}^2 p_{\mu \cdot x}. \tag{13.54}$$

13.8. РАСЧЕТ БАРАБАНОВ

В промышленности широко используют барабанные сушилки, кристаллизаторы, печи и др. Механические расчеты вращающихся барабанов включают определение толщины стенки барабана, обеспечивающей прочность и жесткость конструкции, расчет на прочность бандажей, а также опорных и упорных роликов.

Толщину стенки барабана предварительно определяют по нормалям или, в зависимости от диаметра барабана D, по эмпирической формуле

$$\delta = (0,007 - 0,01) D \tag{13.55}$$

и затем проверяют на прочность по допускаемому напряжению на изгиб как балку кольцевого сечения. В простейшей расчетной схеме (рис. 13.14) барабан можно представить в виде балки длиной L, свободно лежащей на двух опорах и нагруженной равномерио распределенной нагрузкой $q = (G + G_{\rm M})/L$ от веса барабана G и загружаемого материала $G_{\rm M}$. В наиболее опасном сечении балки (посередние между опорами) обеспечивается минимальный изгибающий момент

$$M = \frac{G + G_{\rm M}}{2} \frac{l_0}{2} - q \frac{L^2}{8}$$
(13.56)

при расстоянии между опорами $l_0 = 0.585 L$.

Барабану передается также крутящий момент от привода, необходимый главным образом для поднятия центра тяжести материала на определенную высоту. Крутящий момент (в МН·м) можно определить из уравнения

$$M_{\rm kp} = [N/(2\pi n)] \, 10 \tag{13.57}$$

где N — мощность привода, кВт; n — частота вращения барабана, с⁻¹

Условие прочпости барабана имеет вид:

$$\sigma_{\mathfrak{u}} = M_{\mathfrak{p}} / \mathcal{W} \leqslant [\sigma]_{\mathfrak{u}}, \tag{13.58}$$

где расчетный (приведенный) момент Mp (в МН·м) определяют по формуле

$$M_{\rm p} = 0.35M + 0.65 \chi M^2 + M_{\rm Kp}^2; \tag{13.59}$$

момент сопротивления кольцевого сечения барабана $W = 0.785 D^2 \delta$ м³ Допускаемое напряжение [σ], рекомендуется принимать (с учетом возможных температурных напряжений, неточностей монтажа и т. п.) для барабанов без футеровки (сушилки,

Рис. 13.14. Схема определения толщины стенки барабана

кристаллизаторы) в пределах 5—10 МН/м², для барабанов с футеровкой (печи) — до 20 МН/м² [6].

После проверки на прочность барабан проверяют на прогиб. Для нормальной работы допускается прогиб / не более 1/3 мм на 1 м длины [7], т. е.

$$f \leq 0,0003/_{0}.$$
 (13.60)

Прогиб от равномерно распределенной нагрузки определяют по формуле

$$i = 5ql_0^4 / (384EI), \tag{13.61}$$

где *E* — модуль упругости материала барабана, МН/м²; *I* — осевой момент инерции кольцевого сечения барабана (в м⁴), который находят по формуле

$$I = \pi D_{cp}^{3} \delta / 8 = \pi (D - \delta)^{3} \delta / 8.$$
(13.62)

В случае невыполнения условия (13.58) или (13.60) необходимо увеличить толщину стенки барабана.

Бандажи служат для передачи давления от веса барабана и загруженного в него материала на опорные ролики (см. рис. 13.15) Бандажи представляют собой кольца прямоугольного или коробчатого сечения. Для барабанов большого диаметра (D > 1 м) чаще всего применяют свободное крепление бандажей, при котором они надеваются на чугунные или стальные башмаки. Башмаки повернуты упорными головками в разные стороны для предупреждения аксиального смещения бандажа. Предварительно по нормалям выбирают ширину и диаметр бандажей и опорных роликов, а затем выполняют проверку их на прочность. Ширину бандажей можно также приближенно определить по формуле [6]

$$b_6 = R/q_{\rm h},\tag{13.63}$$

где $q_{\kappa} = (1,0-2,4)$ МН/м — допускаемая по опыту эксплуатации нагрузка на единицу длины линии касания ролнка и бандажа; R — реакция опорного ролика, МН. Значение R определяют по формуле

$$R = (G + G_{\rm M}) \cos\alpha / [2z\cos(\varphi/2)], \qquad (13.64)$$

где α — угол наклона барабана (2°--4°); ϕ — угол между опорными ролнками (ϕ =60°); z — число бандажей.

Ширина опорного ролика $b_{o,p}$ должна быть больше ширины бандажа на 30 мм. Диаметр опорных роликов принимают в 3—4 раза меньше наружного диаметра бандажа. Условие контактной прочности на смятие в месте соприкосновения ролика и бандажа записывается в виде

$$\sigma_{\rm c} = 0.0418 \, \sqrt{\frac{R}{b_6} E \frac{r_6 + r_{\rm o.\,p}}{r_6 r_{\rm o.\,p}}} \le [\sigma]_{\rm c}. \tag{13.65}$$

где E — модуль упругости материала ролика и бандажа, МН/м²; r_6 , $r_{o,p}$ — наружный радиус соответственно бандажа и опорного ролика, м; $[\sigma]_c$ — допускаемое напряжение материала ролика и бандажа на смятие (для стального литья $[\sigma]_c = 300 - 500$ МН/м², для чугуна $[\sigma]_c = 350$ МН/м²)

Ширину упорных роликов by р, воспринимающих осевую силу

$$T = (G + G_n) \sin \alpha, \tag{13.66}$$

также выбирают из условия прочности на смятие. Для конического ролика, находящегося в контакте с плоским бандажом, это условие имеет вид:

$$\sigma_{\rm c} = 0.0418 \, \sqrt{\frac{TE}{b_{\rm y, p} r_6 \sin\left(\gamma/2\right)}} \leqslant \left[\sigma\right]_{\rm c}. \tag{13.67}$$

где у — угол конусности упорного ролика (обычно у = 17°).

После проверки контактной прочности роликов и бандажа выполняют вроверку прочности бандажа на изгиб. Рассматривая участок бандажа между двумя башмаками (см. рис. 13.15) как кривой брус, можно записать условие прочности бандажа на изгиб в виде

$$\sigma_{\mu} = M_{6} / W_{6} \leqslant [\sigma]_{\mu}, \tag{13.68}$$

где М₆ — максимальный изгибающий момент в месте контакта опорного ролика и бандажа, МН⋅м; W₆ — момент сопротивления сечения бандажа, м³

Изгибающий момент можно определить по формуле

$$M_6 = Rl/4; (13.69)$$

где $l = \pi D_6/m$ — расстояние между соседними башмаками, м; m — общее число башмаков.

Момент сопротивления бандажа прямоугольного сечения определяют по формуле

$$W_0 = b_0 h_0^2 / 6,$$
 (13.70)

где b₆ и h₆ — соответственно ширина и высота бандажа, м.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. ГОСТ 9493—80. Сосуды и аппараты. Ряд условных (номинальных) давлений. М.: Изд-во стандартов, 1987. 2 с.
- 2. ГОСТ 14249—80. Сосуды и аппараты. Нормы и методы расчета на прочность. М.: Изд-во стандартов, 1985. 62 с.
- 3. ГОСТ 9617—76. Сосуды и аппараты. Ряды диаметров. М.: Изд-во стандартов, 1979. 2 с.
- Лащинский А. А. Конструирование сварных химических аппаратов: Справочник. Л.: Машиностроение, 1981. 382 с.
- ГОСТ 24756—81 (СТ СЭВ 1644—79) Сосуды и аппараты. Нормы и методы расчета на прочность. Определение расчетных усилий для аппаратов колонного типа от ветровых нагрузок и сейсмических воздействий. М.: Изд-во стандартов, 1987 15 с.
- 6. Домашнев А. Д. Конструирование и расчет химических аппаратов. М.: Машгиз, 1961. 624 с.
- 7 Криворот А. С. Конструкция и основы проектирования машин и аппаратов химической промышленности. М.: Машиностроение, 1976. 376 с.

ГЛАВА 14 ГРАФИЧЕСКОЕ ОФОРМЛЕНИЕ КУРСОВОГО ПРОЕКТА

Графическая часть технического проекта отражает окончательное техническое решение разрабатываемого процесса (установки), выбор принципиальпой схемы с указанием технических характеристик и требований к выполнению спроектированного оборудования, а также выбор аппаратуры и оборудования на основе проведенных расчетов.

Графическая часть курсового проекта состоит из технологической схемы и чертежей общих видов основных аппаратов. Она должна удовлетворять требованиям ЕСКД, предъявляемым к выполнению технического проекта.

14.1. ОБЩИЕ ТРЕБОВАНИЯ

Технологическую схему и общий вид аппарата выполняют, как правило, на листах чертежной бумаги основного формата A1 (594×841 мм), согласно ГОСТ 2.301—68. Наряду с указанным форматом в случае необходимости можно пользоваться другими основными форматами, обозначения и размеры сторон которых должны соответствовать указанным ниже:

Обозначение формата	A0	Al	A2	A3	A4
Размеры сторон формата, мм	341×1189	594 🗙 84 l	420 imes 594	297×420	210×297

Допускается применение дополнительных форматов, образуемых увеличением коротких сторон основных форматов на величину, кратную их размерам. Обозначение производного формата составляется из обозначения основного формата и его кратности, например A1 \times 3, A4 \times 8 и т. д. Размеры производных форматов, как правило, следует выбирать по табл. 14.1

V			Формат		
Кратность	A0	AI	A2	A3	A4
2	1189×1682		_	_	_
3	1189×2523	841×1783	594×1261	420×891	297×630
4		841 imes 2378	594×1682	420×1189	297×841
5	_		594×2102	420×1486	297 × 105
6		_		420×1783	297×126
7	_		_	420×2080	297×147
8	_	_	_	_	297×168
9	_	_	—	_	297×1892

Таблица 14.1 Размеры дополнительных форматов

Поле чертежа ограничивают рамкой, которая проводится сплошными линиями и отстоит от левой кромки чертежа на 20 мм, а от остальных кромок — на 5 мм:

выше оборудования, изображенного на схеме. Допускается показывать линии магистральных трубопроводов одновременно снизу и сверху схемы.

Линии трубопроводов, а также расположенные на них арматуру и приборы следует показывать на схеме горизо'.тально и вертикально, параллельно линиям рамки формата.

Условное обозначение грубопроводов состоит из графического обозначения трубопровода по ГОСТ 2.784—7Ј и обозначения транспортируемой среды, характеризующего его вид, назначение и парэметры, по ГОСТ 21.106—78 или СТ СЭВ 4723—84.

Обозначение транспс этируемой среды может быть как цифровым, так и буквенноцифровым. Например: 1. 1.2; 1.3 и т. д. или В1; В2; В3 и т. п. Первыми цифрами или буквенным индексом обс значают вид транспортируемой среды. Например: 1.1 или В1 вода хозяйственно-пить вая. Для трубопроводов систем водоснабжения, канализации и теплоснабжения ГОС 1 21.106—78 предусматривает буквенно-цифровое обозначение в зависимости от их гараметров и назначения:

Трубопровод	Обозначение	Трубопровод	Обозначение
Водопровод:		Теплопровод:	
общее обозначение	B0	общее обозначение	TO
хозяйственно-п ьевой	B1	трубопровод горячей воды	
противопожар ый	B2	для отопления и вентиля-	
производстве ный:		ции, а также общий для	
общее об значение	B3	отопления, вентиляции, го-	
оборотнс воды подаю-		рячего водоснабжения и	
щей	B4	технологических процессов:	
оборо- ой воды обратной	B 5	подающий	TI
умяг лной воды	B6	обратный	T2
реч и воды	B7	трубопровод горячей воды	
ре ой осветленной воды	B8	для горячего водоснабже-	
г дземной воды	B9	ния:	
Қана изация:		подающий	T3
с цее обозначение	К0	циркуляционный	Τ4
ітовая	K1	трубопровод горячей воды	
ождевая	K2	для технологических про-	
производственная:		цессов:	
общее обозначение	K3	подающий	T5
механически загрязнен-		обратный	T6
ных вод	K4	трубопровод пара (паро-	
иловая	K5	провод)	T7
шламосодержащих вод	K6	трубопровод конденсата	
химически загрязненных		(конденсатопровод)	T8
вод	K7	•	
кислых вод	K8		
щелочных вод	K9		
кислотощелочных вод	K10		
цианосодержащих вод	K11		
хромосодержащих вод	K12		

Условные изображения и обозначения трубопроводов, принятые на схеме, должны быть расшифрованы в таблице условных обозначений по форме:

0	2	Условна	ое обозначение	Наименование среды в		
2		Буквенное	Графическое	трубопроводе		
8			-			
1		_ 20	50			
			140	¬ ·₽		

Пересекать изображения аппаратов, машин и других изделий линиями трубопроводов не допускается. Основные магистральные трубопроводы, от которых отводятся трубопроводы данной схемы, должны быть показаны горизонтальными линиями.

14 Под ред. Ю. И. Дытнерского

На каждом трубопроводе у места его отвода от магистрального трубопровода или места подключения к аппарату или машине нужно проставлять стрелки, указывающие направление движения потока и условное обозначение вида среды: светлые — газ, темные — жидкость.

На трубопроводах должны быть указаны: размеры (наружный диаметр и толщина стенки), материал и сведения о внутреннем антикоррозионном покрытии или наружной изоляции (при наличии покрытия или изоляции). Соответствующие сведения следует приводить над условным обозначением трубопровода, например:

а — трубопровод для оборотной воды (подающий), труба наружным диаметром
 57 мм, толщиной стенки 3,5 мм из стали марки Ст.Зкп;

б — трубопровод для насыщенного водяного пара, труба наружным диаметром 103 мм, толщиной стенки 4 мм из стали марки Сталь 20, с наружной изоляцией из совелита;

в — трубопровод для кислого раствора, труба наружным диаметром 76 мм, толщиной стенки 3 мм из стали марки Сталь 10 с внутренней гуммировкой.

Число проставленных буквенно-цифровых обозначений на линиях трубопроводов должно быть минимальным, но обеспечивающим понимание чертежа и удобство пользования им.

Арматура, а также другие приборы, устанавливаемые на оборудовании, должны быть показаны на схеме в соответствии с их действительным расположением и изображены условно в соответствии с действующими стандартами.

Некоторые условные графические обозначения, установленные соответствующими стандартами, приведены в табл. 14.2—14.9.

