

Django	-	The	Easy	Way	(2nd	Edition)

A	step-by-step	guide	on	building	Django	websites

	

Samuli	Natri

	

©	2017	-	2018	Samuli	Natri

Table	of	Contents

Preface

About	this	book
Who	is	this	book	for?
What	this	book	is	NOT	about?
How	this	book	is	organized
Chapters	1-7
Chapters	8-10
Chapters	11-13
Chapters	14-16
Chapters	17-20
Chapters	21-24
Chapters	25-26
Chapters	27-28
Chapters	29-32

About	the	author

1.	Installing	Python	on	Windows
1.1	Downloading	and	installing	Python
1.2	Using	the	interactive	prompt
1.3	Details
1.3.1	Python	interpreter

1.4	Summary

2.	Installing	Python	on	macOS
2.1	Downloading	and	installing	Python
2.2	Using	the	interactive	prompt
2.3	Details
2.3.1	Python	interpreter

2.4	Summary

3.	Installing	Python	on	Linux
3.1	Installing	Python
3.2	Using	the	interactive	prompt
3.3	Details
3.3.1	Python	interpreter

3.4	Summary

4.	Creating	virtual	environments	in	Windows
4.1	Creating	and	activating	virtual	environments
4.2	Summary

5.	Creating	virtual	environments	in	macOS
5.1	Creating	and	activating	virtual	environments
5.2	Summary

6.	Creating	virtual	environments	in	Linux
6.1	Creating	and	activating	virtual	environments
6.2	Summary

7.	Virtual	environments	and	pip
7.1	Why	use	virtual	environments?
7.2	Details
7.2.1	Organizing	folders
7.2.2	Freezing	requirements
7.2.3	Excluding	venv	from	the	repository
7.2.4	Using	other	tools
7.2.5	Using	python	vs	python3

7.3	Summary

8.	Creating	a	Django	project
8.1	Setup
8.2	Creating	a	new	Project
8.3	Running	the	development	server
8.4	Details
8.5	Summary

9.	Creating	a	Hello	World	app
9.1	Setup
9.2	Creating	apps
9.3	Creating	template	files
9.4	Creating	views
9.5	Adding	a	homepage	path
9.6	Summary

10.	Examining	the	project	structure	and	apps
10.1	Adding	features	with	apps
10.2	Exploring	the	project	structure
10.3	Exploring	the	project	package

10.4	Summary

11.	Working	with	template	inheritance
11.1	Setup
11.2	Creating	a	base	app
11.3	Extending	templates
11.4	Details
11.5	Summary

12.	Installing	Bootstrap	4	theme
12.1	Setup
12.2	Modifying	an	existing	template
12.3	Updating	the	homepage	template
12.4	Details
12.5	Summary

13.	Managing	static	files
13.1	Setup
13.2	Creating	a	stylesheet	file
13.3	Details
13.3.1	Working	with	static	files
13.3.2	Using	the	static	tag
13.3.3	Forcing	cache	refresh	with	versioning

13.4	Summary

14.	Creating	models
14.1	Setup
14.2	Creating	the	Flower	model
14.3	Listing	flowers
14.4	Details
14.4.1	Explaining	models
14.4.2	Returning	a	string	representation
14.4.3	Making	database	queries

14.5	Summary

15.	Creating	a	base	project
15.1	Setup
15.2	Adding	a	description	field
15.3	Adding	masonry	like	columns
15.4	Adding	a	footer
15.5	Summary

16.	Creating	a	detail	page
16.1	Setup
16.2	Adding	a	detail	page	path
16.3	Creating	the	detail	view
16.4	Creating	the	detail	page	template
16.5	Creating	slugs
16.6	Updating	the	path
16.7	Defining	get_absolute_url()	method
16.8	Using	url	tag
16.9	Details
16.9.1	Capturing	URL	values
16.9.2	Using	view	parameters
16.9.3	Explaining	slugs
16.9.4	Reversing	URLS

16.10	Summary

17.	Adding	category	as	a	many-to-one	relationhip
17.1	Setup
17.2	Adding	category	field	and	model
17.3	Updating	the	homepage	template
17.4	Details
17.4.1	Examining	many-to-one	relationships
17.4.2	Accessing	related	objects

17.5	Summary

18.	Referencing	tags	with	a	ManyToMany	field
18.1	Setup
18.2	Adding	the	tags	field
18.3	Updating	the	homepage	template
18.4	Summary

