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Preface 

In 1988 we published the book Automatic Tuning of PID Controllers, 
which summarized experiences gained in the development of an au¬ 
tomatic tuner for a PID controller. The present book may be regarded 
as a continuation of that book, although it has been significantly ex¬ 
panded. Since 1988 we have learned much more about PID control as 
a result of our involvement in research and industrial development of 
PID controllers. Because of this we strongly believe that the practice 
of PID can be improved considerably, and that this will contribute 
significantly to improved quality of manufacturing. This belief has 
been strongly reinforced by recent publications of the industrial state 
of the art, which are referenced in Chapter 1. 

The main reason for writing this book is to contribute to a bet¬ 
ter understanding of PID control. Another reason is that information 
about PID control is scattered in the control literature. The PID con¬ 
troller has not attracted much attention from the research community 
during the past decades, and it is often covered inadequately in stan¬ 
dard textbooks in control. We believe that this book will be useful to 
users and manufacturers of PID controllers as well as educators. It 
is important to teach PID control in introductory courses on feedback 
control at universities, and we hope that this book can give useful 
background for such courses. 

It is assumed that the reader has a control background. A reader 
should be familiar with concepts such as transfer functions, poles, 
and zeros. Even so, the explanations are elementary. Occasionally, 
we have stated facts without supporting detailed arguments, when 
they have seemed unnecessary, in an effort to focus on the practical 
aspects rather than the theory. A reader who finds that he needs som 
specific background in process control is strongly advised to consult 
a text in process control such as Seborg et al. (1989). 

Compared to the earlier book we have expanded the material 
substantially. The chapters on modeling, PID control, and design 
of PID controllers have been more than doubled. The chapter on 
automatic tuning has been completely rewritten to account for the 
dynamic product development that has taken place in the last years. 
There are two new chapters. One describes new tuning methods. This 
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material has not been published before. There is also a new chapter 
on control paradigms that describes how complex systems can be 
obtained by combining PID controllers with other components. 

We would like to express our gratitude to several persons who 
have provided support and inspiration. Our original interest in PID 
control was stimulated by Axel Westrenius and Mike Sommerville 
of Eurotherm who shared their experience of design and of PID 
controllers with us. We have also benefited from discussions with 
Manfred Morari of Caltech, Edgar Bristol of Foxboro, Ken Goff for¬ 
merly of Leeds and Northrup, Terry Blevins of Fisher-Rosemount 
Control, Gregory McMillan of Monsanto. Particular thanks are due to 
Sune Larsson who initiated our first autotuner experiments and Lars 
Baath with whom we shared the pleasures and perils of developing 
our first industrial auto-tuner. We are also grateful to many instru¬ 
ment engineers who participated in experiments and who generously 
shared their experiences with us. Among our research colleagues we 
have learned much from Professor C. C. Hang of Singapore National 
University with whom we have done joint research in the field over 
a long period of time. We are also grateful to Per Persson, who devel¬ 
oped the dominant pole design method. 

Several persons have read the manuscript of the book. Willy 
Wojsznis of Fisher-Rosemount gave many valuable suggestions for im¬ 
provements. Many present and former colleagues at our department 
have provided much help. Special thanks are due to Eva Dagnegard 
and Leif Andersson who made the layout for the final version and 
Britt-Marie Martensson who drew many of the figures. Ulf Holm-
berg, Karl-Erik Arzen and Mikael Johansson gave very useful input 
on several versions of the manuscript. 

Finally we would like to express our deep gratitude to the Swedish 
National Board of Industrial and Technical Development (NUTEK) 
who have supported our research. 

KARL JOHAN ASTROM 
TORE HAGGLUND 

Department of Automatic Control 
Lund Institute of Technology 
Box 118, S-221 00 Lund, Sweden 

karl_j ohan. astromQcontrol. l th. se 
tore.hagglundQcontrol.lth. se 
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CHAPTER 1 

Introduction 

The PID controller has several important functions: it provides feed¬ 
back; it has the ability to eliminate steady state offsets through in¬ 
tegral action; it can anticipate the future through derivative action. 
PID controllers are sufficient for many control problems, particularly 
when process dynamics are benign and the performance requirements 
are modest. PID controllers are found in large numbers in all indus¬ 
tries. The controllers come in many different forms. There are stand¬ 
alone systems in boxes for one or a few loops, which are manufac¬ 
tured by the hundred thousands yearly. PID control is an important 
ingredient of a distributed control system. The controllers are also 
embedded in many special-purpose control systems. In process con¬ 
trol, more than 95% of the control loops are of PID type, most loops 
are actually PI control. Many useful features of PID control have not 
been widely disseminated because they have been considered trade 
secrets. Typical examples are techniques for mode switches and anti-
windup. 