Рекомендуемые условные обозначения некоторых устройств, отсутствующие в стандартах, приведены ниже:

Таблица	14.2.	Обозначение	общего	применения	потоков	(no	ГОСТ	2.721-7	'4)
---------	-------	-------------	--------	------------	---------	-----	------	---------	-----

Поток	Обозначение
Жидкость: а) в одном направлении (например, вправо)	à Car
б) в обонх направлениях	10
Газ (воздух): а) в одном направлении (например, влево)	
б) в обоих направлениях	

Таблица 14.3. Обозначение элементов гидравлических и пневматических сетей (по ГОСТ 2.780—68)

Элемент	Обозначение	Элемент	Обозначение
Гидробак: а) открытый под атмосферным давлением		Аккумулятор гидравлический или пневматический (ресивер): а) общее обозначение	
то же, со сливным трубопро- водом выше уровня рабочей жидкости то же, со сливным трубопро- водом ниже уровня рабочей		б) гидравлический (без указа- ния принципа действия)	\bigcirc
жидкости то же, с трубопроводом для слива из бака		Мембрана прорыва	[]]
б) закрытый под давлением вы- ше атмосферного	\bigcirc	Заборник воздуха из атмосферы	
в) закрытый под давлением ни- же атмосферного	Σ^{\dagger}	Заливная горловина, воронка, за- правочный штуцер и т. п.	

Таблица 14.4. Обозначение насосов и двигателей гидравлических и пневматических (по ГОСТ 2.782—68)

Наименование	Обозначение	Нанменованне	Обозначение
По функциональному признаку Насос постоянной производитель-		По принципу действия Насос шестеренчатый	Ó
а) с одним направлением потока	\checkmark	Насос кривошипно-поршневой	╞╾═╋
б) с двумя направлениями по- тока	Ψ. 	Насос лопастной центробежный	-
Насос с регулируемой производи- тельностью: а) с одним направлением потока	Ø	Насос струйный (эжектор, инжек- тор, элеватор водоструйный и паро- струйный), общее назначение	
б) с двумя направлениями по- тока	چ ج	Вентилятор: а) центробежный	Q
Компрессор	φ	б) осевой	R
Насос-дозатор	\bigcirc		J.

Примечание. При обозначении насоса диаметр окружности примерно равеи двадцати толщинам основной линни.

Элемент	Обозначение	Элемент	Обозначение
Трубопроводы, линии связи: а) всасывания, напора, слива б) отвода утечек (дре- нажная), выпуска воз- духа, отвода конденса-		Линия гидравлической связи с указанием места удаления воздуха Подвод жндкости под давле- нием Подвод воздуха (газа) под	$^{\leftarrow}$
та Соединения трубопроводов, линий связи Пересечение трубопроводов, линий связи (без соедине- ния)		давлением Сифоны различные (гидро- затворы) Изолированные участки тру- бопровода	이

Таблица 14.5. Обозначение элементов трубопроводов (по ГОСТ 2.784—70)

Таблица 14.6. Обозначение трубопроводной арматуры (по ГОСТ 2.785—70)

Арматура	Обозначение	Арматура	Обозначение
Вентиль, клапан запорный:	\boxtimes	Клапан редукционный (вершина	
а) проходной		лена в сторону повышения давле-	
 6) угловой Вентиль, клапан регулирующий: а) проходной 	N	ния) Задвижка Кланан обратный (кланан невоз-	\bowtie
а) проходной		вратный): проходной	\bowtie
	۲ <u>۸</u>	угловой (двиходнов вобоной оволи новоз	
а) проходной	×	(движение расочей среды через клапан должно быть направлено от белого треугольника к черному)	
б) угловой	Å	••••••••••••••••••••••••••••••••••••••	
Клапан дроссельный	\boxtimes		

Таблица 14.7. Обозначение теплообменных аппаратов (по ГОСТ 2.789—74)

Аппараты	Обозначение	Аппараты	Обозначение
Аппараты теплообменные кожухо- трубчатые:	Ĥ	Конденсатор смешения	ļ-
 а) с неподвижными трубными решетками при давлении в 	-Щ	Аппараты теплообменные листовые:	47
трубах и межтрубном прост- ранстве выше атмосферного	<u>h</u>	а) спиральные	-@-
решетками при давлении в трубах выше, а в межтрубном	-Щ	б) пластинчатые разборные	¥
пространстве ниже атмосфер- ного			₹ T
с температурным компенса- эром на кожухе при давле-	-¶∰r	Калорифер	-\$
нип в грубах и в межтруб- ном пространстве выше ат- мосферного	ፈተከ	Градирни	ر Å_1
Аппарат теплообменный с наруж- ным обогревом	٦ ب		

Таблица 14.8. Обозначение выпарных аппаратов и их элементов (по ГОСТ 2.788—74)

Нанменование	Обозначение	Наименование	Обозначение
Обечайки: а) под атмосферным давлением		Аппараты выпарные с естественной циркуляцией: а) с соосной греющей камерой	
б) под внутренним давлением выше атмосферного	$\langle \rangle$		└╎ ╶╼┟┸
в) под внутренним давлением ниже атмосферного	}{	б) с выносной греющей камерой	→ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Днища:			_→₩Щ (
а) под атмосферным давлением	ш		T_
б) под внутренним давлением	L U	Аппараты выпарные с принулитель-	ı
выше атмосферного в) под внутренним давлением ниже атмосферного		ной циркуляцией: а) с соосной греющей камерой	
Корпуса аппаратов: а) под атмосферным давлением			
б) под внутренним давлением выше атмосферного		б) с выносной греюшей камерой	
в) под внутренним давлением ниже атмосфериого			

Таблица 14.9. Обозначение колонных аппаратов (по ГОСТ 2.790—74)

Аппараты	Обозначение	Алпараты	Обозначение
Колонны тарельчатые: а) общее обозначение		 д) с ситчато-клапанными тарел- ками: под атмосферным давлением 	
б) с колпачковыми тарелками		под давлением ниже атмо- сферного	
в) с клапанными тарелками под давлением ниже атмосферно- го		е) с решетчато-провальными та- релками	
г) с ситчатыми тарелками		Колонны насадочные (с насыпной насадкой)	\square
		Колонны роторные	

На технологической схеме могут быть показаны приборы и средства автоматизации, условное изображение которых определяет ГОСТ 21.404—85 «Обозначения условные в схемах автоматизации технологических процессов». Таблица 14.10. Условные графические обозначения приборов и средств автоматизации (по ГОСТ 21.404—85)

Наименование	Обозначение	Наименование	Обозначение
Первичный измерительный преоб- разователь (датчик); прибор, уста- навливаемый по месту: на техноло- гическом трубопроводе, аппарате, стене, полу, колонне, металлокон- струкции: а) основное обозначение б) допускаемое обозначение	9 ¹⁰	Исполнительный механизм: а) общее обозначение (положе- ние регулирующего органа при прекращении подачи энергии или управляющего сигнала не регламентируется) б) механизм, открывающий ре- гулирующий орган при пре- кращении подачи энергии или управляющего сигнала в) механизм, закрывающий ре-	
Прибор, устанавливаемый на щите, пульте: основное обозначение б) допускаемое обозначение	\ominus	 гулирующий орган при пре- кращении подачи энергии илн управляющего сигнала г) механизм, который при пре- кращении подачи энергии или управляющего сигнала остав- ляет регулирующий орган в неизменном положении 	

Стандарт предусматривает два способа построения условных графических обозначений: упрощенный и развернутый. Упрощенный применяют в основном для изображения приборов на технологических схемах. При упрощенном способе на схемах не показывают первичные измерительные преобразователи и вспомогательную аппаратуру. Приборы и средства автоматизации, осуществляющие сложные функции (контроль, регулирование, сигнализацию и т. д.) и выполненные в виде отдельных блоков, показывают одним условным графическим обозначением.

В соответствии со стандартом условные графические обозначения средств автоматизации приведены в табл. 14.10.

При отсутствии стандартных условных обозначений каких-либо средств автоматизации допускаются свои обозначения с пояснением их на схеме. Условные графические обозначения на схемах выполняют линиями толщиной 0,5—0,6 мм, а линии связи и горизонтальную разделительную черту внутри обозначения выполняют линиями толщиной 0,2—0,3 мм.

Параметры, измеряемые первичным преобразователем или прибором, устанавливаемым по месту (на технологическом трубопроводе, аппарате, колонне, металлоконструкции), обозначают следующим образом:

Измеряемый параметр	Обозначение
Плотность	D
Любая электрическая величина	Ε
Для конкретизации измеряемой величины около изображения при- бора (справа от него) необходимо дать нанменование или символ измеряемой величины, например напряжение, сила тока (см. табл. 14.11, п. 6)	
Расход	F
Размер, положение, перемещение	G
Время	ĸ
Уровень	L
Влажность	М
Давление, вакуум	Р
Величина, характеризующая качество (состав, концентрация и т. п.) Для конкретизации измеряемой величины около изображения прибора (справа от него) необходимо дать ее наимснование или символ, например pH, O ₂ (см. табл. 14.11, п. 7.8)	Q
Радиоактивность	R
В случае необходимости около изображения прибора допускается указывать вид радиоактивности, например α-, β- или γ-излучение	

Скорость, частота Температура Несколько разнородных измеряемых величин Подробная расшифровка измеряемых величин должна быть приведена около прибора или на поле чертежа (см. табл. 14.11, п. 9) Вязкость Масса

Для обозначения величин, не предусмотренных данным стандартом, могут быть использованы резервные буквы: A, B, C, I, J, N, O, X, Y, Z (буква X не рекомендуется). При необходимости применения резервных буквенных обозначений они должны быть расшифрованы на схеме.

Ниже приведены обозначения уточняющих значений измеряемых величин:

Уточняющее значение	Обозначение
Разность, перепад	D
Соотношение, доля, дробь	F
Автоматическое переключение, обегание	J
Интегрирование, суммирование по времени	Q

Для обозначения уточняющих значений букв D (плотность), F (расход), Q (состав, концентрация и т. п.) допускается применение строчных букв соответственно d, j, q.

Функции, выполняемые приборами по отображению информации, обозначают следующим образом:

Функция	Обозначение
Сигнализация	Α
Сигнализируемые предельные значения измеряемых величин сле- дует конкретизировать добавлением букв <i>Н</i> (верхнее значение) и <i>L</i> (нижнее значение), которые проставляют справа от условного графического изображения прибора (см. табл. 14.11, п. 10)	
Показание	1
Регистрация	R

Функции, выполняемые приборами по формированию выходного сигнала, обозначают следующим образом:

Функция	Обозначение
Регулирование, управление	С
Включение, отключение, переключение	S
(эту букву применяют для обозначения контактного устройства	
прибора, используемого для включения, отключения, блокировки	
и т. д., и не применяют для обозначения функции регулирования,	
в том числе двухпозиционного)	

Все перечисленные буквенные обозначения проставляют в верхней части окружности, обозначающей прибор (устройство).

Пример построения условного обозначения прибора для измерения, регистрации и автоматического регулирования перепада давления приведен ниже:

S T

Ù

v

W

.№ н/п	Обозначение	Прибор
1		Первичный измерительный преобразователь (чувствительный элемент) для измерения температуры, установленный по месту отбора сигнала (термометр термоэлектрический (термопара), термометр сопротивления, термобаллон манометрического термо- метра, датчик пирометра и т. п.)
2	(\overline{n})	Прибор для измерения температуры показывающий, установленный на щите (милливольтметр, логометр, потенциометр, мост автоматический и т. п.)
3	(FJR)	Прибор для измерения температуры с автоматическим обегаю- щим устройством, регистрирующий, установленный на щите (мно- готочечный самопишущий потенциометр, мост автоматический и т. п.)
4	(Ide	Прибор для измерения перепада давления показывающий, установленный по месту (дифманометр показывающий и т. п.)
	(FFR)	Прибор для измерения соотношения расходов регистрирующий, установленный на щите (любой вторичный прибор для регистра- ции соотношения потоков)
6	(^{EI})	Прибор для измерения любой электрической величины, установленный по месту *
7		Прибор для измерения качества продукта показывающий, установленный по месту (например: газоанализатор показывающий для контроля содержания кислорода в дымовых газах)
8	H2504	Прибор для измерения качества продукта регистрирующий, регулирующий, установленный на щите (например: вторичный само- пишущий прибор регулятора концентрации серной кислоты в растворе)
9	$\underbrace{(\overline{UR})}{\overline{U}} \overset{\overline{U} \cdot f(F,P)}{\longrightarrow}$	Прибор для измерения нескольких разнородных величин регист- рирующий, установленный по месту (например: самопишущий дифманометр-расходомер с дополнительной записью давления; надпись, расшифровывающая измеряемые величины, наносится справа от прибора)
10		Прибор для измерения уровня показывающий, с контактным устройством, установленный на щите (например: вторичный прибор с сигнальным устройством; буквы Н и L означают сигнализацию верхнего и нижнего уровней)

Таблица 14.11 Примеры построения условных обозначений средств автоматизации

* Надписи, расшифровывающие конкретную измеряемую электрическую величину располагают либо рядом с прибором, либо в виде таблицы на поле чертежа.

При построении условного обозначения прибора следует указывать не все функциональные признаки прибора, а лишь те, которые используют в данной схеме. Например, при обозначении показывающих и самопишущих приборов, если показывающая информация не используется, то записывают TR вместо TIR или PR вместо PIR и т. д.

В нижней части окружности располагают цифровое позиционное обозначение, служащее для нумерации прибора или функциональной группы приборов для измерения, регулирования или сигнализации.

В табл. 14.11 приведены примеры построения условных обозначений средств автоматизации.

14.3. ОСНОВНЫЕ ТРЕБОВАНИЯ К ЧЕРТЕЖАМ ОБЩЕГО ВИДА

Чертежи общего вида должны выполняться в соответствии с основными требованиями ГОСТ 2.120—73 ЕСКД на выполнение технических проектов. Чертеж общего вида должен содержать следующие сведения:

 а) изображение изделия (аппарата, машины), необходимые виды, разрезы и сечения, дающие полное представление об устройстве разрабатываемого изделия;

б) основные размеры — конструктивные, присоединительные и габаритные, а в случае необходимости — установочные монтажные и предельные отклонения подвижных частей;

в) обозначения посадок в ответственных сопряжениях;

г) вид или схему с действительным расположением штуцеров, люков, лап и др.;

д) таблицу назначения штуцеров, патрубков и т. п.;

е) техническую характеристику;

ж) технические требования;

з) перечень составных частей изделия.

На изображении чертежа общего вида допускается показывать условно смещенными штуцера, бобышки, люки и т. п., не изменяя их расположения по высоте или длине аппарата.