19.	Creating	a	tags	page
19.1	Setup
19.2	Adding	tags	path
19.3	Adding	the	slug	field
19.4	Creating	the	tags	view
19.5	Updating	homepage	template
19.6	Details
19.6.1	Doing	lookups	across	relationships
19.6.2	Reusing	templates

19.7	Summary

20.	Creating	a	search	feature
20.1	Setup
20.2	Adding	a	search	form
20.3	Updating	the	index	view
20.4	Details
20.5	Summary

21.	Working	with	forms:	creating	items
21.1	Setup
21.2	Creating	the	edit	form
21.3	Creating	the	form	class
21.4	Updating	urlpatterns
21.5	Creating	the	view	function
21.6	Adding	a	menu	item
21.7	Details
21.7.1	Protecting	against	cross	site	request	forgeries
21.7.2	Adding	form	fields
21.7.3	Using	the	Form	class
21.7.4	Examining	the	view	function

21.8	Summary

22.	Working	with	forms:	editing	items
22.1	Setup
22.2	Adding	the	path
22.3	Creating	the	edit	view
22.4	Updating	the	edit	link
22.5	Details
22.5.1	Capturing	the	id
22.5.2	Examining	the	edit	view

22.6	Summary

23.	Working	with	forms:	customization
23.1	Setup
23.2	Adding	the	description	field
23.3	Details
23.3.1	Changing	field	order
23.3.2	Customizing	validation	errors

23.4	Summary

24.	Creating	and	deleting	objects
24.1	Setup
24.2	Adding	the	delete	path
24.3	Adding	the	delete	view
24.4	Updating	the	delete	link
24.5	Details
24.6	Summary

25.	Authenticating	users	with	Allauth
25.1	Setup
25.2	Installing	Allauth
25.3	Creating	template	files
25.4	Updating	the	templates	for	Bootstrap	4
25.5	Details
25.5.1	Configuration	options
25.5.2	Adding	the	paths
25.5.3	django-widget-tweaks

25.6	Summary

26.	Authorization
26.1	Setup
26.2	Adding	the	Editor	group
26.3	Creating	a	test	user
26.4	Using	permissions
26.5	Using	decorators
26.6	Details
26.6.1	Authentication	vs	authorization
26.6.2	Controlling	access	with	decorators

26.7	Summary

27.	Creating	an	image	gallery
27.1	Setup
27.2	Installing	pillow
27.3	Configuring	media	variables
27.4	Adding	ImageField
27.5	Adding	images	to	flowers
27.6	Using	the	static	helper	function
27.7	Adding	the	grid
27.8	Details

27.9	Summary

28.	Adding	image	thumbnails
28.1	Setup
28.2	Installing	ImageKit
28.3	Adding	the	thumbnail	field
28.4	Details
28.5	Summary

29.	Deploying	on	Heroku
29.1	Setup
29.2	Creating	a	Heroku	app
29.3	Installing	Heroku	CLI
29.3.1	Installation	in	Windows
29.3.2	Installation	in	macOS
29.3.3	Installation	in	Ubuntu
29.3.4	Authenticating	with	a	browser

29.4	Creating	a	Procfile
29.5	Updating	the	settings.py	file
29.6	Creating	the	repository
29.7	Pushing	changes
29.8	Updating	the	database
29.9	Summary

30.	Using	Amazon	AWS	to	serve	files
30.1	Setup
30.2	Creating	an	Amazon	AWS	bucket
30.3	Setting	up	permissions
30.4	Updating	settings.py	file
30.5	Adding	an	image	field	to	the	Post	model
30.6	Installing	packages
30.7	Summary

31.	Setting	up	Heroku	pipelines
31.1	Setup
31.2	Creating	a	GitHub	repository
31.3	Creating	a	pipeline
31.4	Testing	deployment
31.5	Adding	a	production	app
31.6	Enabling	review	apps

31.7	Using	pull	requests
31.8	Deleting	the	branch
31.9	Summary

32.	Sending	emails	with	SendGrid
32.1	Creating	an	account
32.2	Summary

Licenses

Preface

“Django	-	The	Easy	Way	(2nd	Edition)”	book	is	a	practical,	step-by-step	guide
on	how	to	build	Django	websites.