PID control is often combined with logic, sequential machines, se¬ 
lectors, and simple function blocks to build the complicated automa¬ 
tion systems used for energy production, transportation, and manu¬ 
facturing. Many sophisticated control strategies, such as model pre¬ 
dictive control, are also organized hierarchically. PID control is used 
at the lowest level; the multivariable controller gives the setpoints to 
the controllers at the lower level. The PID controller can thus be said 
to be the "bread and butter" of control engineering. It is an important 
component in every control engineer's toolbox. 

PID controllers have survived many changes in technology rang¬ 
ing from pneumatics to microprocessors via electronic tubes, tran¬ 
sistors, integrated circuits. The microprocessor has had a dramatic 
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influence on the PID controller. Practically all PID controllers made 
today are based on microprocessors. This has given opportunities to 
provide additional features like automatic tuning, gain scheduling, 
and continuous adaptation. The terminology in these areas is not 
well-established. For purposes of this book, auto-tuning means that 
the controller parameters are tuned automatically on demand from 
an operator or an external signal, and adaptation means that the 
parameters of a controller are continuously updated. Practically all 
new PID controllers that are announced today have some capability 
for automatic tuning. Tuning and adaptation can be done in many 
different ways. The simple controller has in fact become a test bench 
for many new ideas in control. 

The emergence of the fieldbus is another important development. 
This will drastically influence the architecture of future distributed 
control systems. The PID controller is an important ingredient of 
the fieldbus concept. It may also be standardized as a result of the 
fieldbus development. 

A large cadre of instrument and process engineers are familiar 
with PID control. There is a well-established practice of installing, 
tuning, and using the controllers. In spite of this there are substantial 
potentials for improving PID control. Evidence for this can be found 
in the control rooms of any industry. Many controllers are put in man¬ 
ual mode, and among those controllers that are in automatic mode, 
derivative action is frequently switched off for the simple reason that 
it is difficult to tune properly. The key reasons for poor performance is 
equipment problems in valves and sensors, and bad tuning practice. 
The valve problems include wrong sizing, hysteresis, and stiction. 
The measurement problems include: poor or no anti-aliasing filters; 
excessive filtering in "smart" sensors, excessive noise and improper 
calibration. Substantial improvements can be made. The incentive for 
improvement is emphasized by demands for improved quality, which 
is manifested by standards such as ISO 9000. Knowledge and un¬ 
derstanding are the key elements for improving performance of the 
control loop. Specific process knowledge is required as well as knowl¬ 
edge about PID control. 

Based on our experience, we believe that a new era of PID control 
is emerging. This book will take stock of the development, assess its 
potential, and try to speed up the development by sharing our expe¬ 
riences in this exciting and useful field of automatic control. The goal 
of the book is to provide the technical background for understanding 
PID control. Such knowledge can directly contribute to better product 
quality. 

Process dynamics is a key for understanding any control problem. 
Chapter 2 presents different ways to model process dynamics that 
are useful for PID control. Methods based on step tests are discussed 



Chapter 1 Introduction 3 

together with techniques based on frequency response. It is attempted 
to provide a good understanding of the relations between the different 
approaches. Different ways to obtain parameters in simple transfer 
function models based on the tests are also given. Two dimension-
free parameters are introduced: the normalized dead time and the 
gain ratio are useful to characterize dynamic properties of systems 
commonly found in process control. Methods for parameter estimation 
are also discussed. A brief description of disturbance modeling is also 
given. 

An in depth presentation of the PID controller is given in Chap¬ 
ter 3. This includes principles as well as many implementation de¬ 
tails, such as limitation of derivative gain, anti-windup, improvement 
of set point response, etc. The PID controller can be structured in dif¬ 
ferent ways. Commonly used forms are the series and the parallel 
forms. The differences between these and the controller parameters 
used in the different structures are treated in detail. Implementation 
of PID controllers using digital computers is also discussed. The un¬ 
derlying concepts of sampling, choice of sampling intervals, and anti¬ 
aliasing niters are treated thoroughly. The limitations of PID control 
are also described. Typical cases where more complex controllers are 
worthwhile are systems with long dead time and oscillatory systems. 
Extensions of PID control to deal with such systems are discussed 
briefly. 

Chapter 4 describes methods for the design of PID controllers. 
Specifications are discussed in detail. Particular attention is given to 
the information required to use the methods. Many different meth¬ 
ods for tuning PID controllers that have been developed over the 
years are then presented. Their properties are discussed thoroughly. 
A reasonable design method should consider load disturbances, model 
uncertainty, measurement noise, and set-point response. A drawback 
of many of the traditional tuning rules for PID control is that such 
rules do not consider all these aspects in a balanced way. New tuning 
techniques that do consider all these criteria are also presented. 