На виде изделия (аппарата) сверху необходимо показать действительное расположение штуцеров, бобышек, люков и т. п.; при отсутствии вида сверху его следует вычертить схематически (рис. 14.1), проставив условные обозначения штуцеров, бобышек, люков и т. п., указанных на главном или на другом виде изделия. При этом над схемой необходимо сделать надпись, например: «Схема расположения штуцеров, бобышек, люков и лап», а в технических требованиях на чертеже обязательно указать: «Действительное расположение штуцеров, бобышек, люка и лап см. по схеме (по плану, виду В и т. д.)».

Штуцера, патрубки, гильзы для термометров, люки и т. п. на главном и сопряженном с ним изображениях и на схеме обозначают условно на продолжении их осей или на полках линий-выносок прописными буквами русского алфавита размером от 5 до 7 мм (буквы Й, О, Х, Ъ, Ь не применяют).

Таблицу назначения штуцеров, патрубков, гильз и других элементов аппарата выполняют по форме:

0603- наче- ние	Наименование	Кол.	Проход услов- ный Ду, мм	Давле- ние ус- ловное Ру, МПа	20
		T			8
12	90	10	18		
	148			·	

Над таблицей помещают заголовок «Таблица штуцеров».

Буквенные обозначения в алфавитном порядке (без пропусков и повторения) присваивают сначала видам, размерам, сечениям, а затем штуцерам. В случае недостатка букв применяют цифровую индексацию, например: «А₁», «Б₁», «В₁» и т. д.

Надписи, техническую характеристику, технические требования и таблицы на чертеже следует выполнять с соблюдением ГОСТ 2.316—68.

Таблицы, техническую характеристику, технические требования и перечень составленных частей следует располагать над основной надписью чертежа. В порядке исключения допускается размещение таблицы штуцеров слева от основной надписи. Рекомендуемое расположение основных элементов чертежа общего вида приведено на рис. 14.2.

Дополнительные изображения (виды, разрезы, сечения, выиосные изображения и т. д.) должны располагаться по возможности ближе к разъясняемому элементу.

В технической характеристике указывают: назначение изделия (аппарата); объем аппарата — номинальный и рабочий; производительность; площадь поверхности теплообмена; максимальное давление; максимальную температуру среды; мощность привода;

Рис. 14.1. Схема расположения штуцеров, бобышек, люков

Рис. 14.2. Рекомендуемое расположение элементов чертежа общего вида, располагаемого короткой или длинной стороной по горизонтали

частоту вращения деталей; токсичность и взрывоопасность среды; другие необходимые данные.

В технических требованиях на чертеже указывают: обозначение ГОСТ пли ТУ, согласно которым должно быть изготовлено и испытано данное изделие; обозначение ГОСТ или ТУ на основные материалы, применяемые в изделии; требования к испытанию на прочность и плотность сварных швов и других видов соединений; сведения о необходимости тепловой изоляции, гуммирования и других антикоррозионных покрытий.

На аппараты, в которых рабочее давление превышает 0,07 МПа (без учета гидростатического давления), распространяются «Правила устройства и безопасной экс-

ГОСТ	Назначение	Число ходов	Давление Р _у , МПа *	Поверхность теплообмена, м²	Конструктивные особенности
15122-79	Теплообменник	1, 2, 4, 6	$\frac{0,6-4,0}{0,6-4,0}$	1-961	С неподвижными
15120—79	Холодильник	1, 2, 4, 6	$\frac{0,6}{0,6-4,0}$	1—937	ками и темпера-
15121-79	Конденсатор	2, 4, 6	$\frac{0,6}{0.6-2.5}$	46-865	тором
15119—79	Испаритель	1	$\frac{0,6-1,0}{0,6-4,0}$	40—486	
14246—79	Теплообменник	2, 4	$\frac{1,6-8,0}{1,6-8,0}$	10-1246	С плавающей го-
14244—79	Холодильник	2, 4	до 1,0 1,6—6,3	10-1246	ловкои
14247—79	Конденсатор	2, 4, 6	<u>до 1,0</u> 1,0—2,5	87—831	
14245—79	Теплообменник	2	$\frac{1,6-6,3}{1,6-6,3}$	9-1369	С U-образными
14248—79	Испаритель	2	$\frac{1,6-4,0}{1,0-2.5}$	38—356	труоами С паровым про-
22485—77	Конденсатор	2, 4, 6, 8		201440	странством Горизонтальный с
22486—77	Испаритель	2, 4, 6, 8	$\frac{0,6-2,5}{1,6-2,5}$	20—1310	неподвижными трубными решет- ками

Таблица 14.12. Типы стандартных кожухотрубчатых теплообменных аппаратов

* В числителе — давление в трубах, в знаменателе — давление в кожухе.

типов кожухотрубчатых теплообменных аппаратов. В табл. 14.12 перечислены стандартные кожухотрубчатые теплообменные аппараты, приведенные в каталоге.

Некоторые основные характеристики теплообменных аппаратов приведены в гл. 2.

На чертеже общего вида выполняют следующие изображения: главный вид аппарата, вид сверху (для вертикального теплообменного аппарата) или сбоку (для горизонтального), вид одного из фланцевых соединений, расположение труб в трубной решетке, крепление труб в трубной решетке, а также другие необходимые изображения, поясняющие конструкцию аппарата. При отсутствии необходимости в изображении вида сверху или сбоку расположение штуцеров и лап может быть показано на схеме (см. рис. 14.1).

Рассчитанные диаметры штуцеров должны быть сопоставлены с диаметрами штуцеров теплообменного аппарата в соответствии с ГОСТом. Если расчетные диаметры штуцеров меньше диаметров штуцеров по ГОСТу, то в конструкции теплообменного аппарата могут быть приняты диаметры штуцеров как по стандарту, так и полученные расчетным путем (в последнем случае с округлением размера до ближайшего большего стандартного диаметра трубы). В примечании должен быть указан номер ГОСТа, на основании которого разработан чертеж данного теплообменного аппарата.

Примеры выполнения чертежей общего вида теплообменников показаны в Приложениях 9—11.

Чертежи общего вида выпарных аппаратов. Тип, основные параметры и размеры трубчатых стальных выпарных аппаратов приведены в каталоге «Выпарные трубчатые аппараты общего назначения для химических производств» (М.: ЦИНТИХИМНЕФТЕ-МАШ, 1985) Применяют выпарные аппараты с поверхностью нагрева до 3200 м², диаметром сепаратора до 8000 мм и диаметром циркуляционной трубы до 1600 мм. Диаметры греющих труб (25, 38 и 57 мм) и длины труб (3000, 4000; 5000, 6000, 7000, 9000 мм.) выбирают исходя из типа выпарного аппарата и поверхности его греющей камеры. Как правило, фланцевые соединения штуцеров D_y до 100 мм принимают с гладкой уплотнительной поверхностью по ГОСТ 12820—80 и присоединительными размерами, соответствующими давлению $1 \cdot 10^6$ Па. В случае необходимости могут применяться фланцевые соединения с уплотнительной поверхностью типа шип — паз по ГОСТ 22512—77 Остальные детали и узлы выпарных аппаратов выполняют по следующим стандартам и нормалям:

днища эллиптические — по ГОСТ 6533—78;

днища конические — по ГОСТ 12619—78, ГОСТ 12621—78, ГОСТ 12623—78;

фланцевые соединения аппаратов — по ОСТ 26-426—79 и ОСТ 26-427—79; для аппаратов, работающих под остаточным давлением, применяют фланцы на давление не менее 0.3 МПа;

люки - по ОСТ 26-2000-83 - ОСТ 26-2015-83;

опоры греющей камеры — по ОСТ 26-665—79;

строповые устройства — по ГОСТ 13716—73, ГОСТ 14114—85, ГОСТ 14116—85.

Конструкция соединения трубной решетки с обечайкой греющей камеры по техническим условиям на аппараты выпарные трубчатые ОСТ 26-01-112—79 должны соответствовать рис. 14.3.

Крепление труб в трубной решетке должно соответствовать рис. 14.4.

Предельные отклонения размера d_0 при развальцовке составляют:

для трубы диаметром 25 мм — 25,6+0,13; диаметром 38 мм — 38,7+0,16; диаметром 57 (56) мм — 58+0,19 (57+0,19).

Глубина развальцовки (рис. 14.4) должна составлять (0,8—1,2) d, но не более толщины трубной решетки минус 3 мм.

Максимально допустимое число труб, заглушаемых на заводе-изготовителе, составляет 1 %.

При разработке конструкции греющей камеры в ней необходимо предусмотреть уста-

Рис. 14.3. Соединение трубной решетки с обечайкой греющей камеры

Рис. 14.4. Крепление труб в трубной решетке

430

Рис. 14.5. Установка штуцера вывода конденсата из греющей камеры

новку отбойника в месте входа пара, а расположение штуцера для отвода конденсата должно соответствовать рис. 14.5.

Крепежные детали внутренних устройств выпарных аппаратов из углеродистых сталей изготовляют из коррозионностойких материалов.

На вертикальных обечайках с фланцами, имеющими уплотнительные поверхности «шип — паз», для удобства установки прокладки фланец с пазом должен быть нижним.

Радиусы сгиба циркуляционной трубы должны быть равны 1—1,5 диаметра трубы.

На чертеже общего вида изображают: главный вид аппарата, вид сверху, вид одного из фланцевых соединений, расположение труб в трубной решетке, крепление труб в трубной решетке, поперечное сечение брызгоуловителя, а также другие необходимые виды и сечения, поясняющие конструкцию аппарата (по указанию руководителя). При отсутствии изображения, показывающего расположение штуцеров, выполняют схему их расположения (см. рис. 14.1).

Число штуцеров может быть уменьшено по сравнению с показанными на чертежах Приложений, но не должно быть меньше числа технологически необходимых для работы аппарата. Кроме того, должны быть предусмотрены штуцера для продувки, промывки и т. п.

Для контроля за работой аппарата предусматриваются смотровые окна, расположенные на противоположных сторонах корпуса сепаратора, друг против друга. Для """ - "" уровнем раствора несколько окон могут располагаться попарно по вертикали. Для контроля за правильной установкой аппарата по вертикали должны быть предусмотрены штыри. Для усиления жесткости стенок отдельных частей аппарата предусматривают бандажи, которые могут быть использованы для крепления наружной тепловой изоляции. С целью предотвращения загрязнения внутренней части аппарата при транспортировке желательно предусмотреть установку ответных фланцев с глухой прокладкой.

Чертежи общего вида абсорбционных и ректификационных колонн. Размеры стальных колонных аппаратов диаметром от 600 до 10 000 мм определяет ГОСТ 21944—76. Внутренний диаметр колонного аппарата, изготовленного из листовой стали с контактными устройствами в виде тарелок или насадки, выбирают из ряда: 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2600, 2800, 3200, 3400, 3600 и т. д. Расстояние между тарелками колонных аппаратов выбирают из следующего ряда: 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 и т. д.

Техническая характеристика и схематичное изображение колонных стальных аппаратов, оснащенных стандартными ректификационными тарелками диаметром 400— 3600 мм, приведены в каталоге «Колонные аппараты» (М.: ЦИНТИХИМНЕФТЕМАШ, 1987) Колонны предназначены для проведения процессов ректификации и дистилляции при температурах не ниже — 40 °С и не выше + 200 °С при избыточном давлении: до 1 МПа — для аппаратов с регулярной насадкой; до 1,6 МПа — для аппаратов с насыпной насадкой; до 2,5 МПа — для аппаратов с тарелками; без давления и под вакуумом (остаточное давление не ниже 665 Па).

Тарелки	Стандарт	Рекомендации по применению
Колпачковые	OCT 26-01-6686	В процессах, протекающих при атмосферном и избыточном давлении, а также при неглубоком вакууме с нестабиль- ными нагрузками по газу и жидкости. Диапазон устойчи- вой паботы 4 5
Ситчатые	OCT 26-01-108-85	В процессах со стабильными нагрузками по газу и жидко-
Ситчато-клапанные	9	Применяются в процессах, протекающих преимущественно под вакуумом и при атмосферном давлении. Диапазон устойчивой работы 3—3.5
Клапанные		В процессах, протекающих преимущественно при атмо- сферном и повышенном давлении. Диапазон устойчивой работы 3.5
Жалюзийно-кла- панные	OCT 26-01-41785	В процессах, протекающих при избыточном и атмосферном давлении с нагрузкой по жидкости до 120 м ³ /(м ² ·ч). Лиапазон устойцивой работы 4, 5
Решетчатые	OCT 26-675—78, OCT 26-02-2055—79	В процессах со стабильными нагрузками по пару и жидко- сти при использовании суспензий, жидкостей, склонных к выделению осалков и полимеризующихся жилкостей
Клапанные прямо- точные	OCT 26-02-1401—76, OCT 26-02-1402—76	В процессах, протекающих как под вакуумом так и под дав- лением; обладают большим диапазоном эффективной рабо- ты в самых разнообразных режимах от барботажного до струйного
Ситчатые с отбой- ными элементами однопоточные и лвухпоточные	OCT 26-02-2054—79	Преимущественно для вакуумных процессов разделения, а также для процессов, в которых лимитируется гидравличе- ское сопротивление. Диапазон устойчивой работы от 2,2 ло 3.2
S-образные кла- панные однопоточ- ные и двухпоточ- ные	OCT 26-02-536—78	В процессах, в которых гидравлическое сопротивление не является определяющим. Характеризуются высокой произ- водительностью и эффективностью; диапазон устойчивой работы 3
Клапанные бал- ластные	OCT 26-02-2061—80	В процессах, протекающих под вакуумом; характеризуются всеми достоинствами клапанных прямоточных и при прочих равных условиях имеют больший диапазон устойчивой ра- боты

Таблица 14.13. Область применения стандартных тарелок

Тип тарелки или вид насадки обычно указан в задании на курсовой проект или выбирается в зависимости от особенностей технологического процесса — давления, температуры, нагрузок по газу (пару) и жидкости, соотношения фаз, чистоты продуктов. В табл. 14.13 приведены рекомендации по применению стандартных тарелок.

Стандартные тарелки изготовляют разборной и неразборной конструкции, в зависимости от диаметра колонны.

Диаметр колонны D, мм	Расстояние между тарел- ками Н _т , мм	Высота царги Н _и , мм	Число тарелок в царге, шт.	Диаметр колонны D, мм	Расстояние между тарел- ками <i>Н</i> т, мм	Высота царги <i>Н</i> _и , мм	Число тарелок в царге, шт.
400	200	800	4	800		1200	6
600	250	1000	•	000	250	1250	5*
	300	900	3		250	1500	6**
	350	1050			300	1200	4
	400	800			350	1400	
	450	900	2		400	1200	
	500	1000			450	1350	3
					500	1500	

Таблица 14.14. Число разборных тарелок, устанавливаемых в царге

* Для тарелок по ОСТ 26-01-66—86. ** Для тарелок по ОСТ 26-01-108—85.