Django	is	a	Python	based	open	source	web	development	framework	that	has
been	around	since	2005.	It	enables	you	to	create	complex	database-driven
websites	while	keeping	things	decoupled	and	dry.	The	Python	Package	Index
(PyPI)	hosts	numerous	free	packages	that	can	be	used	to	extend	projects	without
re-inventing	the	wheel.	Django	is	used	by	some	well-known	sites	like	Instagram,
Bitbucket	and	Disqus.

https://samuli.to/Django-The-Easy-Way
https://samuli.to/Django-Web-Framework
https://samuli.to/Python
https://samuli.to/Coupling
https://samuli.to/Dry
https://samuli.to/PyPI
https://samuli.to/Django-Packages
https://samuli.to/Instagram
https://samuli.to/Bitbucket
https://samuli.to/Disqus

About	this	book

This	book	is	about	learning	the	Django	web	framework	with	simple,	practical
examples.	It	guides	you	through	all	the	main	concepts	one	at	the	time.	We	will
work	on	many	small	projects	rather	than	working	on	a	single	big	application
through	the	book.	This	helps	digesting	the	information	as	the	projects	have	less
distracting	code	from	previous	chapters.	By	the	end	of	the	book	you	should	have
a	solid	understanding	of	how	to	build	and	deploy	apps	with	Django.

The	complete	book	source	code	is	available	in	here:	https://samuli.to/Django-
The-Easy-Way-Source.

Who	is	this	book	for?
This	book	is	suitable	for	beginner	to	intermediate	level	web	developers.	You
don’t	have	to	have	any	experience	with	Django	or	building	web	applications	in
general.	We	start	with	the	very	basics	and	increase	complexity	as	we	go	along.

What	this	book	is	NOT	about?
We	use	Bootstrap	4	to	have	a	decent	looking	testing	playground	but	otherwise
frontend	concepts	are	covered	minimally.	This	is	not	a	book	about	Python,
HTML,	CSS	or	JavaScript.	Basic	knowledge	about	those	technologies	would	be
helpful	but	is	not	required	for	the	book.	The	focus	is	on	the	Django	web
framework	core	concepts	and	deployment	practices.

How	this	book	is	organized
This	book	is	organized	in	32	chapters	that	focus	on	key	concepts	of	the
framework.	I	recommend	reading	the	book	in	sequence,	starting	from	the	very
beginning	and	working	your	way	to	the	end	from	there.

Chapters	1-7
Chapters	1-7	cover	how	to	install	Python	and	use	virtual	environments.

Chapters	8-10

https://samuli.to/Django-The-Easy-Way-Source
https://samuli.to/Bootstrap

In	chapters	8-10	we	create	a	simple	Django	project	and	examine	the	project
structure.	“Hello	world”	project	introduces	the	reader	to	views,	paths	and
templates.

Chapters	11-13
Chapters	11-13	cover	how	the	template	inheritance	works	and	how	to	integrate
Bootstrap	4	frontend	framework	with	Django.	We	also	apply	custom	styles	with
CSS	(Cascading	Style	Sheets).

Chapters	14-16
Chapters	14-16	cover	how	to	use	models	and	interact	with	a	database.	We	learn
about	filters	and	how	to	build	a	base	project	that	can	be	used	as	a	starting	point
for	other	projects.	We	create	a	detail	page	and	learn	how	to	work	with	slugs	and
reverse	URLS.

Chapters	17-20
In	chapters	17-20	we	learn	how	to	categorise	items	with	a	ForeignKey	field	and
tag	items	with	a	ManyToManyField.	We	do	lookups	through	relationships,	re-
use	templates	and	build	a	minimalistic	search	feature.

Chapters	21-24
Chapters	21-24	show	how	to	create	forms	with	ModelForm.	We	customize	the
forms	by	changing	field	order	and	render	validation	errors	manually.	The

Python	interactive	interpreter	is	used	to	manipulate	objects	and	interact	with
Django.

Chapters	25-26
Chapters	25-26	cover	how	to	create	a	complete	authentication	system	with	the
Allauth	package	and	how	to	theme	the	default	forms	with	Bootstrap	4.	User
authorization	is	managed	with	groups	and	decorators.

Chapters	27-28

Chapters	27-28
In	chapters	27-28	we	upload	images	and	serve	them	from	a	local	media	folder.
Bootstrap	4	is	used	to	create	a	grid	view	to	display	the	images.	The	uploaded
images	are	compressed	to	thumbnails	using	the	ImageKit	package.

Chapters	29-32
Chapters	29-32	show	how	to	deploy	to	Heroku	platform	and	serve	static	assets
and	user-uploaded	files	from	an	Amazon	AWS	bucket.	We	learn	how	to
establish	continuous	deployment	workflows	with	Heroku	pipelines	and	send
emails	with	SendGrid.