The authors believe strongly that nothing can replace under¬ 
standing and insight. In view of the large number of controllers used 
in industry there is a need for simple tuning methods. Such rules will 
at least be much better than "factory tuning," but they can always be 
improved by process modeling and control design. In Chapter 5 we 
present a collection of new tuning rules that give significant improve¬ 
ment over previously used rules. 

In Chapter 6 we discuss some techniques for adaptation and au¬ 
tomatic tuning of PID controllers. This includes methods based on 
parametric models and nonparametric techniques. A number of com¬ 
mercial controllers are also described to illustrate the different tech¬ 
niques. The possibilities of incorporating diagnosis and fault detection 
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in the primary control loop is also discussed. 
In Chapter 7 it is shown how complex control problems can be 

solved by combining simple controllers in different ways. The control 
paradigms of cascade control, feedforward control, model following, 
ratio control, split range control, and control with selectors are dis¬ 
cussed. Use of currently popular techniques such as neural networks 
and fuzzy control are also covered briefly. 

References 

A treatment of PID control with many practical hints is given in 
Shinskey (1988). There is a Japanese text entirely devoted to PID 
control by Suda et al. (1992). Among the books on tuning of PID 
controllers, we can mention McMillan (1983) and Corripio (1990), 
which are published by ISA. 

There are several studies that indicate the state of the art of in¬ 
dustrial practice of control. The Japan Electric Measuring Instrument 
Manufacturers'Association conducted a survey of the state of process 
control systems in 1989, see Yamamoto and Hashimoto (1991). Ac¬ 
cording to the survey more than than 90% of the control loops were 
of the PID type. 

The paper, Bialkowski (1993), which describes audits of paper 
mills in Canada, shows that a typical mill has more than 2000 control 
loops and that 97% use PI control. Only 20% of the control loops were 
found to work well and decrease process variability. Reasons for poor 
performance were poor tuning (30%) and valve problems (30%). The 
remaining 20% of the controllers functioned poorly for a variety of 
reasons such as: sensor problems, bad choice of sampling rates, and 
anti-aliasing filters. Similar observations are given in Ender (1993), 
where it is claimed that 30% of installed process controllers operate 
in manual, that 20% of the loops use "factory tuning," i.e., default 
parameters set by the controller manufacturer, and that 30% of the 
loops function poorly because of equipment problems in valves and 
sensors. 



CHAPTER 2 

Process Models 

2.1 Introduction 

A block diagram of a simple control loop is shown in Figure 2.1. The 
system has two major components, the process and the controller, rep¬ 
resented as boxes with arrows denoting the causal relation between 
inputs and outputs. The process has one input, the manipulated vari¬ 
able, also called the control variable. It is denoted by u. The process 
output is called process variable (PV) and is denoted by y. This vari¬ 
able is measured by a sensor. The desired value of the process variable 
is called the setpoint (SP) or the reference value. It is denoted by ysp. 
The control error e is the difference between the setpoint and the 
process variable, i.e., e = ysp — y. The controller in Figure 2.1 has 
one input, the error, and one output, the control variable. The figure 
shows that the process and the controller are connected in a closed 
feedback loop. 

The purpose of the system is to keep the process variable close 
to the desired value in spite of disturbances. This is achieved by the 
feedback loop, which works as follows. Assume that the system is in 
equilibrium and that a disturbance occurs so that the process variable 
becomes larger than the setpoint. The error is then negative and the 
controller output decreases which in turn causes the process output 
to decrease. This type of feedback is called negative feedback, because 
the manipulated variable moves in direction opposite to the process 
variable. 

The controller has several parameters that can be adjusted. The 
control loop performs well if the parameters are chosen properly. It 
performs poorly otherwise, e.g., the system may become unstable. 
The procedure of finding the controller parameters is called tuning. 
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Controller! Process 

- 1 -* 

Figure 2.1 Block diagram of a simple feedback system. 

i ) 

This can be done in two different ways. One approach is to choose 
some controller parameters, to observe the behavior of the feedback 
system, and to modify the parameters until the desired behavior is 
obtained. Another approach is to first develop a mathematical model 
that describes the behavior of the process. The parameters of the 
controller are then determined using some method for control design. 
An understanding of techniques for determining process dynamics is 
a necessary background for both methods for controller tuning. This 
chapter will present such techniques. 

Static models are discussed in the next section. Dynamic models 
are discussed in Section 2.3. Transient response methods, which are 
useful for determining simple dynamic models of the process, are pre¬ 
sented in Section 2.4. Section 2.5 treats methods based on moments. 
These methods are less sensitive to measurement noise and, further¬ 
more, are not restricted to any specific input signal. The frequency 
response methods, described in Section 2.6, can be used to obtain 
both simple models and more detailed descriptions. Methods based 
on estimation of parametric models are more complex methods that 
require more computations but less restrictions on the experiments. 
These methods are presented in Section 2.7. The models discussed so 
far describe the relation between the process input and output. It is 
also important to model the disturbances acting on the system. This 
is discussed in Section 2.8. Section 2.9 treats methods to simplify a 
complex model and the problem of unmodeled dynamics and mod¬ 
eling errors. Conclusions and references are given in Sections 2.10 
and 2.11. 