Корпус колонны изготовляют из отдельных царг (на фланцах) или цельносварными. Корпуса из царг рекомендуется применять для давлений до 1,6 МПа, а цельносварные —для давлений до 4,0 МПа. Обычно колонные аппараты диаметром 1000 мм п более выполняют цельносварными с разборными тарелками.

Высота царги корпуса тарельчатой колонны определяется диаметром анпарата и числом устанавливаемых в ней тарелок; рекомендуемое число тарелок в царге приводится в соответствующем стандарте на конструкцию тарелки. В общем случае высоту царги следует выбирать из условий удобства монтажа тарелок и трансиортировки. Для колонны диаметром $D \leq 800$ мм высота царги определяется возможностью монтажа наиболее удаленной тарелки. Для колонны D > 800 мм монтаж тарелок впутри царги облегчается, и высота царг может быть увеличена.

Тарелки диаметром 400, 600 п 800 мм по ОСТ 26-01-66—86 и по ОСТ 26-01-108—85 выполняют неразборными и устанавливают в царгу от 2 до 6 штук. Пример размещения в царге колонны ситчатых и колпачковых тарелок приведен в табл. 14.14 и на рис. 14.6.

Все детали неразборной тарелки крепят к ее основанию, наружный диаметр которого на 20 мм меньше внутреннего днаметра колонны. Каждую из тарелок 1 (рис. 14.6),

Рис. 14.6. Установка неразборных тарелок в царге:

1 — тарелка; 2 — стойка; 3 — косынка; 4 — шнур специальный АО \emptyset 10 (ГОСТ 5152—77); 5 — кольцо прижимное; 6 — перегородка слнвная; 7 — перегородка переливная; 8 — щиток; 9 — кольцо упорнос; 10 болт М 10 \times 35 (ГОСТ 7796—70); 11 — гайка (ГОСТ 5916—70)

15 Под ред. Ю. И. Дытнерского

Рис. 14.7 Установка тарелок в царге колонны:

а — на вертикальных стойках: I — стойка; 2 — тарелка; 3 — регулировочный винт; 4 — фиксирующая гайка; 6 — на распорном кольце: I — распорное кольцо; 2 — гайка; 3 — шпилька; в — на опорных уголках: I — уголок; 2 — прямоугольная бобышка; 3 — болт

кроме нижней, устанавливают в царге на трех стойках 2, опирающихся на нижележащую тарелку. Нижняя тарелка в каждой царге опирается на три приваренных к корпусу косышки 3. Зазор между тарелкой и внутренней стенкой царги устраняют специальным шнуром АО диаметром 10 мм (ГОСТ 5152—77). Шнур 4 уплотняется кольцом 5, прижимаемым гайкой через скобу, установленную на шпильке. Шпильку приваривают к внутренней поверхности борта основания тарелки.

Приемный и сливной карманы тарелки образуются установкой в тарелке перегородок — сливной 6 и переливной 7 Для ликвидации байпасного течения жидкости вдоль стенок колонны при высоте слоя жидкости на тарелке $h_c \ge 35$ мм на концы сливной перегородки устанавливают щитки 8. Верхнюю тарелку в царге поджимают тремя щитками 8 к расположенной ниже тарелке упорным кольцом 9. Кольцо закрепляют в царге вворачиванием трех болтов 10 (М 10×35) в упор в стенку царги с фиксированием их контргайкой 11.

При повышенных требованиях к монтажу тарелок в горизонтальной плоскости (ситчатые, решетчатые и т. д.) в них устанавливают регулировочные винты 3 с фиксирующей гайкой 4, нижний конец которых находится на верхней площадке опорной стойки 1 (рис. 14.7, а).

При значительном расстоянии между тарелками (H > D) их целесообразно устанавливать на распорных кольцах (рис. 14.7, б) или на опорных уголках (рис. 14.7, θ). Распорное кольцо фиксируют в царге колонны путем раздвигания торцов кольца *1* (рис. 14.7, б) внутренними гайками 2, находящимися на шпильке 3. Опорные уголки *1* (рис. 14.7, θ) устанавливают в царге на прямоугольных бобышках 2, приваренных к стенке царги, и болтами 3 крепят к тарелке.

Фланцы царг выполняют по ОСТ 26-426-72 и ОСТ 26-427-72.

В колоннах диаметром 1000 мм и более по ОСТ 26-01-66—86 и ОСТ 26-01-108—85 устанавливают разборные тарелки. Типовая конструкция разборной тарелки диаметром 2000 мм показана на рис. 14.8.

Разборные тарелки состоят из одной или нескольких секций с отгибом (1) и одной секции без отгиба (2), крепящихся к опорной раме. Опорная рама представляет собой сварную конструкцию, состоящую из двух кольцевых элементов 3 и двух уголков 4 $(70 \times 70 \times 8 \text{ мм} \text{ для тарелок } \emptyset$ 1000—2600 мм). Раму приваривают к стенкам колонны. Секции укладывают на опорную раму и поджимают к ней с помощью скобы 5 и болта 6 (рис. 14.9, а) Между собой секции крепятся скобой 7 и специальным болтом 8 (рис. 14.9, б).

Тарелки диаметром 2000 мм и выше имеют наиболее сложную конструкцию опорной рамы. Это обусловлено недостаточной жесткостью секций без дополнительной опоры. Для таких тарелок поперечную балку 9 (рис. 14.9, e) подвешивают на кронштейнах 10, выполненных из углового профиля $80 \times 40 \times 4,5$ и приваренных в средней части уголков 4 опорной рамы. Балку изготовляют из металлического профиля (швеллер) размером $100 \times 50 \times 4$ для тарелок Ø 2200—2800 мм и размером $140 \times 60 \times 5$ — для тарелок Ø 3000—4000 мм. Для монтажа в одной плоскости опорных поверхностей балки 9

Рис. 14.8. Общий вид разборной тарелки (D=2000 мм): 1 — секция тарелки с отгибом; 2 — секция тарелки без отгиба; 3 — кольцевой элемент; 4 — уголок; 5 — скоба

и уголков 4 под концы балки устанавливают спиральные шайбы 11 Опорную балку устанавливают на кронштейны 10 с болтами 12, головки которых для удобства монтажа приваривают к нижней поверхности полки кронштейна. Скобой 13 одновременно крепят балку 9 к кронштейнам 10 и секции тарелки 1 к опорной раме. По длине опорной балки 9 секции крепят с помощью скобы 7

Рис. 14.9. Конструкция крепления разборных тарелок:

a — на уголке опорной рамы; b — секций тарелки между собой; b — поперечной балки с уголком опорной рамы; c — на кольцевом элементе опорной рамы; d — на опорной раме; I — секция тарелки с отгибом; 2 — секция тарелки без отгиба; 3 — кольцевой элемент опорной рамы; 4 — уголок опорной рамы; 5, 7, 13 — скобы; 6 — болт; 8, 12 — болты специальные; 9 — поперечная балка; 10 — кронштейн; 11 — спиральная шайба

Уголки 4 опорной рамы для тарелок Ø 2800—3600 мм изготовляют из углового профиля $100 \times 70 \times 8$ мм, а для тарелок Ø 3800 и 4000 мм — из углового профиля $120 \times 70 \times 8$ мм.

Более подробно конструкция разборной тарелки показана на чертеже Приложения 19.

Колонные аппараты диаметром более 1000 мм изготовляют преимущественно с цельносварным корпусом и съемной верхней крышкой. При разработке цельносварной конструкции колонны необходимо учитывать возможность ее транспортировки по железной дороге. В соответствии с длиной железнодорожной платформы четырехосного вагона максимальная длина аппарата, размещаемого на одной платформе, не должна превышать 14,1 м. Колонны длиной 14,1—27 м транспортируют на трех железнодорожных платформах; при. этом колонна крепится на средней платформе, а ее концы находятся над крайними платформами.

Если длина аппарата является препятствием для его транспортировки, необходимо предусмотреть фланцевые разъемы в соответствии с рекомендациями ОСТ 26-426—72 и ОСТ 26-427—72. В отдельных случаях можно предусмотреть сборку колонны непосредственно на месте установки из элементов, габаритные размеры которых допускают возможность их транспортировки.

Корпус цельносварной колонны должен снабжаться люками для монтажа и обслуживания тарелок. Рекомендуется располагать люки через 12 тарелок для чистых сред и через 6 тарелок для загрязненных сред (см. Приложение 18). Люки изготовляют по ОСТ 26-2000—83 — ОСТ 26-2015—83.

Ниже приведены рекомендуемые размеры люков в зависимости от диаметра колонны:

	D, мм	
	1000	1200-3600
Диаметр люка D _л , мм Расстояние между тарелками в месте установки люка, мм	500 800	600 800

Описание насадочных царговых колонных аппаратов диаметром 400—800 мм и насадочных цельносварных диаметром 1000—3600 мм приведены в каталоге «Колонные аппараты» (М.: ЦИНТИХИМНЕФТЕМАШ, 1987).

Применяют регулярные (правильно уложенные) и беспорядочные (засыпаемые внавал) насадки. Регулярными являются хордовая насадка, кольца Рашига (при правильной укладке) и блочная насадка. К беспорядочным относятся кольца Рашига (при загрузке внавал), седлообразная, кусковая насадка и др. В настоящее время преимущественное применение находят кольца Рашига, изготовленные из керамики или металла.

Размер насадки следует выбирать с учетом диаметра колонны и гидродинамического режима ее работы; увеличение размера насадки приводит к увеличению производительности колонны при одновременном снижении эффективности. При отношении диаметра насадки из колец Рашига к внутреннему диаметру колонны, равном 0,033, достигается оптимальное сочетание производительности и эффективности колонны.

Для равномерного распределения жидкости по площади поперечного сечения насадки насадочные колонны снабжают распределительными тарелками типа TCH-III, а при расположении насадки внутри колонн отдельными слоями — перераспределительными тарелками типа TCH-II (ОСТ 26-705—79) Эти тарелки несколько различаются по конструкции в зависимости от диаметра колонны. Стандартом предусмотрено изготовление разборных тарелок типа TCH-IIP и TCH-IIIP.

Высота отдельных слоев насадки не должна превышать (3—5) D, причем каждый слой располагают на опорной решетке, устройство которой приведено в ОСТ 26-02-601—72 и ОСТ 26-02-602—72. Для загрузки и выгрузки каждого слоя насадки в корпусе колонны должны быть предусмотрены два люка: один — под распределительной (или перераспределительной) тарелкой, второй — над опорной решеткой. Диаметры люков:

150 мм — для колонн D = 400 мм; 250 мм — для колонн D = 600 и 800 мм; 500 мм — для колонн D = 1000, 1200 и 1400 мм; 600 мм — для колонн D > 1400 мм.

К корпусу цельносвариых колонн приваривают накладки для крепления площадок (площадки шириной 1--1,2 м), предназначенных для обслуживания аппарата. Площадка должна находиться на расстоянии (по высоте) не более 1000—1200 мм от оси люка.

К верхней части колонны приваривают цапфы для подъема аппарата (ГОСТ 13716—73, ГОСТ 14114—85); для установки аппарата по вертикали нижняя и верхняя части корпуса снабжены штырями. В некоторых случаях для подъема отдельных элементов аппарата на верхней части колонны может устаиавливаться кранукосина.

Максимальная высота колонных аппаратов приведена ниже:

Диаметр аппарата D, мм	400800	1000	1200-2200	2400-3600
Н _{макс} , м	20	23	30	50

Колонные аппараты диаметром 400, 600, 800 мм и высотой больше 8000 мм раскрепляются по высоте аппарата в этажерке (рис. 14.10). Место раскрепления должно находиться на высоте не более ${}^{3}/_{4}$ *H* от фундамента аппарата.

Высота части ректификационной колонны, расположенной выше верхней тарелки или верхнего слоя насадки, определяется необходимостью создания сеиарационного объема и размещения на корпусе этой части колонны штуцеров, цапф и штырей; ориептировочно она может быть принята равной (0,5—1) D.

Нижнюю тарелку снабжают гидрозатвором для беспрепятственного слива жидкости с тарелки в куб; с этой целью нижний конец трубы (или перегородку сливного кармана) либо погружают в слой кубовой жидкости, либо опускают в приемный стакан.

Кипятильник ректификационной колонны может быть выносным или встроенным в нижнюю часть колонны (рис. 14.11).

Достоинствами схемы подвода тепла в колонну, показанной на рис. 14.11, a, являются возможность использования стандартной аппаратуры с любой поверхностью теплообмена, относительно небольшое гидравлическое сопротивление, удобство монтажа и обслуживания. Поэтому колонны с выносными кипятильниками наиболее распространены. Схема подвода тепла, показанная на рис. 14.11, b, обеспечивает компактность установки, но затрудняет размещение больших поверхностей теплообмена; применяется для колонн малого диаметра (ориентировочно D < 300 мм).

Рис. 14.10. Устройство для раскрепления колонн на площадках (перекрытиях)

Рис. 14.11 Размещение кипятильника в нижней (кубовой) части колонны:

а — выносного; б — встроенного

437

Рис. 14.12. Размещение дефлегматора в верхней части колонны: а — встроенного; б — выносного

Рис. 14.13. Конструкция разборного штуцера

Для выравнивания скоростей пара (газа), поступающего под нижнюю тарелку (или слой насадки), труба подачи пара (газа) имеет срез, направленный вниз, и располагается на расстоянии от тарелки, примерно равном D — для колонн D = 400 - 800 мм; (0,5—1) D — для колонн D = 1000 - 3600 мм.

Высота кубовой части ректификационной колонны может быть принята равной: (2-3) D - для колонн D = 400-800 мм; (1-2) D - для колонн D = 1000-3600 мм.

Дефлегматор ректификационной колонны выполняют либо встроенным в верхнюю часть колонны (рис. 14.12, а), либо выносным — вертикальным или горизонтальным (рис. 14.12, б). Встроенную конструкцию применяют для колонн небольшого диаметра.

Колонны могут быть установлены на опорах-лапах (ГОСТ 26296—84) и цилиндрических опорах (ОСТ 26-467—84). Цилиндрические опоры под колонны выполняют четырех типов и выбирают в зависимости от максимальной приведенной нагрузки.

В колоннах с неразборными тарелками штуцер для ввода жидкости должен быть такой конструкции (рис. 14.13), чтобы из него можно было извлекать патрубок ввода жидкости при монтаже и демонтаже тарелок (см. Приложение 17).