About	the	author
Samuli	Natri	has	been	a	software	developer	since	the	90’s.	He	attended	Helsinki

https://www.heroku.com

Samuli	Natri	has	been	a	software	developer	since	the	90’s.	He	attended	Helsinki
University	Of	Technology	(Computer	Science)	and	Helsinki	University	(Social
Sciences).

Website:	https://samulinatri.com

https://samulinatri.com

1.	Installing	Python	on	Windows

This	chapter	covers

How	to	install	Python	on	Windows
How	to	use	the	interactive	interpreter	to	test	it

1.1	Downloading	and	installing	Python
Visit	https://samuli.to/Python-Download	and	download	the	Windows	installer:

Run	the	installer.

Check	Add	Python	3.7	to	PATH	and	click	Install	Now:

https://samuli.to/Python-Download

Let	the	installer	finnish	and	close	it.

Press	Windows	key	or	click	the	icon	at	the	bottom	left	corner:

Search	for	Command	Prompt	and	open	it:

1.2	Using	the	interactive	prompt
Type	python	in	the	command	prompt	and	press	enter.	The	interpreter	is	now	in
interactive	mode,	waiting	for	your	commands:

Let’s	add	two	variables	together	and	print	out	the	result	with	print()	function:
Interactive	Python	session

>>>	a	=	1

>>>	b	=	1

>>>	c	=	a	+	b

>>>	print(c)

2

>>>	^Z

Exit	the	session	with	Ctrl-Z	plus	return.

1.3	Details

1.3.1	Python	interpreter
Interpreter	is	a	software	layer	between	your	program	and	the	computer.	It	reads
your	code	and	carries	out	the	instructions	it	contains.

You	can	type	and	run	Python	code	directly	in	the	interactive	prompt.	This	allows
us	to	interact	with	Django	projects	using	the	command	line.

1.4	Summary

Python	can	easily	be	installed	on	Windows	using	the	official	installer.
Make	sure	to	add	Python	to	the	PATH	so	you	can	run	it	everywhere.
Interpreter	is	a	software	layer	between	your	code	and	the	computer.
You	can	use	the	interactive	prompt	to	type	and	run	Python	code.

2.	Installing	Python	on	macOS

This	chapter	covers

How	to	install	Python	on	macOS
How	to	use	the	interactive	interpreter	to	test	it

2.1	Downloading	and	installing	Python
Visit	https://samuli.to/Python-Download	and	download	the	latest	macOS
version:

Run	the	installer.

Press	Ctrl	plus	Space	and	search	for	terminal:

https://samuli.to/Python-Download

2.2	Using	the	interactive	prompt
Type	python3	in	the	terminal	and	press	return.	The	interpreter	is	now	in
interactive	mode,	waiting	for	your	commands:

Let’s	add	two	variables	together	and	print	out	the	result	with	print()	function:
Interactive	Python	session

>>>	a	=	1

>>>	b	=	1

>>>	c	=	a	+	b

>>>	print(c)

2

>>>	^D

Exit	the	session	with	Ctrl-D.

2.3	Details

2.3.1	Python	interpreter
Interpreter	is	a	software	layer	between	your	program	and	the	computer.	It	reads
your	code	and	carries	out	the	instructions	it	contains.

You	can	type	and	run	Python	code	directly	in	the	interactive	prompt.	This	allows
us	to	interact	with	Django	projects	using	the	command	line.

2.4	Summary

Python	can	easily	be	installed	on	macOS	using	the	official	installer.
Interpreter	is	a	software	layer	between	your	code	and	the	computer.
You	can	use	the	interactive	prompt	to	type	and	run	Python	code.

3.	Installing	Python	on	Linux

This	chapter	covers

How	to	install	Python	on	Linux
How	to	use	the	interactive	interpreter	to	test	it

3.1	Installing	Python
Click	the	Show	applications	icon	at	the	bottom	left	corner:

Search	for	terminal	and	click	the	icon	to	open	it:

Open	the	Python	interactive	prompt	with	python3	command:

If	the	python3	command	doesn’t	work,	install	it	with	the	following	command:
Terminal

sudo	apt	install	python3

3.2	Using	the	interactive	prompt
Type	python3	in	the	terminal	and	press	enter.

The	interpreter	is	now	in	interactive	mode,	waiting	for	your	commands.	Let’s
add	two	variables	together	and	print	out	the	result	with	print()	function:

Interactive	Python	session
>>>	a	=	1

>>>	b	=	1

>>>	c	=	a	+	b

>>>	print(c)

2

Exit	the	prompt	with	Ctrl-D	plus	Enter.