2.2 Static Models 

The static process characteristic is a curve that gives the steady state 
relation between process input signal u and process output y. See 
Figure 2.2. Notice that the curve has a physical interpretation only 
for a stable process. 
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Figure 2.2 Static process characteristic. Shows process output y 
as a function of process input u under static conditions. 

All process investigations should start by a determination of the 
static process model. It can be used to determine the range of control 
signals required to change the process output over the desired range, 
to size actuators, and to select sensor resolution. It can also be used 
to assess whether static gain variations are so large that they have 
to be accounted for in the control design. 

The static model can be obtained in several ways. It can be de¬ 
termined by an open-loop experiment where the input signal is set 
to a constant value and the process output is measured when it has 
reached steady state. This gives one point on the process characteris¬ 
tics. The experiment is then repeated to cover the full range of inputs. 

An alternative procedure is to make a closed-loop experiment. 
The setpoint is then given a constant value and the corresponding 
control variable is measured in steady state. The experiment is then 
repeated to cover the full range of setpoints. 

The experiments required to determine the static process model 
often give a good intuitive feel for how easy it is to control the process, 
if it is stable, and if there are many disturbances. 

Sometimes process operations do not permit the experiments to be 
done as described above. Small perturbations are normally permitted, 
but it may not be possible to move the process over the full operating 
range. In such a case the experiment must be done over a long period 
of time. 

Process Noise 

Process disturbances are easily determined by logging the process 
output when the control signal is constant. Such a measurement 
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will give a combination of measurement and load disturbances. There 
are many sophisticated techniques such as time-series analysis and 
spectral analysis that can be used to determine the characteristics 
of the process noise. Crude estimates of the noise characteristics 
are obtained simply by measuring the peak-to-peak value and by 
determining the average time between zero crossings of the error 
signal. This is discussed further in Section 2.8. 

2.3 Dynamic Models 

A static process model like the one discussed in the previous section 
tells the steady state relation between the input and the output sig¬ 
nal. A dynamic model should give the relation between the input and 
the output signal during transients. It is naturally much more diffi¬ 
cult to capture dynamic behavior. This is, however, very significant 
when discussing control problems. 

Fortunately there is a restricted class of models that can often be 
used. This applies to linear time-invariant systems. Such models can 
often be used to describe the behavior of control systems when there 
are small deviations from an equilibrium. The fact that a system is 
linear implies that the superposition principle holds. This means that 
if the input u\ gives the output yi and the input ui gives the output 
j2 it then follows that the input au\ + bui gives the output ay\ + by 2-
A system is time-invariant if its behavior does not change with time. 

A very nice property of linear time-invariant systems is that their 
response to an arbitrary input can be completely characterized in 
terms of the response to a simple signal. Many different signals can be 
used to characterize a system. Broadly speaking we can differentiate 
between transient and frequency responses. 

In a control system we typically have to deal with two signals 
only, the control signal and the measured variable. Process dynamics 
as we have discussed here only deals with the relation between those 
signals. The measured variable should ideally be closely related to the 
physical process variable that we are interested in. Since it is difficult 
to construct sensors it happens that there is considerable dynamics 
in the relation between the true process variable and the sensor. For 
example, it is very common that there are substantial time constants 
in temperature sensors. There may also be measurement noise and 
other imperfections. There may also be significant dynamics in the 
actuators. To do a good job of control, it is necessary to be aware of 
the physical origin the process dynamics to judge if a good response 
in the measured variable actually corresponds to a good response in 
the physical process variable. 
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Transient Responses 

In transient response analysis the system dynamics are character¬ 
ized in terms of the response to a simple signal. The particular signal 
is often chosen so that it is easy to generate experimentally. Typical 
examples are steps, pulses, and impulses. Because of the superpo¬ 
sition principle the amplitude of the signals can be. normalized. For 
example, it is sufficient to consider the response to a step with unit 
amplitude. If s(t) is the response to a unit step, the output y{i) to an 
arbitrary input signal u(t) is given by 

u(T)h(t-T)dT (2.1) 
al 

where the impulse response h{t) is introduced as the time derivative 
of the step response. 

In early process control literature the step response was also 
called the reaction curve. 