В кубе колонны необходимо предусмотреть штуцеры для присоединения устройств контроля уровня, давления и температуры, которые выбирают по ОСТ 26-01-1349—81 и ОСТ 26-01-1356—81.

Штуцера для измерения температуры и давления устанавливают также в верхней части колонны и при необходимости — по высоте колонны. По высоте колонны должны устанавливаться и штуцера для отбора проб. В верхней части колонны должен быть установлен штуцер для присоединения предохранительного клапана.

Важное значение имеет правильный выбор высоты размещения штуцера для ввода в колонну паров из кипятильника. Рекомендуется * сечение диаметра парового штуцера принимать на 20—25 % меньше суммарного сечения трубок кипятильника. Верхняя трубная решетка выносного кипятильника должна быть на 250—350 мм (в зависимости от разности плотностей жидкости в кубе и парожидкостной смеси в кипятильнике) выше среднего уровня жидкости в кубе колонны (рис. 14.14)

При выполнении чертежа общего вида колонны тарелки на продольном разрезе рекомендуется изображать упрощенно; подробно конструкцию тарелки показывают на местных или дополнительных видах, разрезах и сечениях. Тарелки нумеруют на продольном разрезе аппарата снизу вверх.

^{*} Гринберг Я. И. Проектирование химических производств. М.: Химия, 1970. 268 с.
Чертежи общего вида роторно-дисковых экстракторов. Конструкции роторнодисковых экстракторов (Приложение 21) не стандартизованы. При разработке корпуса такого аппарата следует руководствоваться общими требованиями, предъявляемыми к колонным аппаратам.

Чертежи общего вида сушильных аппаратов и установок. Сушильная установка. (Приложение 6) включает помимо основного элемента — сушильного аппарата вспомогательное оборудование: питатель, разгрузочное устройство, топку (или калорифер), а также устройство для пылеочистки. Характеристики наиболее распространенных аппаратов и установок (барабанных, ленточных, вальцовых, распылительных, со взвешенным слоем и др.) приведены в каталоге «Сушильные аппараты и установки» (М.: ЦИНТИХИМНЕФТЕМАШ, 1988).

Барабанные сушилки, работающие под атмосферным давлением, применяют для сушки кусковых, зернистых и сыпучих материалов, частицы которых характеризуются умеренной прочностью.

Сушилки взвешенного слоя применяют для сушки сильносыпучих материалов, подверженных комкованию, а также пастообразных материалов. Высушиваемые материалы должны обладать достаточной механической прочностью.

Распылительные сушилки применяют преимущественно для сушки растворов и суспензии термочувствительных материалов. Ленточные сушилки используют для сушки сыпучих материалов или гранулированных материалов с частицами малой механической прочности.

Основные размеры и параметры вращающихся барабанов сушилок (рис. 14.15) по ГОСТ 11875—79 и ОСТ 26-01-147—82 приведены в табл. 14.15.

В сушилках диаметром 1000—1600 мм для хорошо сыпучих материалов с частицами размером не более 8 мм рекомендуется применять секторную насадку; для материалов, склонных к налипанию, с частицами средним размером более 8 мм — лопастную насадку. В сушилках диаметром 1000—2200, 2500 и 2800 мм для материалов, склонных к налипанию, но обладающих достаточно хорошей сыпучестью, после предварительной подсушки используют лопастную и за ней — секторную насадки.

Перевалочную насадку используют для мелкозернистых пылящих материалов. Распределительную насадку применяют при сушке зернистых материалов, не содержащих больших количеств мелких частиц и мало пылящих.

Насадку устанавливают внутри барабана в виде отдельных секций длиной не более диаметра барабана. В барабанах диаметром более 2000 мм насадку можно монтировать непосредственно на внутренней поверхности барабана.

В соответствии с ОСТ 26-01-437—85 предусмотрено изготовление семи вариантов конструкций корпусов барабанных сушилок, в зависимости от диаметра барабана, типа

Рис. 14.14. Размещение кипятильника по отношению к кубу колонны

Рис. 14.15. Основные размеры корпуса барабанной сушилки

<i>D</i> , мм	<i>L</i> , мм	<i>I</i> , мм	<i>l</i> i, мм	<i>G</i> , кН	<i>n</i> , c ⁻¹	δ, мм	₩, кг/ч	М, т
1000	4 000	850	2 300	100	0,068—0,135	5	120	5,7
	6 00 0	1250	3 500				180	6,3
1200	6 000	1250	3 500	160	0,068-0,135	6	260	8,3
	8 000	1650	4 700				340	9,1
	10 000	2050	5 900				420	9,8
1600	800	1650	4 500	250	0,0530,107	8	600	16,4
	10 000	2050	5 900				750	17,6
	12 000	2500	7 000				900	19,0
2000	8 000	1650	4 700	400	0,053—0,107	10	960	24,9
	10 000	2050	5 900				1 200	26,8
	12 000	2050	7 000				1 440	28,9
2200	10 000	2050	5 900	400	0,053—0,107	12	1 480	31,7
	12 000	2300	7 000				1 740	33,8
	14 000	2900	8 200				$2\ 000$	36,7
	16 000	3350	9 300				2 240	39,0
2500	14 000	2900	8 200	630	0,033—0,100	14	2660	75,0
	18 000	3750	10 500			16	3 440	88,85
	$2\ 000$	4150	11 700				3 820	94,30
2800	14 000	2900	8 200	800	0,033-0,100	16	3 340	88,5
	16 000	3350	9 300				3 820	94,5
	$20\ 000$	4150	11 700				4 760	111,61
3000	18 000	4000	10 000	1000	0,0330,100	20	5000	129,52
	$20\ 000$		12 000				5 500	129,37
3200	18 000	4000	10 000	1250	0,033—0,100	20	5 650	145,65
	$2\ 200$	4500	13 000				6 500	159,86
3500	18 000	4000	10 000	1600	0,033-0,100	22	7 200	164,81
	$22\ 000$	4500	13 000				8 250	194,12
	27 000	5000	17 000				10 000	215,75
	16 000	2700	10 600		0,10		7 000	200,0
4000	$22\ 000$	4500	13 000	1600	0,075	25	9 000	223,9
4500	16 000	2700	10 600	1600	0,075	25	12 000	228,0
						22		220.0

Таблица 14.15. Основные размеры и параметры вращающихся барабанов сушилок

Примечания. І В таблице приняты следующие обозначения: D—наружный диаметр барабана; L—длина барабана; l— расстояние до первой опоры; l_1 — расстояние между опорами; G— номиналывая нагрузка на одну опорами; G— частота вращения барабана: δ — толщина стенки барабана; W— производительность по испаренной влаге; M— ориентировочная масса барабана. 2. Массы сушилок диаметром до 2200 мм указаны с учетом загрузочных и разгрузочных камер, а днаметром свыше 2200 мм— без учета загрузочных и разгрузочных камер. Средняя производительность сушилок указана по ряду наиболее распространенных продуктов химической и смежных отраслей промышленности при следующих параметрах сушилку 700—800 °C, на выходе 100—150 °C.

основных насадок и направления движения теплоносителя. Стандарт предлагает для каждого из вариантов определенную конструкцию корпуса барабанной сушилки и в некотором диапазоне, с указанием его основных размеров.

Корпус барабана снабжают обычно двумя наружными стальными кольцами (бандажами), чаще прямоугольного сечения, передающими нагрузку от барабана роликам опорных станций. Применяют неразборные и разборные способы крепления бандажей на корпусе барабанной сушилки. При неразборном соединении бандаж в горячем состоянии насаживают на корпус барабанной сушилки или приваривают к нему (второй способ применяется для корпусов сушилок диаметром до 1 м).

Разборная конструкция и размеры опорных и опорно-упорных бандажей определяются ОСТ 26-01-445—85. Крепление бандажей на корпусе барабанной сушилки в соответствии с ОСТ 26-01-445—85 показано на рис. 14.16. Бандаж 1 крепится на корпусе 2 с помощью башмаков 3, которые упорами фиксируют бандаж поочередно слева и справа, препятствуя его перемещению. Бандаж центрируют с помощью прокладок 4, размещаемых между башмаком и подкладкой 5. Прокладки и подкладку устанавливают в выемку башмака, что предотвращает их смещение по окружности. Смещению в осевом направлении препятствует упорная планка δ , закрепляемая на башмаке двумя болтами 7

Барабаны сушилок устанавливают под небольшим (1—4 градуса) углом к горизонту для облегчения перемещения материала по барабану. При этом для устранения его осевого перемещения один из бандажей, расположенный на «холодном» конце барабана, устанавливают между двумя упорными роликами. Совокупность опорных и упорных роликов, установленных на общей раме, образует опорно-упорную станцию.

Рис. 14.16. Крепление бандажа на корпусе барабанной сушилки: *I* – бандаж; *2* – корпус; *3* – башмак; *4* – прокладка; *5* – подкладка; *6* – упорная планка; *7* – болт

Венцовую шестерню устанавливают на барабане возможно ближе к опорноупорной станции с целью уменьшения изгибающего момента от массы шестерни и снижения ее радиального биения.

Венцовую шестерню крепят жестко к корпусу барабанной сушилки (рис. 14.17, a) при небольших колебаниях температуры его стенок (когда нет опасности появления больших температурных напряжений) или с помощью пружин (рис. 14.17, b), опирающихся на стальные площадки, закрепленные на корпусе (при высокой температуре сушильного агента, значительно отличающейся от температуры стенок корпуса при монтаже). При жестком креплении (рис. 14.17, a) венцовую шестерню I устанавливают на корпусе барабанной сушилки с помощью башмаков 2, прикрепляемых к корпусу болтами 3. При креплении с помощью пружин (рис. 14.17, b) венцовую шестерню Iкрепят болтами 2 к продольным плоским пружинам 3, опирающимся на стальные площадки 4, прикрепленные к барабану. Центрируют венцовую шестерню с помощью прокладок, устанавливаемых между шестерней и рессорами или между рессорами и площадками. Конструкции креплений венцовой шестерни к корпусу барабанной сушилки приведены в ОСТ 26-01-446—85.

В соответствии с ОСТ 26-01-147—82, корпуса барабанных сушилок выполняют из стали В СТ.3пс, В СТ.3сп по ГОСТ 380—71 или из стали 09Г2С по ГОСТ 19262—80.

Рис. 14.17 Крепление венцовой шестерни к корпусу барабанной сушилки:

а — жесткое (1 — венцовая шестерня; 2 — башмак; 3 — болт); б — с помощью пружин (1 шестерня; 2 — болт; 3 — пружины (рессоры); 4 — площадка] При температуре сушильного агента выше 350 °С на конце корпуса аппарата со стороны входа теплоносителя устанавливают защитное кольцо по ОСТ 26-01-442—85. На конце корпуса аппарата с противоположной стороны входа теплоносителя по ОСТ 26-01-443—85 устанавливают подпорное кольцо, обеспечивающее задержку высушиваемого материала в корпусе барабанной сушилки.

Если в графическую часть проекта включают выполнение чертежа общего вида барабана сушилки, то на чертеже необходимо указать требования по точности установки бандажей и зубчатого венца, регламентированные ОСТ 26-01-147—82.

Для предотвращения утечки запыленных и вредных газов в производственные помещения барабаны сушилок работают под разрежением 50—250 Па, причем с целью ликвидации зазора между вращающимся барабаном и камерами для загрузки и выгрузки применяют различные уплотнения, преимущественно лабиринтные.

Чертежи общего вида аппаратов обратного осмоса и ультрафильтрации. Аппараты обратного осмоса и ультрафильтрации (Приложения 24—25) не стандартизованы. В связи с этим при разработке таких аппаратов следует руководствоваться общими положениями по проектированию аппаратов, работающих под давлением.

ПРИЛОЖЕНИЯ

При выполнении чертежей общего вида аппаратов (Приложення 9—25) следует учитывать изменения и дополнения к ГОСТ 2.305—68 «Изображения — виды, разрезы, сечения» от 23.08.89 № 2615, приведенные ниже.

При обозначении видов, разрезов, сечений и выносных элементов не следует применять линию, подчеркивающую эти обозначения.

В случае использования выносного элемента соответствующее место, отмеченное на виде, разрезе или сечении замкнутой сплошной тонкой линией, окружностью, овалом и т. д., обозначают на полке линии-выноски прописной буквой или сочетанием прописной буквы с арабской цифрой.

Обозначение видов, разрезов, сечений и выносных элементов осуществляют последовательно в строчку: сначала дают буквенное обозначение, затем — масштаб в круглых скобках (без написания прописной буквы М), если он отличается от масштаба на фронтальной проекции, а далее — по необходимости.

Если виды сверху, слева, справа, снизу, сзади не находятся в непосредственной проекционной связи с главным изображением (видом или разрезом, изображенным на фронтальной плоскости проекций), то направление проектирования должно быть указано стрелкой у соответствующего изображения. Над стрелкой и над полученным изображением (видом) следует нанести одну и ту же прописную букву без использования слова «Вид». Соотношение размеров стрелок, указывающих направление взгляда, должно соответствовать приведенным ниже:

Слово «развернуто» при обозначении сечений заменяют условным обозначением. При повертывании дополнительных видов, разрезов и сечений до положения, соответствующего принятому для данного предмета на главном изображении, в их обозначении вместо слова «повернуто» используют условное графическое обозначение. При необходимости указывают угол поворота, записывая численное значение угла справа от условного графического обозначения. Указанные условные графические обозначения («развернуто», «повернуто» и обозначение угла) должны соответствовать приведенным ниже:

Местные разрезы следует выделять сплошной волнистой линией или сплошной тонкой линией с изломом.

Предметы и элементы, имеющие постоянное или закономерно изменяющееся поперечное сечение, допускается изображать с разрывами. Частичные изображения и изображения с разрывами ограничивают одним из следующих способов, показанных ниже:

a — сплошной тонкой линией с изломом, который может выходить за контур изображения на длину от 2 до 4 мм; эта линия может быть наклонной относительно линии контура; б — сплошной волнистой линией.