3.3	Details

3.3.1	Python	interpreter
Interpreter	is	a	software	layer	between	your	program	and	the	computer.	It	reads
your	code	and	carries	out	the	instructions	it	contains.

You	can	type	and	run	Python	code	directly	in	the	interactive	prompt.	This	allows
us	to	interact	with	Django	projects	using	the	command	line.

3.4	Summary

Python	comes	pre-installed	on	all	major	Linux	distributions.
Interpreter	is	a	software	layer	between	your	code	and	the	computer.

You	can	use	the	interactive	prompt	to	type	and	run	Python	code.

4.	Creating	virtual	environments	in	Windows

This	chapter	covers

How	to	create	virtual	environments	in	Windows

4.1	Creating	and	activating	virtual	environments
Create	a	new	directory	for	the	projects:

Terminal
mkdir	projects

cd	projects

venv	command	creates	the	virtual	environment.	Activate	it	with	the	activate.bat
script:

Terminal
python	-m	venv	venv

venv\Scripts\activate.bat

The	(venv)	prefix	indicates	that	the	environment	is	active:
Terminal

(venv)	C:\Users\samul\projects>

Rest	of	the	book	will	mostly	be	the	same	for	all	operating	systems.

4.2	Summary

You	can	use	the	venv	command	to	create	virtual	environments.
Make	sure	to	active	the	virtual	environment	before	you	start	working	on	a
project.

5.	Creating	virtual	environments	in	macOS

This	chapter	covers

How	to	create	virtual	environments	in	macOS

5.1	Creating	and	activating	virtual	environments
Create	a	new	directory	for	the	projects:

Terminal
mkdir	projects

cd	projects

venv	command	creates	the	virtual	environment.	Activate	it	using	the	source
command:

Terminal
python3	-m	venv	venv	

source	venv/bin/activate

source	command	reads	and	executes	commands	from	a	file.

The	(venv)	prefix	indicates	that	the	environment	is	active:
Terminal

(venv)	~

Rest	of	the	book	will	mostly	be	the	same	for	all	operating	systems.

5.2	Summary

You	can	use	the	venv	command	to	create	virtual	environments.
Make	sure	to	active	the	virtual	environment	before	you	start	working	on	a
project.

6.	Creating	virtual	environments	in	Linux

This	chapter	covers

How	to	create	virtual	environments	in	Linux

6.1	Creating	and	activating	virtual	environments
Create	a	new	directory	for	the	projects:

Terminal
mkdir	projects

cd	projects

venv	command	creates	the	virtual	environment.	Activate	it	using	the	source
command:

Terminal
sudo	apt-get	install	python3-venv

python	-m	venv	venv

source	venv\bin\activate

source	command	reads	and	executes	commands	from	a	file.

The	(venv)	prefix	indicates	that	the	environment	is	active:
Terminal

(venv)	samuli@box:~/projects$

Rest	of	the	book	will	mostly	be	the	same	for	all	operating	systems.

6.2	Summary

You	can	use	the	venv	command	to	create	virtual	environments.
Make	sure	to	active	the	virtual	environment	before	you	start	working	on	a
project.

7.	Virtual	environments	and	pip

This	chapter	covers

What	are	virtual	environments	and	why	you	should	use	them
How	to	use	pip	to	manage	project	packages

7.1	Why	use	virtual	environments?
Virtual	environments	allow	you	to	manage	project	dependencies	in	an	isolated
manner.	You	can	have	a	project	that	uses	Django	1.0	and	another	project	that
uses	Django	2.0.	The	former	project	uses	Python	2	and	the	latter	Python	3.	With
virtual	environments	they	don’t	interfere	which	each	other.

Updates	may	introduce	changes	that	break	your	application.	Maybe	your
favourite	package	doesn’t	support	the	new	release	or	your	own	custom	code	is
not	ready	for	the	upgrade.	But	at	the	same	time	you	might	want	to	start	another
project	using	the	new	Django	release.	This	is	where	virtual	environments	come
in	handy.

Keeping	all	project	packages	in	one	place	also	makes	it	easier	to	deploy.	We	can
generate	a	requirements	list	and	use	it	to	install	the	dependencies	on	another
environment.

Virtual	environment	for	each	project
.