Pulse response analysis is common in medical and biological ap¬ 
plications, but rather uncommon in process control. Ramp response 
analysis is less common. One application is the determination of the 
derivative part of a PID controller. In process control, the step re¬ 
sponse is the most common transient used for process identification. 
This is primarily because this is the type of disturbance that is easi¬ 
est to generate manually. Step response methods are treated in detail 
in Section 2.4. 

Frequency Response 

Another way to characterize the dynamics of a linear time-invariant 
system is to use sine waves as a test signal. This idea goes back 
to Fourier. The idea is that the dynamics can be characterized by 
investigating how sine waves propagate through a system. 

Consider a stable linear system. If the input signal to the system 
is a sinusoid, then the output signal will also be a sinusoid after a 
transient (see Figure 2.3). The output will have the same frequency as 
the input signal. Only the phase and the amplitude are different. This 
means that under stationary conditions, the relationship between the 
input and the output can be described by two numbers: the quotient 
(a) between the input and the output amplitude, and the phase shift 
(<p) between the input and the output signals. The functions a((o) 
and (p(co) describe a and <p for all frequencies (co). It is convenient 
to view a and (p as the magnitude and the argument of a complex 
number 

G(ia>) = aiwyv^ (2.2) 
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Figure 2.3 Input signal u is a sinusoid and output signal y be¬ 
comes sinusoidal after a transient. 

The function G(iw) is called the frequency response function of the 
system. The function a(co) - \G(ico)\ is called the amplitude function, 
and the function (p{co) ~ arg(G(ico)) is called the phase function. 

The complex number G{ico) can be represented by a vector with 
length a(ico) that forms angle <p(ico) with the real axis (see Figure 
2.4). When the frequency goes from 0 to oo, the endpoint of the vector 
describes a curve in the plane, which is called the frequency curve 
or the Nyquist curve. The Nyquist curve gives a complete description 
of the system. It can be determined experimentally by sending sinu¬ 
soids of different frequencies through the system. This may be time 
consuming. Normally, it suffices to know only parts of the Nyquist 
curve. For controller tuning there are some parts that are of particu¬ 
lar interest. The lowest frequency where the phase is -180° is called 
the ultimate frequency (cou). The corresponding point on the Nyquist 
curve is called the ultimate point. The value of G(icou) is all that is 
needed for the tuning methods developed by Ziegler and Nichols. 

The frequency response is intimately related to the Laplace trans¬ 
form. Let f(t) be a signal. The Laplace transform of the signal, F(s), 
is then defined by 

r 
F(s) = / 

Jo 

*f{t)dt (2.3) 

Let U{s) and Y(s) be the Laplace transforms of the input and the 
output of a linear time-invariant dynamical system. Assume that the 
system is at rest at time t = 0. The following relation then holds 

Y(s) = G(s)U(s) (2-4) 

where G(s) is the transfer function of the system. 
It follows from Equation (2.3) that the Laplace transform of an 

impulse is 1. From Equation (2.4) we can conclude that G(s) is the 
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Figure 2.4 The Nyquist curve of a system. 

Laplace transform of the impulse response. The frequency response 
is simply G{ico). 

In the following sections we will show how linear system dynam¬ 
ics can be obtained experimentally. We will illustrate both transient 
and frequency response methods. 

2.4 Step Response Methods 

The dynamics of a process can be determined from the response of 
the process to pulses, steps, ramps, or other deterministic signals. 
The dynamics of a linear system is, in principle, uniquely given from 
such a transient response experiment. This requires, however, that 
the system is at rest before the input is applied, and that there are no 
measurement errors. In practice, however, it is difficult to ensure that 
the system is at rest. There will also be measurement errors, so the 
transient response method, in practice, is limited to the determination 
of simple models. Models obtained from a transient experiment are, 
however, often sufficient for PID controller tuning. The methods are 
also very simple to use. This section focuses on the step response 
method. 

The Step Response 

Assuming a control loop with a controller, the step response experi¬ 
ment can be determined as follows. Wait until the process is at rest. 
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Figure 2.5 Open-loop step responses. 

Set the controller to manual. Change the control variable rapidly, e.g., 
through the use of increase/decrease buttons. Record the process vari¬ 
able and scale it by dividing by the change in the control variable. 
The change in control variable should be as large as possible in order 
to get a maximum signal to noise ratio. The limit is set by permissible 
process operation. It is also useful to record the fluctuations in the 
measurement signal when the control signal is constant. This gives 
data about the process noise. 

It is good practice to repeat the experiment for different ampli¬ 
tudes of the input signal and at different operating conditions. This 
gives an indication of the signal ranges when the model is linear. It 
also indicates if the process changes with the operating conditions. 