Приложение 1

	_			#1	00.00.000 T3				
- 1				t t		٦ <i>٨</i> u	т.	Macco	Hocure
Лıн.	Auça	Nº BORYM.	Roon,	140.00	установка	m	Т		
Pass	oað.				адсорбционная.	11		I –	- 1
flool	20				Технологическая схема.	4.1			
1.10	ump.	_				Au.	(C/TT	Au	cm08 1
Pyn		_							
H. #0	wittp.					J –			
Sml						1			

90,000	ае абазначение	Наимеловалие соевы
6yn0.	Графическое	ο πρισοπροθοδε
	-BJ	80ða
	-3 - 3-	Возбул
	-3/	влажный материал
	-32	высушетый материал
	-33-33-	Толочные газы
	-810	вода циркуляционная

Обозначение	Наитекование	Kan.	Примечание
60	Барабан сушильный	17	
J	Τοπκα	$\overline{\mathbf{n}}$	
CX	Смесительная камера	TT	
61	Бункер блажного татериала	171	
<u>52</u>	Бунтер бысушенного натериала	171	
4	Циклон	17	
MI	Мокрый пылеуловитель	11	
A	Дозатор	171	
0	Отстойния	11	
ш	Шнек	11	
31-2	Jamlop	2	
AT 1	Ленточный транспортер	171	
H1-2	Hacoc	21	
81-3	Вентилятор	131	
831-6	Вентиль запорный	6	
8P1-3	вентиль регулирующий	3	
		11	
		+ +	

F	E		F	Ē	00.00.000 T3				
調査	huce pað. Sep.	WT BOAVM.	Nede.	40 m	Установка Сушильная. Технологическая схема.		Macca	Nigen of	
1,4 7 yr 7 yr 7 yr 7 yr 7 m	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					/NUGR	2/146		

Приложение 9

Таблица штуцеров

0боз- нау с ние	Наименование	KOA.	Пралов Услов- мый Ду, мм	Давление условное Ру "МПа
6	8x00 6000	1	32	0,6
6	861400 80061	1	32	0,6
7	Вход бензола	1	32	0,6
A	выход бензола	1	32	0,6

Техническая характеристика

	Показатели	Трубное пространство	Межтрубнае пространство	
	Наименование	6en301	Водо Нетоксична Недзрыбоопосна Неагрессибна	
	Токсичность	Токсична		
Среда	варывоопасность	взрывоопасна		
	Агрессивнасть	Агрессивна		
	Тетпература ,°С	80,2 (na 8xade)	45 (на выходе)	
Palove	давление, МПа	0,2	0,6	
Енкосл	пь аппарата, м ³	0,009	0,02	
Поверх	ность теплообмена, м?	1	4	

Технические требования

<i>fl</i> os.	Обозлачение	Наименование	Кол.	Насса 1 шт.	Націменовалихи парах неверчале	Приме - чание
7		Коллектор	1			
2	-	Калено	3	_		
+		Болты ГОСТ 7798-70				
3		M10 × 30.46.05	8		Сталь 20	
4		M10 = 50.46.05	32		Сталь 20	
5		Fadra Mt0.5.05	40		Сталь 10	
		roct \$915-70				

F			E	00.00.000 BO			
					Aum.	Mgazo	Hacumed
An An	19 docum	/adu.	40.00	Теплооотенник	ПТ		
Paspa f.				"mpyoa o mpyoe."	111	1	1:2
dpolep.				Чертеж общего биба.	htt	<u> </u>	<u> </u>
T. Kanang.					_fucm_	Auco	noë 1
PVA.							
H. KANKA		_	ГI				
(Sm0.					(

Приложение 10

навление исловное Риг. Піїв

1,0

1,0

1 150

1

t 200 1,0

160 1,0

200 1,0

	Показатели	Трубное прост- ранство	Меж трубное пространство	
	Наименование	800a	Пары бензола	
	Токсичность	Нетоксична	TOKCUMA	
Cpeða	Вэрывоопасность	HEU306100000C -	вэрывоопасна	
Cpeða	Агрессивность	неагрессийна	Агрессивна	
	Ternepamypa , °C	45 (на выхове)	80,2	
Padavae	вавленив, МПа	0,6	0,2	
Емкосл	ъ, из	0.7	0,0	
Поверхи	ость теплообмена, м ¹			

Технические требования

11:1

_			_			
/ I LJ.	Обозначение	Наименование	ĸол.	Насса 1 шт.	наименование и марха ма- териала	Примечо ние
T		Распредвлительная	Г			
		камера	1			
2		Гроющая комера	1			
3		Крынина	17			
4		Флонец	2		Сталь Ст З	Dy = 150
5		Фланец	2		X 10H IOT	Dy = 200
		Болты ГОСТ 7798-70				
6		M27=65,46.05	40		Сталь 20	
7		M20=45,46,05	32		Сталь 20	
		Fadra FOCT 5915-70				
8		M 27.5.05	40		Сталь 10	
9		H 20.5.05	32		Сталь Ю	

	00.00.000 B	0
Han Auer IV Bannin Jahr. Jane Paspad. Replep.	Канденсатор. Чертеж общего вида	Aum, Marca Macuma 1:4
Рыл. Н. асылур Утв.		

16 Под ред. Ю. И. Дытнерского

Технические требования

Аппарат подлежит действию "Правил Госеортехнадзора СССР." При изготовлежии, испытании и поставле аппарата должны выполняться требования :

- оыполняться требования; 0) ГОСТ 12,2003-74, "доврудобоние производственног. Общие требованые всяпаечестии"; 0) ОСТ 26-291-73, Согуды и апператы стальные сварные. Геллические требования"; 3. Материи деталей атперата сопримасающияся с агрессивной сревой сталь «Мании" ГОСТ 5832-72, остальны Ст 3 ГОСТ 380-71.
- 1011 301-71. 4. Апарата испытать на прочность и плотность гидраблически в бертикальном положении под даблением : 9. нежтрубное простракство 0,5 Ма. 5. Сдарные соебинение в болкны соответствовать требованиям 007 25-01-82-77 "Сварка в химическом нацинастроении" 5. Сбартые ибо в больте 100 % контролировать рентеснопро-свечивание, посто в колу соответстворании.

- соечиваниен. 7. Прокладки из паронита ПОН-1 ГОСТ 481-80. 8. Разнеры для спродок. 9. Чертем разработан на оснодании ГОСТ 15122-79.

//as.	Обазначение	Наменование	кол.	Насса 1 шт.	Наименобание и марка ма- териала	Приме- чание
1		Греющая катера	1			
2		Крышка	2			
		Болты ГОСТ 7798-70				
3		M 20×95.46.05	64		Сталь 20	
4		M 20 + 50.46.05	37		Сталь 20	
5		M 12 = 30.46.05	4		Cmane 20	-
		Γαώκυ ΓΟCT 5915-70	1			
8		M 20.5.05	96		Сталь Ю	
7		M 12. 5.05	4		Сталь Ю	
						_
				_		
_			n n	0 000	RA .	

			00.00.000 BO					
				Ишт,	Hacca	Nacuma		
Alter Ve De	wr. Nata	Ę	Кипятильник.					
Paspal.						1:4		
Apodeo.			icpman bbagees baba.					
Т. кантар.				Autm	Aucm	2		
Pyr.								
Н. контар.								
Sm0.								

6

I miz T. f

Техническая хароктериетика

- Авнерия предназначен без учерибника расспара Na OH от возванной конументрации U resc. %.
 Объем (сонительний) авперата 3,57 м², некларубного врост-докства (л. н.).
- 345
- 5.
- ражито (11). доринованияти технования раствару 28 кг/с воборласть технования в нацияния от 0,52 во 0,875 На, доставные вобление д напрате от 0,52 во 0,875 На, доставные вобление д напрате от 0,52 во 0,875 На, Настичинаят пространитов от 0,86 во 0,118. Настичинаят пространитов от 0,86 во 0,118. Срема в датрате и прубаен пространитов вобщий раствор на 014, в напитрубаен пространитов вобщий раствор на 014, в напитрубаен пространитов вобщий раствор на 014, в напитрубаен пространитов насищити бобленов пар и все лановекит. 7.

Технические требования

- f.
- Технические треводания Вы изиводание от апарате рузовается оСТ 26-01-112-73, ГОСТ 12.2.003-74. Сотала стрикасатичеся с уперивоеным растворам, изаконовит из стрикасатичеся с уперивоеным растворам, изаконовит из стрикастрикасатические промотали изаконовит из стрикастрикасатические промотали из противот и стрикастрикастрикастрика Атарат настически об варатиче (д. 1160. Атарат настически прочисти уператически в призотализион полагизи од варатиче (д. 1160. Атарат настическит приетиче специасто правонами Госгоранима сосо Ł.
- J.
- 4 ccd
- СССР. Сборыне Сондинение контропурадали ренятестопросбятиваниет в облане 100% из ОСТ 28-237-77. Сбирине состиния нермавет щих становет контронатати не станология проятив нежкрис-технитиви поросвии не ГОСТ 5032-84. В не уназваний былот иступурад 20 мгн. 7. Действительные респолатение шанучеров, нае, цанар, стоя-грабы по ное ст. на высе А. 2014 резмеры вля саравол.

/ 201	060 3.00 10 100		ila	un ensi anue	ear	fictore 1 willi	Martin Contractor	April 1997 Tel 1992	
7		1	÷.,	timesel series	1				
2		10	Carp	t <i>moj</i>)	T				
3		17	i pyda	1174 gilling (mmil 1	T				
4		- 14	-	a standay a survey of	T				
5		1	(any	1	1				
		1	leðca	nadica 👘	T			r—	
7		- 14	(and the second	NO MORE	7				
•		1	رموم	к	6		I XIONIOT		
9			P han	fq	6		Cane As Can J		
10		Τ	i e u	P	2		Cana an J		
E		_		00	.00	000	80		
	n, her Pflemen, mehr, dass Ansteptern Guntepeid a series fildt. Here Prime and Antiperiod and antiperiod and antiperiod and antiperiod antiper								
1		_							

Техническая характеристика

- Алпарат прейможноек Ал удрактеристика
 Алпарат прейможноек Ал удравидания раствора КNO3 начальной покиентрацией 9% насс.
 Апонитлыный объем аппарата 22,5 н³, межтрубного пространста и 2,5 н³, межтрубного пространста и 4, 160ерляють теплоаднема 50 н⁴.
 Апость теплоаднема 50 н⁴.
 Абсолотке дадление д аппарате от 0,5 do 0,02 нПа, в межтрубном пространств с 4, 6 de 2, 7 de 2, 7

Технические требодания

- 1. Аппарат подлежит действию, Правил Госгортелнавзора СССР." 2. При изготовлении оппарата руховодствоваться ОСТ 26-01-112-79, ГОСТ 12.2.003-74.
- Корпус аппарата и соприкасающиеся с упариваеным растваром детали изготовить из стали 1X18H10T ГОСТ 5632-72, остальное -
- септала изболовате из ставит напите на на осто зося зу сонталение из стани сствитейств в горозоталениет положении на прочность и потопесть пробыте избрадлическит доблениет од 9110 5. Сборные свебинения поторопровать рентегнопросвечиваниет в объете (00 к по 0СГ 25-23): 32. Сворные свебинетия нертавенщия сталей понтролировать на стайкость против межкристаллитной коррозии по ГОСГ БОЗ2-75.

- паррозии по 10СГ 5032-75. 6. Проладки из паронито 10И-1 ГОСТ 481-80. 7. Не илазанной былет итущерод -120 мм. 8. Действительное расположение итущерод, люков, смотровых окон см. на схеме.
- 9. Размесы для справок.

/ins.	Обозначение	Наименование	KOA	Масса 1 шт.	наименова - ние и марка материала	Приме чание
1		Сепаратор	1			
2		Катера греющая	1			
3		Труба циркуляционноя	1			
4		Крышка	1			
5		Колено	1			
6		Колено	1			
7						
8		Фланец	1		X18H10T	
9		Фланец	1		X18H10T	
10		Фланец	1		X18H10T	

_	_						_			
				E	E	00.00.000	80	,		
						Аппарат быларной с естест-	ĥų,	m.	Hacco	Phone and
ξ.	A	Nº.	001.217.	den.	1000	бенной цирку Аншей бынесен-				
Pa:	1000	_		_		ными греющей камерой и зо -				1:20
100	002			1	Τ	мой жиления.	LI			·
í.co	100				Γ	Чертеж общего бида	ħ.	cm -	Auch	no 0 /
î ya	ι.						-	_		
1.0	нар.									
Уm	8. 1			T						

8-8

<u>I</u> M1:4

	Ταδριμα μισημε	- 	Πρ	иложени	2 14
0003- HQYE- HUE	Нацтеновоние	жал.	Праход Јслов- Иый В _у ,	Дабление уславное Р _у , МПа	
A 7	вхов греющего пара	1	800	0,6	
6,	Выход вторичного пара	1	1200	0,6	
8,.2	Вхад раствора	2	150	0,6	
11.1	выход раствора	2	150	0,6	
Д,	выход конденсата	1	125	0,6	
Ε,	Техноловический	1	125	0,6	
ж,	Для протывки	1	80	0,6	
3,	Для промывки	1	100	0,6	
Μ,	Телнологический	1	125	0,6	
K1-1	Οπόορ προδ	2	40	0,6	
A 2	Слив	2	100	0,6	
M,-3	Cayôna	3	65	· 0,6	
Π,	Воздушник	1	50	0,6	
P1.4	Для термонетра сопротивления	4	50	2,5	
Ç ₁₋₀	Для ртутнага термометра	4	50	2,5	
7,	Для манометра	1	50	1,6	
У,	Люк	1	500	0,6	
Ψ,	Люк	1	500	0,6	
4,	Λiūn.	1	500	0,6	
٧,	Alox.	1	500	0,6	
Ш,	Смотровое онно	4	125	0,6	
Щ,.	Для пронывки	4	20	0,6	
З, ,	Для указателя уровня	2	20	0,6	
ю,	Для выравнивания давления	T	100	0,6	

Техническая характеристика

- Аппарат предназначен бок им хириктеристики
 Аппарат предназначен бок им хириктеристики
 Аппарат предназначен бок им хириктеристики
 Апраратаночными и дели и нектрубного пространства 4,1н⁴.
 Враздодительность 17,5 кг/с (па исходнаму раствору).
 Абськотное содление б За н².
 Абськотное содление б За на слоднаму раствору).
 Абськотное содление б За на слоднаму пространства со 140° с.
 Внасинальная тенлература в трубном пространстве до 140° с.
 Внасинальная тенлература в трубном пространстве до 140° с.
 Касинальная тенлература в трубном пространстве каррозионная, токсичная.

Технические требодания

- 1. При изготовлении аппарата руководствоваться ОСТ 26-01-112-79 ГОСТ 12.2.003-74.
- 2. Корпус арпарата и саприкасающиеся с коррозионной средай детали изготаблибать из стали 12X18H10T ГОСТ 5632-72, остальное—из стали Ст 3 ГОСТ 380-71.