├──	Project1

│			├──	db.sqlite3

│			├──	manage.py

│			├──	mysite

│			└──	venv	(With	Django	1.0	+	Python	2)

├──	Project2

│			├──	db.sqlite3

│			├──	manage.py

│			├──	mysite

│			└──	venv	(With	Django	2.0	+	Python	3)

In	this	example	each	project	has	its	own	Python	installation	and	Django	package.
Django	is	installed	in	the	venv	folder	like	any	other	Python	package.

7.2	Details

7.2.1	Organizing	folders
You	don’t	have	to	put	the	venv	folder	inside	the	project	folder.	In	fact	in	this
book	I	will	use	one	shared	virtual	environment	for	all	projects.	In	your	own	real-
life	projects,	I	would	recommend	having	a	separate	virtual	environment	for	each
project.

This	is	how	we	organize	the	projects	in	this	book:
All	projects	share	one	virtual	environment

└──	projects

				├──	08-Django-Project

				├──	09-Hello-World

				...

				└──	venv

7.2.2	Freezing	requirements
Project	package	list	can	be	stored	in	a	file	using	the	pip	freeze	command:

Terminal
pip	freeze	>	requirements.txt

pip	is	a	Python	package	manager.

The	requirements.txt	file	might	look	something	like	this:
requirements.txt

Django==2.1.3

gunicorn==19.9.0

Pillow==5.3.0

psycopg2==2.7.5

These	dependencies	can	be	installed	using	the	pip	install	command:
Terminal

pip	install	-r	requirements.txt

This	installation	process	happens	automatically	when	we	deploy	our	project	to
the	Heroku	platform.	Just	make	sure	to	freeze	the	requirements	after	you	install
or	uninstall	packages.

7.2.3	Excluding	venv	from	the	repository
Exclude	the	venv	folder	from	the	repository	when	using	a	version	control
system.	This	will	be	demonstrated	later	when	we	are	ready	to	deploy.

7.2.4	Using	other	tools
There	are	other	tools	for	managing	virtual	environments	like	Virtualenvwrapper.
Check	out	this	tutorial	to	learn	more:	https://samuli.to/Virtual-Environments.

7.2.5	Using	python	vs	python3
Using	a	virtual	environment	allows	us	to	use	the	python	command	(instead	of
python3)	for	“Python	3”	regardless	of	the	system	wide	Python	version.	If	I
deactivate	the	virtual	environment	and	run	python	in	macOS,	it	will	default	to
Python	2.7.10	in	my	machine:

Terminal
~	deactivate

~	python

Python	2.7.10	(default,	Oct		6	2017,	22:29:07)

So	make	sure	to	activate	the	project	virtual	environment	before	you	start
working	on	it.

7.3	Summary

Virtual	environments	allow	you	to	manage	project	dependencies	in	an
isolated	manner.
pip	is	a	Python	package	manager.
You	can	use	the	pip	freeze	command	to	store	project	dependencies	list	in	a
file.

https://samuli.to/Virtual-Environments

8.	Creating	a	Django	project

This	chapter	covers

How	to	create	a	new	Django	project
How	to	use	the	built-in	development	server

8.1	Setup
Terminal

cd	projects

mkdir	08-Django-Project

cd	08-Django-Project

source	../venv/bin/activate

You	don’t	have	to	activate	the	virtual	environment	if	it’s	already	activated.

8.2	Creating	a	new	Project
Install	Django	and	use	the	startproject	command	to	create	a	new	Django	project:

Terminal
pip	install	django

django-admin	startproject	mysite	.

You	should	now	have	this	kind	of	folder	structure:
Project	folder	structure

projects

├──	08-Django-Project

│			├──	manage.py

│			└──	mysite

└──	venv

				├──	bin

				├──	include

				├──	lib

				├──	pip-selfcheck.json

				└──	pyvenv.cfg

08-Django-Project	folder	is	a	container	for	the	whole	project.	The	mysite	folder
inside	it	is	the	project	Python	package	that	connects	your	project	with	Django.

8.3	Running	the	development	server
Use	runserver	to	run	the	server:

Terminal
python	manage.py	runserver

Visit	http://127.0.0.1:8000/	and	you	should	see	the	welcome	screen:

8.4	Details
django-admin	is	a	command-line	tool	that	helps	you	with	management	tasks:

Terminal
django-admin	startproject	mysite	.

startproject	command	creates	the	Django	project	structure.	“.”	denotes	that	we
want	to	create	the	project	in	the	current	directory.