Examples of open-loop step responses are shown in Figure 2.5. 
Many properties of the system can be read directly from the step re¬ 
sponse. In Figure 2.5A, the process output is monotonically changed 
to a new stationary value. This is the most common type of step re¬ 
sponse encountered in process control. In Figure 2.5B, the process 
output oscillates around its final stationary value. This type of pro¬ 
cess is uncommon in process control. One case where it occurs is in 
concentration control of recirculation fluids. In mechanical designs, 
however, oscillating processes are common where elastic materials 
are used, e.g., weak axles in servos, spring constructions, etc. The sys¬ 
tems in Figures 2.5A and B are stable, whereas the systems shown 
in Figures 2.5C and 2.5D are unstable. The system in Figure 2.5C 
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shows the output of an integrating process. Examples of integrating 
processes are level control, pressure control in a closed vessel, concen¬ 
tration control in batches, and temperature control in well isolated 
chambers. The common factor in all these processes is that some kind 
of storage occurs in them. In level, pressure and concentration control 
storage of mass occurs, while in the case of temperature control there 
is a storage of energy. The system in Figure 2.5E has a long dead 
time. The dead time occurs when there are transportation delays in 
the process. The system in Figure 2.5F is a non-minimum phase sys¬ 
tem, where the measurement signal initially moves in the "wrong" 
direction. The water level in boilers often reacts like this after a step 
change in feed water flow. 

If the system is linear, all step responses are proportional to 
the size of the step in the input signal. It is then convenient to 
normalize the responses by dividing the measurement signal by the 
step size of the control signal. Throughout this book we assume that 
this normalization is done. 

The step response is a convenient way to characterize process 
dynamics because of its simple physical interpretation. Many tuning 
methods are based on it. A formal mathematical model can also be 
obtained from the step response. General methods for the design of 
control systems can then be used. 

For small perturbations the static process model can be described 
by one parameter called the process gain. This is simply the ratio of 
the steady state changes of process output and process input. The gain 
can be obtained as the slope of the curve in Figure 2.2. It can also 
be obtained directly from a step response. For nonlinear systems the 
process gain will depend on the operating conditions. It is, however, 
constant for linear systems. For such systems the static properties are 
thus described by one parameter. Additional parameters are needed 
to also capture dynamics. Some simple parametric models will be 
described below. Stable processes with a monotone step response, as 
shown in Figure 2.5A, are quite common. Many methods to obtain 
parametric models from such a step response have been presented in 
the literature over the years. We will present here models with two, 
three, and, four parameters respectively. 

Two-Parameter Models 

The simplest parametric models of process dynamics have two param¬ 
eters. One parameter can be process gain. The other has to capture 
the time behavior. The average residence time Tar is a useful param¬ 
eter. This is obtained as 
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where K is the static process gain and Ao is defined as 
oo 

Ao = /"(s(oo) - s{t))dt 
o 

where s{t) is the step response. Notice that K = s(oo) and that Ao is 
the shaded area in Figure 2.6. 

The time Tar is a rough measure of the time it takes for the step 
response to settle. Using the static gain and the average residence 
time, the process can be approximated by the model 

We call this model the residence time approximation. 
Another approximation to the step response that also has two 

parameters is given by the transfer function 

, -»£ (2.6) 

This model corresponds to an integrator with dead time. This model 
is characterized by the two parameters, a and L, that are easily de¬ 
termined graphically from the step response (see Figure 2.6). The 
tangent to the step response s(t) that has the largest slope is drawn, 
and the intersections of this tangent with the vertical and horizontal 
axes give a and L, respectively. The model given by Equation (2.6) is 
the basis for the Ziegler-Nichols tuning procedure discussed in Chap¬ 
ter 4. Notice that the model can also be fitted to unstable processes. 

K 

Figure 2.6 Graphical determination of a two-parameter model 
from a step response for a stable system with a monotone step 
response. 
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The properties of the approximations (2.5) and (2.6) are illus¬ 
trated by an example. 

EXAMPLE 2.1 
The two-parameter models (2.5) and (2.6) have been fitted to the 
process model 

The following models were obtained 

G2a(s) = 
1 + 8.0s 

G2b(s) = 
0.64 
4.3s' 

, -4.3s 

Figure 2.7 shows the step responses and the Nyquist curves of the 
transfer functions. 

Notice that the model G2a gives a good description of the step 
response for long times. The static gain is correct and the step re¬ 
sponse is very close to the correct one for large t. There are, however, 
large discrepances for small t. The system given by G2a has, for ex¬ 
ample, a significant response at time t = 2, but the system (2.7) 
has barely responded at that time. The model G2b has the opposite 
properties. It approximates the true step response very well in the 
interval 5 < t < 9, but the approximation is very poor for large t. 