- стали Ст. 3 ГОСТ 380-71. 3. Аппадат истоятать по порочность и плотность в горизонтальном по-поквыши пробным еифрабликахим вовлением (0,9 МПа. 4. Аппарат подлежит приекке согласко пробилом Псегортехнойзора СССР. 5. Сбартые соединения контролировать ремптекопросбечиванием в боъе-ме 100 % по 0 ССТ 56-73-73. Сдарные соединения мертавешиих сталей акторанировать на сталкость пратий мектористаллитной коррозии по ГОСТ 6032-84. 6. Проклавих по ГОСТ 15180-86 и ОСТ 26-430-72. Ле указатьой выкет итуцеров См. на слеме. 9. Размеры вля справок.

80 70,00,000

Buð B M1:4

M1:25

Техническая характеристика

Аппарат предназначен для упаривания раствора КОН от начальной концентрации 6 % масс.

- концентриции в м. наст. 2. Объек монитальный анарата. 45,6 нз., нежтрубнога пространства зн? 3. Производительность. 0,45 кг/с (по исходночу раствору). 4. Люицадь поберхности телпообнего 250 н?. 5. Абсолютное вайлегие в аппарате от 0,5 до 0.008 МЛа, в нежтрубном
- Ассолютное адаление в ападрате от 0,5 да 2008 МПо, в техтрувном простаристивает 0,6 до 0,1 МПа.
 Максимальная теппература (трубном пространстве 115° С. в техтрубном простаристве 153° С.
 Среда в ападрате и трубном пространстве додный растбор КОН в мехтрудона пространстве пространстве додный растбор КОН в мехтрудона пространстве пасыщетный додного пар.

Технические требования

При изготовлении аппарата рукововствоваться ОСТ 26-01-112-79, ГОСТ 12.2.003-74.

- 2. Корпус аппарата и соприкасающиеся с упариваемым раствором де-тали изготовить из стали IXIBHIOT ГОСТ 5532-72, остальные-из стали Ст Эсп. ГОСТ 380-71.
- аз Аппарат инститать на прочность и плотность в горизонтальном воложении пробным гидравлическим давлением 0,9 МПа. 4. Аппарат подлежит приемке согласно правилам приемки Госгортех-
- Апаррат полнемит приетке светисно присинан приетки и иссирика-подзара СССР.
 Сбарные соебинения контролиравать рентгенопросвечиванием в объете 100% по 0СТ 56-231-79. Сданные соебинения перкаваещия сталей контролировать на спайкость против межкристаплитной коррозии на ГССГ Б02-04.
 Неуказанный былет штуцеров 120 мм.
- в. незималити отнель штуцерио не чт. 7. Действительное расположение штуцеров, лап, опор,смотровых окон ст. на виде А. 8. Разтеры вля справок.

<u><u>I</u> M1:2</u>

_				_					_
F	╞				00.00.000 B	0			
		_	<u> </u>		Аппарат Пыпарной с естест	ha	π.	Macca	100.00
ō	Acr.	Nº BORY ML	lada.	10.0	венной циокилящией соосной	П	Т		
Part	gal.				ереющей комерой и солеот-				1:20
//ge	ideo.				de nemiem				
1.4	harp.				Чертеж общего бида	Лu	çm	[/ucm	00 1
Pys	L.	_		L					
ñ. e	ownp.								
1400									

Схена расположения штуцеров, люков, цолар, штырей

4

80

	Ταδλυμά μιπιγμ	еров		
0боз- наче- ние	Наименобание	Kan.	Праход услоб- ный Ду, мм	Давление услов- ное Ру, МПа
8	влод газовой стеси	1	250	0,25
1	выход газовой смеси	1	250	0,25
A	Вход жидкости	,	50	0,25
E	выход жидкости	1	50	0,25
ж	Для манометра	11	25	1,6
3,-2	Для термонетра	Z	25	2,5
H1-4	Λιοκ	4	500	0,6

Техническая характеристика

Аппарат предназначен для разделения стеси тетиловый спирт-вода концентрацией 26 % (масс.). концентрацией ј26%(насс). 2. Енасать монилальма 2015 н¹. 3. Фраизводительность 1,74 кг/с. 4. Давление в клоние - атносорернее. 5. Тепнература среди в Кубе-100°С. 5. Срева в аппарате - таксичная, коррозионная. 7. Гип колонны - насавачная. 8. Высота насавки в м.

Технические требования

- При изготоблении, испытании и поставке аппарата болжны выполнять
- При изгитионения участичной страизвойственное. Общие тре-ој ГОСТ 12.2.003-74 "Оборудование произвойственное. Общие тре-вования дезопасности", стопосты стальные сворные. Техничес
 - возания резониснисти ;
 в) ОСТ 26.291-79,,Сосуды и аппараты стальные сварные. Техничес-
- ., и., св.с.)-г.з., цосуды и ампараты стальные сворные. Техничес-кие тредования : 2. Натериан детаней колонны, соприкасающихся с разделяетыни жид-мостяни, сталь X18H10T ГОСТ \$632-72, остальных сталь Ст З ГОСТ 380-71.
- 3. Аппарат испытать на прочность и плотность гидраблически в горизантальнот положении давлением 0.2 МПа. в вертикальном положепии - наливом,

- нении «плиноми» «Сдарные соебинения должны соответстводать требоданиям ОСТ 25-01-82-77. Сдарка в хиническом машимостроении" 5. Сдарные шовы в объеме 100% контролировать ректегенопросвечиданиеми 6. Действительное расположение итуцеров, локов, сапар, штырей см. на, слене.
- 7. Не указанный вылет штуцеров -120 нм. 8. Размеры для справок.

Пацложение 16

				_		
A03.	Обознач е лие	Наименование	Кал.	Macca I wm.	Наименова ние и мар- ка нате- риала	Притеча- ние
1		Колонна	1			
2		Куб	1			
3		Крышка	1			
4		Крышка люка	4			
5		Штуцер	1			
6		Тарелка ТСН-ШТ	1			
7		Тарелка ТСН-11	1			
8	-	Отора	4			
9		Гильза тернотетра	2			
10		Фланец	2		X18H10T	Dy = 250
11		Фланец	2		X18H107	Dy = 50
12		Фланец	1		x18H10T	Dy=25
13		Штырь	2		Сталь Ст З	
14		Кольца Рашига 25+25+3			Кератика	
15		Прок ладка	2		Ларонит ДОНН	
16		Прокладка	4		варанит ПОН-1	
17		Прокладка	2		lapanum 101-1	
18		Прокладка	1		варыния АФИ-1	
19		Прокладка	2		Naponam DOH-1	
20		Пракладка	3		Auponum (INE (
_			_			

Ξ				F	00.00.000	80		
						hum.	Harce	Presente
22		HI COMYN.	b .	10.00	колонна аосороционная	ПП		1.10
100			— —	┣	Ø 1000 MM			1:10
17.00	NE710.			1	Чертеж общего бида	Auca	1400	const (
Pro	L			t		11100		
44			_					
1.2073								

1 03.	0603mgyenve	Наименование	C 9.	Масса 1 шл.	Наинено- бание и периа по- периала	Лршне - чоние
1		Ky6	,	— —		
2		Царга	1			
3		Шарга	1	1		
4		Крышка	1	1		
5		Тарелка	9			
6		Тареляа	3			
7		l'u AbSQ	2			
8		Штуцер	2			
9		Кольца уварное	3	1	A17813H21	
10		Штырь	2		Cine A Cau	
11		Фланец	2	1	117MI3M21	0,=200
12		Фланец	1		X17H13H2T	04-125
13		Фланец	2		1178137427	D. • 50
14		Фланец	1		4178139121	Dy 40
15		Флонец	3	1	AI 7HIJH 21	De= 25
16		Фланец	2	1	ITTHISM21	Dy+ 25
17	1	Prancy	2	1-	AIT M3H27	Dy = 20
		Балты ГОСТ 7798-70	1			
18		H 20=80.58	84	1-	Cana A& 35	
13		M 16 = \$0.58	24		Canana JS	
8		#12+40.58	12	1	CIMEAN JS	1
н		H 10 = 35.58	16		Cma/0 35	
22		M10+35.58	12	1	117H3H21	·
23	1	(admartita_5 / 007 5315-70	T		178131121	

Ħ	-+	4	-	00.00.000	80		
		_	Ι.		Aym.	Hours	Ver und
in 11	1007. US		ľ	колошка речтификационнал	ΠТ	-	1.40
			_	6 800 HH.	111		1:10
			_	Чертеж общего бида.	ш		
Lagerry .		_	_		Auca	140	nel I
0		_	_				
L change					Į –		
ini. [1		_

<u>Bud B</u> M1:1

X X	

101.	Одозначение	Наитенование	Kon.	насаа 1шт,	и морка ма- терисла	Примеча- ние
1		Калонна	1			
2		Секция тарелки	110			
3		Секция тарелки	55			
4		Крышка	9			
5		Гильза с фланцем	8			
6		Фланец	TT		08X13	Dy = 600
7		Фланец	2		08.413	0y = 500
8		Фланец	1		08X13	0y = 250
9		Фланец	2		08×1;	Dy = 150
10		Флонец	1		08 A13	Dy = 100
īī		Фланец	4		08.813	Dy = 50
12		Фланец	Π		DAXIS	Dy = 10
13		Штырь	2		8Cm 3 nc 3	
14		Планка	T_			
		перелидная	55		Сталь 20	
15	_	CxOÓa	2310		Сталь 20	
16		Скаба	1320		Сталь 20	
17		Болт специальный	1320		Сталь 20	
18		50Am H12 + 20.58				
		FOCT 7798-70	7695		Cmano 20	
19		Tauna M12.5				
		FOCT 5916-70	1320		Cmans 20	
20		Waúða 12	1			
		FOCT 11371-68	385		Сталь 20	

_			_							
H					00.00.000. BO					
					KORONNO OREMUMURANNOH-	Aum.	Hatta	House		
	ā	Nº QOLYM.	hia.	(F	nonomia permaportation					
14	ТŐ.				NUX 02000 HM.			1:40		
6,000	<u>ер.</u>				Чертеж общего биба.	ш				
1.404	mp.					Aucm	Auc	៣១៦ 1		
Pvx.										
l.a.			Ι							
Sm0.										

I Mis

<u>E-E</u> H1:2

Таблица	штуцеров
---------	----------

Приложёние 20

		_		
DÓDI NGHE NUE	Наименование	xan.	Праход услади. Ву,мм	Даблени услобла Ру. МПа
ĸ	Выход паров зтанола	1	750	1,0
1	Вход исходной смеси	1	175	1,0
Ħ	8ход флегны	17	175	1,0
H_F.2	Вход паражидкостной смеси	2	500	1,0
11-2	Выход кудобога астатка	2	175	1,0
PH	Для накометра	2	25	1,6
G+++	Для тернонетра сопротивления	3	25	2,5
T	Для тернонетра ртутного	1	25	Z, 5
91.2	Для указателя уровня	2	50	1,0
Ψ	ПООбод к кипятильники	2	200	1.0

Техническая характеристика

Алларат предназначен для развеления смеси бензол-этанол анарит преиназначен от роз концентрацией 18 % (тасс.). 2. Объет атарата 164,3 м³. 3. Произдодительность 8,14 кг/с. 4. Радочее дайление 0,1 г.Па.

- т. гимичте ишистик из Глиа. 5. Геппература среды в куде д1°С. 6. Среда в атарате -таксична, върывооласная, коррозионная. 7. Уио тарелок -ситчатые многосливные. 8. Количетво тарелок -27 шт.

Технические требования

- При изготавлении испытании и поставке аппарата волжны выполняться требования:
 а) ГОГ 12.2003-44, дворудование произвовственное.
 общие требования безопасности ";
 ОСТ 26-291-79., Сосуда и аппараты стальные сварные.
 Телические тревования.
- Материал деталей колонны, соприкасающихся с обрадаты-ваемыми живкостями, сталь X18H101_ГОСТ 5 632-72, остальных деталей – сталь Ст 3 ГОСТ 380–71. Материал прокладок – парокит ЛОН-1 ГОСТ 481–дО
- 3. Аппарат испытать на прочность и плотность гибравлически в еоризонтальном положении под даблением ЦБМПа, в вертикальном положении—наливом.
- а осранакальної паломенци-малион. 4. Сдоржье собилення должны соатветствовать требованиям ВСТ 26-01-82-77 "Сварка в химическом машимостроении" 5. Сдаржые швы в объяте 100% контролировать рентгенопро-сбечивлием.
- Действительное расположение штуцеров, штырей и цапф 6. См. на слеме.
- 7. Не иказанный вылет штицеров -150 mm.

Примечание. Размеры бля справок.

90 00.00 2

	Куб Царг Царг Царг Крын Устро Сели Сели Сели Сели Сели Сели Сели Сели	а а а ила ила ил ил ил ил ил ил ил	1 1 1 2 1 2 54 54 54 54 54 54			
	Царг Царг Царг Крыц Устро Селц Селц Селц Селц Селц Селц Селц	а а а ила ила ил ил ил ил	1 1 2 1 2 1 2 54 54 54 54 54			
	Царг Царг Крын Устро Секц Секц Секц Секц Секц	а а ика ика ил ил ил ил ил	1 2 1 54 54 54 54			
	Царг Крыц Устро Секц Секц Секц Секц Секц Шту	а ика истбо расаредени ил ил ил ил	2 1 54 54 54 54 54			
	Крыш Устро Сели Сели Сели Сели Сели Сели Шту	ика иство расаребени им им им им им	1 54 54 54 54 54			
	Устро Сели Сели Сели Сели Сели Сели Шту	йство расаредени. ия ия ия ия ия	2 54 54 54 54 54			
	Сели Секци Секци Секци Секци Секци Штур	ия 19 ия ия	54 54 54 54			
	Секци Сели Секци Секци Шту	18 UR UR	54 54 54			
	Селц. Секц Секц Шту	UR UR	54 54			
	Секці Секці Шту	UR	54			
	Секц. Шту	48				
	Шту		54			
		иер	4			
	Tuno:	a	1			
	Pana	апорна я	27			
	Стак	ан в сборе	108			
	Taper	na 🛛	27			
	Скобо	r	6 79		X18H10T	
	Wadd	Га специальная	1971		X 18 H IOT	
	Cxoda		432		XIBHIOT	
	Шadó	a –	216		X18H107	
	யாவ	ρ	2		Сталь Ст З	_
		0	0.00	. 000	BD	Warme
P do nor Ma		Коланна ректи нал © 2 Чертеж общ	фик 600. ero l	оцион Іида.		1:40
	donur Ma		Штырь Штырь Орничуна фактана Илина орничина Чертен обш	Шльгрь 2 Штырь 2 Франция Санарон Солона Колана ректирик на Ф 2600. Чертен общего	Шлего рло Штвурь 2 00.00,000 Француба 4 Колана ректирикацион на о 2500. Чертем общего вида.	Шавес го налос <

Приложение 21

8

0боз- наче- нае	наименование	Kan.	Проход услов њ лі D _y , мм	Дабле- лавное Ри МПа	
6	выход легкой фазы		100	0,6	
8	Выход тяжелой фазы	1	100	0,6	
1	Вход легкой фазы	1	100	0,6	
A	вход тяжелой фазы	1	100	0,6	
£1-4	Для уровнет ер а	4	25	0,6	
Ж,- ј	<i>Δηπ απίδομα πρού</i>	3	20	0,6	
31-3	Гильза для термаметра	3	25	2,5	
H1-4	Люк	4	400	9.6	
K1.3	Bxod napa	3	25	0,6	
At-3	выход канденсата	3	25	0,6	
MLH	вывав тяги	12	50	0,6	

Техническая характеристика

Аппарат предназначен для извлечения капролактама из трихмор-этилена водой.