This	also	creates	the	manage.py	file	in	the	project	root.	manage.py	does	the	same
thing	as	django-admin	plus	it	takes	care	of	few	things	for	you.	For	example,
before	you	can	use	Django,	you	need	to	tell	it	which	settings.py	file	to	use.
manage.py	does	this	by	defining	an	environment	variable	with	the	name
“DJANGO_SETTINGS_MODULE”.	You	don’t	have	to	worry	about	this	though.
Just	use	manage.py	for	administration	tasks	like	this:

Terminal

http://127.0.0.1:8000/

Terminal
python	manage.py	makemigrations

You	might	have	noticed	that	a	database	file	was	generated	in	the	project	root.
By	default,	Django	is	configured	to	use	the	SQLite	database.	This	is	perfectly
fine	for	development	purposes	but	for	production	you	should	consider	other
alternatives.	With	the	Heroku	platform	we	use	PostgreSQL	database.

You	can	ignore	the	“You	have	15	unapplied	migration(s)..”	warning	in	the
terminal.	We	will	deal	with	migrations	and	databases	later.

8.5	Summary

django-admin	is	a	command-line	tool	for	administrative	tasks.
startproject	command	creates	a	Django	project	skeleton.
It’s	more	convenient	to	use	manage.py	instead	of	django-admin	for
administrative	tasks	after	the	project	has	been	created.
SQLite	is	the	default	database	option	but	you	shouldn’t	use	it	in	a
production	environment.

9.	Creating	a	Hello	World	app

This	chapter	covers

How	to	create	apps
Introduction	on	views,	paths	and	templates

9.1	Setup
Terminal

cp	-fr	08-Django-Project	09-Hello-World

cd	09-Hello-World

source	../venv/bin/activate

9.2	Creating	apps
Use	startapp	command	to	create	a	new	app:

Terminal
python	manage.py	startapp	myapp

Now	you	should	have	this	kind	of	folder	structure:
Folder	structure

projects

├──	08-Django-Project

├──	09-Hello-World

│			├──	db.sqlite3

│			├──	manage.py

│			├──	myapp	#	<	new	app

│			└──	mysite

└──	venv

Edit	mysite	app	settings.py	file	and	add	myapp	to	the	INSTALLED_APPS	list:
mysite/settings.py

INSTALLED_APPS	=	[

				'django.contrib.admin',

				'django.contrib.auth',

				'django.contrib.contenttypes',

				'django.contrib.sessions',

				'django.contrib.messages',

				'django.contrib.staticfiles',

				'myapp',	#	<	here

]	

9.3	Creating	template	files
Create	index.html	file	in	the	myapp	templates	folder.	You	have	to	create	the
templates	and	myapp	folders	too:

Folder	structure	for	templates
├──	09-Hello-World

│			├──	db.sqlite3

│			├──	manage.py

│			├──	myapp

│			│			├──	templates	<--	here

│			│			│			└──	myapp	<--	here

│			│			│							└──	index.html	<--	here

Add	this	HTML	markup	inside	the	index.html	file:
myapp/templates/myapp/index.html

<h1>Hello	world!	I	was	brought	to	you	by	the	myapp	index	vi\

ew.</h1>

9.4	Creating	views
Edit	myapp	app	views.py	file	and	add	an	index	function:

myapp/views.py
from	django.shortcuts	import	render

def	index(request):	#	<	here

				return	render(request,	'myapp/index.html')

9.5	Adding	a	homepage	path
Edit	mysite	app	urls.py	file	add	the	index	path	to	the	urlpatterns	list:

mysite/urls.py
from	django.contrib	import	admin

from	django.urls	import	path

from	myapp	import	views	as	myapp_views	#	<	here

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	myapp_views.index,	name='index'),	#	<	here

]

Run	the	development	server:
Terminal

python	manage.py	runserver

Visit	http://127.0.0.1:8000	and	you	should	see	this:

We	will	deepen	the	knowledge	about	templates,	views	and	paths	as	we	go	along.

9.6	Summary

startapp	command	creates	new	apps.
Don’t	forget	to	add	the	app	to	the	mysite/settings.py	file	INSTALLED_APPS
list.
app/templates/app/	is	a	typical	location	for	app	template	files.
app/views.py	file	is	a	typical	location	for	app	view	functions.
mysite/urls.py	file	is	a	typical	location	for	URL	patterns.

http://127.0.0.1:8000

10.	Examining	the	project	structure	and	apps

This	chapter	covers

What	are	apps?
Overview	of	the	project	structure
What	does	all	the	project	files	do?

10.1	Adding	features	with	apps
Application	(app)	is	a	Python	package	that	adds	features	to	your	project.	With
the	myapp	application	we	added	a	simple	homepage	“feature”.	The	project	now
has	a	custom	homepage	rather	than	the	default	welcome	screen.