These properties are also reflected in the Nyquist curves. They 
show that the average residence time approximation is quite good at 
low frequencies but very poor at high frequencies. The model G2b, on 
the other hand, is poor at low frequencies but reasonable at middle 
range frequencies. • 

Figure 2.7 Step responses and Nyquist curves of the process 
G{s) = l/(s + I)8 (solid line) and the two-parameter models G^s) 
(dotted line) and G2b(s) (dashed line). 
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Three-Parameter Models 

Better approximations are obtained by increasing the number of pa¬ 
rameters. The model 

is characterized by three parameters: the static gain K, the time 
constant T, and the dead time L. This is the most common process 
model used in papers on PID controller tuning. The parameters L 
and T are often called the apparent dead time and the apparent time 
constant, respectively. The step response of the model (2.8) is 

From this equation, it follows that the average residence time is 
oo 

/(s(oo) - s(t))dt 
Tar = " ^ = L + T 

The ratio 
r = LTT

 = h (2"9) 

which has the property 0 < r < 1, is called the normalized dead time. 
This quantity can be used to characterize the difficulty of controlling a 
process. It is sometimes also called the controllability ratio. Roughly 
speaking, it has been found that processes with small t are easy 
to control and that the difficulty in controlling the system increases 
as t increases. Systems with r = 1 correspond to pure dead-time 
processes, which are indeed difficult to control well. 

The parameters in the model (2.8) can be determined graphically. 
The static gain (K) is obtained from the final steady-state level of the 
process output. Remember that the process output must be scaled 
with the change in the control variable. The intercept of the tangent 
to the step response that has the largest slope with the horizontal 
axes gives L (see Figure 2.8). The dead time L can also be obtained 
as the time between the onset of the step and the time s(i) has 
reached a few percent of its final value. There are different ways 
to determine T. One method determines T from the distance AC in 
Figure 2.8, where the point C is the time when the tangent intersects 
the line s(t) = K. Another method determines T from the distance 
AB in Figure 2.8, where B is the time when the step response has 
reached the value 0.63^. Both methods give identical results if the 
process dynamics are given by Equation (2.8), but they may differ 
significantly in other cases. The method based on the point B gives 
normally better approximations. The other method tends to give a too 
large value of T. 
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K 

0.63 K 

B C 

Figure 2.8 Graphical determination of three-parameter models 
for systems with a monotone step response. 

EXAMPLE 2.2 

The three-parameter models of the process model (2.7) are 

G3a(s) = 
1 + 6.7s 

G3b(s) = 
1 + 4.3s 

o-4.3s 

where the time constant T is determined from the point C in model 
G^a, and from the point B in the model G31,. Figure 2.9 shows the 
step responses of the true process and the models, as well as the 
Nyquist curves of the transfer functions. The figure shows that the 
time constant T is overestimated in the model G3a. This overesti-
mation is unfortunately common in this method, since most process 
control plants have an S-shaped step response similar to the model 
(2.7). Notice that the true step response and the step response of the 
model Gzb coincide at the 63% point. • 

Another Model Structure 
The model (2.8) is by far the most commonly used model in the papers 
of PID controller tuning. In spite of this, it is not a representative 
model. In fact, the conclusions drawn based on this model may often 
be misleading when applied to real processes. This will be illustrated 
by several examples in Chapter 4. One reason for this is that the step 
response of the model (2.8) is not S-shaped, or equivalently, that the 
frequency response of the model does not decay fast enough for high 
frequencies. 
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Figure 2.9 Step responses and Nyquist curves of the process 
G(s) — l/(s + l)8 (solid line) and the three-parameter models G^s) 
(dashed line) and G3b(s) (dotted line). 

Another three-parameter model is 

G(s) = K 
sT)2 

The step response of this model is 

*(') = 

(2.10) 

(2.H) 

This model has an S-shaped step response and often gives a better 
approximation than the first-order plus dead-time model (2.8). Static 
gain K and dead time L can be determined in the same way as 
for the model (2.8). Time constant T can then be determined from 
Equation 2.11 if the value of the step response at one time is known. 
The equation obtained must be solved numerically. 

EXAMPLE 2.3 
Fitting the model (2.10) to the process model (2.7) gives 

G3c(s) = 
(1 + 2.0s)2 

. - 4 .3s 

The gain K = 1 is obtained from the steady-state value of the signal, 
and the dead time L = 4.3 is obtained from the intersection of the 
tangent with the largest slope and the horizontal axis as in the 
previous examples. The two time constants T = 2.0 are obtained 
by numerical solution of Equation (2.11). The point s(8.6) = 0.63 is 
used to obtain the additional condition. Figure 2.10 shows the step 
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Figure 2.10 Step responses and Nyquist curves of the process 
G(s) = l/(s + I)8 (solid line) and the three-parameter model G^^) 
(dashed line). 

responses of the true process model and G3C(s), as well as the Nyquist 
curves of the two transfer functions. The two step responses coincide 
at the 63% point. The model now has the S-shaped form because of 
the second-order model, and the fit is much better than the previous 
first-order models. O 