- Номинальная еткость 28,5 м³. Производительность 0.012 м³/с.
- 3.
 - Дабление в колонне :
- Давление в колоне:
 рабочес -0,1 МПа;
 при пропарке войзным паром -0,2 МПа.
 Гемперотира в колонене:
 при пропарке войзным паром 120°С.
 Пощиность придода 4 кВт.
 Узголда с корость Вращения ротора 2,1-4,5 рад/с.
 Среда в аяпарате токсичная, коррозионная.

Технические тоебования

При изготовлении, испытании и поставке аппарата волжны выполняться требования: а) ГОСТ 12.2003 - 4, доорудование производственное. Общие требования безполскости "; 6) ОСТ 26-291-79, сосуды и аппараты стальные,сварные. гелициеские требования."

- Материи веталей экстроктора, соприкасающихся с обраба-тойваемыми живластями, сталь XIBHIDT ГОСТ 5 632-72, остальных веталей сталь Ст 3 ГОСТ 380-71. Материал праклавак сдинец ГОСТ 9559-75.
- 3. Аппарат испытать на прачнасть и платнасть гидрадлически в горизонтальном положении под давлением 0,3 Mha, в верти-
- соризонациямия мильсаци но соолениет о утна, о верта кальям положение илибон.
 Содряме соединети должны соотдетстводать требоданиям ОСТ 25-01-277, собря д химческом нациостроенци?
 Содряме шбы д объемс 100% контролиродать рентехнопро-сбечиданиет.
- Действительное расположение штуцеров и люков см. на схемс. Не указанный вылет штуцеров 200 мм.
- 7.
- 8. Размеры для справок.

00:00 ŝ

HQ3.	0 <i>603×0</i> 42×12	Наименование	Кол.	Hacco I wm.	Наимскоболие и нарла на - тсриала	Примеча мие
1		Камера отстойная		<u> </u>		
_		numnan	1			
2		Камера отстойная	1	t		
		берхняя	1			
3		Царга с рибащ-	1	—		
		AOÚ	3			
4		801	1			
5		Ратор	3			
6		Крышка экстрактора	T			
7		Олора	<u> </u>			
8		05RT	12			
9		Крышка	12			
10		Гильза	3			
11		Узел подшилниковый	4			
12		Распределитель	2			
13		Tipu dod	1			
14		Μγφπα	1			
15		<i>Cπούκα</i>	1			
16		Onopa	1			
17		Фланец	4		X 18 H 10 T	D ₄ = 100
18		Фланец	io		X18 H10 T	Dy=25
19		Фланец	3		X18 H 10 T	Dy= 20
ž1		60ATT 2 M 20 = 80.21				
		TOCT 7798-70	12		X18 N 10 T	
22		Tadka M20.21				
		FOCT 5918-73	12		<i>x18H1</i> 0T	
23		Tauka M20.21				
		TOCT 5916-70	12		X18 H 10 T	
24		Tadka M20.21				
		TOCT 5327-70	12		XIGHIDT	
25		Шллинт 4×36.21				
_		FOCT 397-79	12		X18H107	
_			_			
_						

BUD A

Прилотение 22

Таблица штуцероб

0001#D-t-	Наименование	YNNA	Pared Printerio	Andrews scradnor P. Mar
8	Вход пародоздушной смеси	11	500	0,25
ſ	выход отработанного возбуха	11	500	0.25
A	Влад водяного пара	1	80	0.25
ŧ	вылад парогазовой снеси	1	80	0,25
R _F (Для предохранительного клопана	2	80	0,25
3	выход конденсата	Π	25	0,25
H1-2	Для гильзы тернатетра	2	25	0,25
ĸ	Люн	1	600	0,6
ħ+ s	Люк	3	900	0,6
-	144	Tr	000	0.6

Техническая характеристика

Технические требования,

- Технические требодония. 1. При изготовлении, исполточиц и поставке аппарата балжны воломяться требодония: а) Госгорте кладогора СССР: 0) ГОС 12. 2013 74, Оборудодание произдодственное. дишие требодания. везпаености ": 0) СТ 28. 2013 73, Сосуды и аппараты стальные сдарные. Гехнические требодания. 1. Натециа спарата сталь XIIII ГОСТ 5632-72, материал аппарата сталь XIIII ГОСТ 5632-72, материал апрокладок таль 8 Ст. 3 Сп. ГОСТ 360-71, татериал апрокладок паранит ПИН ГОСТ 5632-72, материал прокладок паранит ПИН ГОСТ 461-80. 3. Атвриат испытать на прочность и платность гирадличес-ки в боризотальном положении на давжение но 25. Ина, в вертипольном положении на давжение но 25. Ина, с вартые совители болконски соватетоводать требоданиен СС Сартые изыв в объет 100 % контромировать рентагонорос вечиваниет. С стартаема паранет интуцерод, опор, старалавых 2. не упозатный былет интуцерод 120 мм. 8. Разтеры Аля спрадок.

	Корпус Решетка опорная Решетка опорная Решетка опорная Распределитель	4			
	Решетка опорная Решетка опорная Решетка опорная Распределитель	•	-		E
	Решетка опорная Решетка опорная Распределитель	-	—		
	Решетна опорная Распревелитель	1.			
	Распределитель	_			1
		11			
	FUMB30	Ī			
	Крышка люка	1			
1	Крышка люка		—		
	Сетка	12			
	KONEYO	2		Сталь 65Г	
	Фланец	Ī		Cmarie Cm.3	D- 500
	PARNEY	19		Controlan. J	Dy=80
	Рланец	T		CmansCal 3	Da = 25
		Арышка лака Сетка Кольца Гланец Рланец Рланец	Крышка лака 9 Сетко 2 Кальца 2 Гланец 2 Фланец 9 Фланец 1	Арышай ляка 9 Сетко 2 Кольца 2 Фланец 3 Фланец 9	Крышай англа 9 Сетко 2 Карьцо 2 Сталь 557 Фланца 2 Сталь Ст. Фланца 4 Сталь Ст. Фланца 1 Сталь Ст. 3

Ŧ		_	H	00.00.000	80		
					Agen,	Autor	Piece/I
	17 Acres	neen.	le n	Αθεορδερ.	ПТ		
hand.				Stomen admena Auto	111	}	Piecum 1:15 remeđ (
/poleg				Aprile and a sector of a sector	111		
L HONTO	_				Auca	1 14	Grand I
Pyn.						_	
H. KONTO							
5							

Приложение 25

- Техническая характеристика

- Предназлачен для концентриродания миоглобина от 0,015 до 0,15% (масс.).
 Радочий объем 18 пларата 0,05 м³.
 Лроизводительность по ислодному раствору 0,2 кг/с.
 Поверхность менбрал во всех 10 секциях 33,5 м².
 Радоче добление 0,3 МПа.
 Радоче добление 0,2 МПа.

Технические требования

- Технические требования Ври изготовлении, испытании и установке алпарата должны выполяться требованиени: 9) Госсарателевазова; 9) Госсарателевазова; 9) Госсарателевазова; 9) Госсарателевазова; 9) Гостарателевазова; 9) Гостарателевазова; 9) Гостарателевазова; 9) Гостарателевазование производственное. Общие 1007 128-231-73. Содиви и апараты стальные сдарные. 1007 128-231-73. Содиви и апараты стальные сдарные. 1007 128-231-73. Содиви и апараты стальные сдарные. 1007 1490 саврающелногоза, колец лавсановал пленка, сендатора каромован сенка. 1006 по стала и спора и савра в ГОСТ 557-73. Френомала сенка-из волтнана нарки в ГОСТ 597-73. Френомала сенка-из потнана нарки в ГОСТ 597-73. Поставные сдорочные единицы и детали-из стали 20, ГОСТ 1050-74 и в Ст 3 са 4 ГОСТ 340-77. 1) Атарат испытать на прочность и гернетичность гидовлически лод валение 0,45 МПС. 4) Сдарные собинения до нарки в сенкость и Собарки стали 20, ГОСТ 1050-74 и в Ст 3 са 4 ГОСТ 340-77. 1) Стальные сдоричные даницы и детали-из стали 20, ГОСТ 1050-74 и в Ст 3 са 4 ГОСТ 340-77. 2) Сараные испытать на прочность и гернетичность гидовлически лод валение 0,45 МПС. 4) Сбаркые собинения да прочность и лерность и Собарки Собарки стали 20 и в Ст 3 са на произость и лерность и Собарки Собарки. 2) Собарные и вост 3 са на произость и лерность сибаркимети. 6) Сбаркые и и в Ст 3 са на произость и лерность сибарки собарки и Собарки стали 20, СОСТ 942-77 . 3. Собарные и вы в бысене 1004 контролировать рентеснопросвечива-миен. 8. Собарные и вы в бысене 1004 контролировать рентеснопросвечива-миен.

- нием. 6. Размеры для справок.

I MIA:I

mummin

Метбрана (пленка)

Лист ватмана

22

Дренажная сетка (латунная)

Кольцо (лайсановая пленка)

TRAINING DA

TITUTION CONTINUED

Сепаратор (сетка)

Область склейки

Таблица штуцеров

00as - Nave Nave	Наитехование	Kon.	Пралод услодный Ду , нм	Дабление условное Ру МПа
δ	влод исходного раствора	1	20	0,6
8	Выход концентрота	17	20	0,6
r	выход фильтрата	1	6	-
4	выход фильтрата	1	6	-
E	выхов фильтрата	1	6	-
ж	выход фильтрата	1	6	
3	вылов фильтрата	1	6	-
N	выход фильтрата	- 17	6	
ĸ	выход фильтрата	1	6	
1	выход фильтрата	17	4	
M	выход фильтрата	1	4	-
H	выход фильтрата	17	4	-

/103.	Обазначение	Наименование	Кал.	Масси I шл.	Наименобание и марка ма- териало	Примеча нис
1		Селция	1			
2		Секция	TT			
3		Селция	Tr			
4		Секция	11			
5		Секция	$\overline{1}$			
6		Секция	1			
7		Секция	17			
8		Секция	1			
9		Секция	1			
10		Секция	17			
11		Крышка нижняя	Ī	Γ		
12		Крышка Верлиял	11			
13		Праклавка	11		Pesuna IMKILI-1	
14		Шпилька	12		Сталь 35	
15		Tauna MI6.6.016.	24		Сталь 35	
	_	FOCT 5915-70				
16		Wauda 16.04.016	24		Сталь 35	
_		ract 11371-78				

FFF			00.00.000.BQ				
Кол. Лист. На допут. Разрад. Парад.	Anto.	<u>Anor</u>	Алпарат ультрафильтра ~ ции плоскоромного типа. Чертеж общего вида	Aum.	Macca Macwand 1:2		
Рук. И.конто, Этов.		_		Aucon .	<i>1_046000<u>8</u></i> _		

Учебное издание

Борисов Геннадий Сергеевич, Брыков Валерий Павлович, Дытнерский Юрий Иосифович, Каган Соломон Захарович, Ковалев Юрий Николаевич,

Кочаров Рибен Георгиевич.

Кочергин Николай Васильевич,

Мартюшин Сергей Игоревич, Набатов Вячеслав Александрович, Трушин Александр Михайлович, Шерешев Михаил Анатольевич

Основные процессы и аппараты химической технологии

Редактор Р. Е. Миневич Художественный редактор Л. А. Леонтьева Технический редактор В. В. Лебедева Корректоры М. А. Ивлиева и Л. В. Лазуткина

ИБ № 2476

Сдано в набор 20.08.90. Подп. в печ. 05.07.91. Формат бумаги 70×100¹/₁₆. Бумага офс. № 2. Гарнитура Литературная. Печать офсетная. Усл. печ. л. 40,3. Усл. кр.-отт. 40,3. Уч.-изд. л. 45,48. Тираж 24 000 экз. Заказ 580. Цена 4 р. 60 к.

Ордена «Знак Почета» издательство «Химия» 107076, Москва, Стромынка, 21, корп. 2

Ленинградская типография № 2 головное предприятие ордена Трудового Красного Знамени Ленинградского объединения «Техническая книга» им. Евгении Соколовой Государственного комитета СССР по печати. 198052, г. Ленинград, Л-52, Измайловский пр., 29.

ВНИМАНИЮ СПЕЦИАЛИСТОВ!

Издательство «Химия» готовит к выпуску:

КСЕНЗЕНКО В. И., СТАСИНЕВИЧ Д. С. Химия и технология брома, нода и их соединений. 20 л.

В книге описаны основные физико-химические свойства брома, иода и их соединений, указаны важнейшие источники сырья для их получения. Рассмотрены способы извлечения брома и иода из минеральных вод, а также технология получения наиболее важных неорганических бром- и иодсодержащих соединений.

Книга рассчитана на инженерно-технических работников, сотрудников научно-исследовательских институтов и проектных организаций, занимающихся вопросами производства и применения брома, иода и их соединений. Может быть полезна аспирантам и студентам, специализирующимся в области химии и технологии неорганических продуктов.

ВНИМАНИЮ СПЕЦИАЛИСТОВ!

Издательство «Химия» готовит к выпуску:

КСЕНЗЕНКО В. И., СЕМЕНОВА И. В., ЕЛИ-НЕК А. В. Общая химическая технология. 25 л.

Книга является учебным пособием по курсу «Общая химическая технология» для студентов высших учебных заведений и лиц, изучающих ОХТ самостоятельно. В ней изложены общие закономерности химической технологии; основы теории, расчета и подход к выбору химических реакторов; рассмотрены гетерогенные и каталитические процессы и их аппаратурное оформление. Приведены методы организации химико-технологических процессов, даны сведения о химическом сырье, воде и источниках энергии. Описаны производства важнейших химических продуктов — серной и азотной кислот, аммиака, продуктов основного органического синтеза и высокомолекулярных соединений.

Книга будет полезна инженерно-техническим работникам химической и нефтехимической промышленности.