Four-Parameter Models 

An even better approximation may be obtained by the transfer func¬ 
tion 

G(s) = „ . .„?„ . ^ e"sL (2.12) 

This model has four parameters: the gain K, the time constants 2\ 
and Ti, and the dead time L. The gain K can be determined from the 
steady-state value of the step response. The dead time L can also be 
obtained in the same way as for the three-parameter models either 
by drawing the tangent of maximum slope of s(t) or by determining 
the time between the onset of the step and the time s(t) has reached 
a few percent of its final value. The step response of the model (2.12) 
i s 

s(t) = K(l + 
T1-T2 

T2 (2.13) 

The time constants (T{) and (T2) can be calculated from this expres¬ 
sion by determining two points of the step response. The calculation 
does involve solution of transcendental equations. This must be done 
numerically. 
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1 

Figure 2.11 Step responses and Nyquist curves of the process 
G(s) = l/(s + I)8 (solid line) and the four-parameter model G^s) 
(dashed line). 

EXAMPLE 2.4 
A four-parameter model (2.12) of the process model (2.7) has been 
obtained in the following way. The gain K = 1 is determined from 
the steady-state values, and the dead time L = 4.3 is obtained from 
the largest slope, as in the previous examples. The time constants 7\ 
and Ti are then obtained by numerically fitting the equation for the 
step response (2.13) to the values of the true step response at the 33% 
point and the 67% point. With s(6.5) = 0.33 and s(8.9) = 0.67, the 
time constants become 7\ = 0.93 and T2 = 3.2. The transfer function 
is thus 

o-4.3s 

0.93s)(l + 3.2s) 

Figure 2.11 shows the step responses of the true process model and 
G4a(s), as well as the Nyquist curves of the two transfer functions. 
Notice that the two step responses coincide at the 33% point and at 
the 67% point. • 

In the previous example, gain K and dead time L were deter¬ 
mined graphically from the step response, whereas time constants T\ 
and 72 were determined by numerical solution of the equation for the 
step response. There are several methods presented for a graphical 
determination of all four parameters of the model (2.12). These meth¬ 
ods are useful when no computers are available for numerical solu¬ 
tions. Using computer optimization programs, however, often gives a 
better approximation than the graphical methods. This is illustrated 
in the following example. 
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Figure 2.12 Step responses and Nyquist curves of the process 
G(s) = l/(s + I)8 (solid line) and the four-parameter model Gib 
(dashed line). 

EXAMPLE 2.5 

The four-parameter model (2.12) has been fitted to the process model 
(2.7) using least squares optimization, where the aim was to obtain 
an accurate model in the third quadrant, i.e., where the phase shift 
is between —90° and —180°. The following model was obtained. 

G4b(s) = 1.05 
(1 + 2.39s)2 

, -3.75s 

Figure 2.12 shows the step responses of the true process model and 
G4j(s), as well as the Nyquist curves of the transfer functions. D 

Models for Integrating Systems 

There are some process control systems where the dynamics contain 
integration or very long time constants. Such systems will not reach 
a steady state under open-loop conditions. They are sometimes called 
systems without self regulation. For PID tuning it is useful to treat 
such systems separately. 

Impulse Responses 
For a system with integral action a steady state will not be achieved 
when the input signal is a step, since the output will asymptotically 
change at a constant rate. There will be, however, a steady state when 
the input is an impulse. To determine the dynamics we can, therefore, 
apply a short pulse to the process. After normalizing the response by 
dividing with the pulse area, we then get a step response that can 
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be modeled using the methods we have just discussed. The transfer 
function of a system with integral action is then obtained simply by 
multiplying the transfer function by 1/s. We illustrate the procedure 
with an example. 

EXAMPLE 2.6 

Assume that a square pulse with unit height and duration r has been 
applied to a process and that the model 

has been fitted to the response as described in Example 2.2. The 
transfer function of the process is then 

Step Responses 
Models based on step responses can also be applied to processes with 
integral action. One possibility is to calculate the derivative of the 
step response and apply the impulse response method that was just 
discussed. 

The two-parameter model 

that was used to model stable processes previously in this section 
can also be applied to integrating processes. This model gives a bad 
description of stable processes at high frequencies, but for integrating 
processes the low frequency behavior is well captured by the model. 

A more sophisticated model that gives a better approximation at 
higher frequencies is given by the transfer function 

The model is characterized by three parameters: the velocity gain K, 
the time constant T, and the dead time L. The step response of the 
model (2.14) is 

= K(t-L-T(l- e-C-^) ) (2.15) 

The gain K and the average residence time Tar = L + T can be 
determined graphically as shown in Figure 2.13. 