You	create	new	apps	with	the	startapp	command.	This	creates	the	Django	app
folder	structure:

Terminal
python	manage.py	startapp	myapp

It	makes	sense	to	group	similar	set	of	features	into	apps.	For	example	you	could
create	a	forum	app	that	provides	a	forum	functionality	in	forum	or	maybe	a
custom	administration	area	in	myadmin.

You	could	potentially	re-use	these	apps	in	other	projects.

The	mysite	folder	that	was	created	with	the	startproject	command	can	also	be
considered	an	app.	This	app	makes	your	Python	project	a	web	project.

You	typically	enable	apps	by	adding	a	string	to	the	INSTALLED_APPS	list	in
the	settings.py	file:

mysite/settings.py
INSTALLED_APPS	=	[

				'django.contrib.admin',

				...

				'myapp',	#	<--	here

]	

10.2	Exploring	the	project	structure
Let’s	take	a	closer	look	at	an	example	project	structure:

Project	folder	structure
├──	09-Hello-World	<--	Project	root

│			├──	db.sqlite3	<--	Database

│			├──	manage.py		<--	Management	tool

│			├──	myapp						<--	Custom	app

│			├──	forum						<--	Custom	app

│			├──	myadmin				<--	Custom	app

│			└──	mysite					<--	Project	package

└──	venv	<--	Virtual	environment	(Django	+	Python)

The	project	root	contains	the	database,	manage.py	file	and	all	the	apps	that	are
not	installed	in	the	virtual	environment.	Django	package	and	Python	is	installed
in	the	venv	folder.

Here	are	the	default	contents	for	new	apps:
Default	files	for	a	new	app

myapp

├──	__init__.py

├──	__pycache__

├──	admin.py

├──	apps.py

├──	migrations

├──	models.py

├──	templates

├──	tests.py

└──	views.py

__init__.py	is	usually	an	empty	file	that	marks	this	directory	as	a	Python
package.	Note:	in	newer	Python	versions	(3.3+)	it’s	not	required	to	have	this
file:	https://samuli.to/PEP-420.

__pycache__	contains	bytecode	that	makes	the	program	start	faster.

Django	has	an	automatic	admin	interface	in	admin	that	you	can	use	to	manage
content.	You	usually	register	models	in	the	admin.py	file	so	that	they	are
available	for	management:

myapp/admin.py
from	django.contrib	import	admin

from	myapp.models	import	Post

admin.site.register(Post)

https://samuli.to/PEP-420

Don’t	worry	about	this	for	now.	We	will	get	back	to	it	when	we	cover	models.
Also	note	that	the	default	admin	interface	is	intended	for	internal	management
purposes.	You	might	want	to	allow	content	management	with	a	custom	solution
that	provides	forms	to	add	and	edit	content.	Custom	forms	will	be	covered	later
in	the	book.

apps.py	is	used	to	configure	the	app.	For	example	you	could	change	the	human-
readable	name	for	the	app	like	this:

myapp/apps.py
from	django.apps	import	AppConfig

class	MyConfig(AppConfig):

				verbose_name	=	"Excellent	App"

Now	in	the	admin	interface	it	would	say	“Excellent	App”	instead	of	“Myapp”.

migrations	folder	contains	the	migration	files	for	the	app.	These	are	used	to
apply	changes	to	the	database.	You	can	think	of	the	migration	system	as	a
version	control	for	the	database	schema.

models.py	file	store	information	about	the	data	you	want	to	work	with.	Typically
each	model	maps	to	a	database	table.

Here’s	an	example	of	the	Flower	model	we	will	use	later:
myapp/models.py

from	django.db	import	models

class	Flower(models.Model):

				title	=	models.CharField(max_length=255,	default='')

This	model	is	mapped	to	a	database	table	called	Flower	and	each	attribute	like
the	title	field	is	mapped	to	a	database	field.

Put	app	template	files	in	the	templates	folder:
Templates	folder

├──	09-Hello-World

│			├──	myapp

│			│			├──	templates

│			│			│			└──	myapp

│			│			│							└──	index.html	#	<	template	file

Templates	allow	you	to	separate	the	presentation	from	the	application	logic.
Django	has	its	own	template	language	where	you	mix	static	HTML,	variables,

tags	and	filters	to	generate	the	final	HTML.

You	typically	create	a	subfolder	for	each	app	inside	the	templates	folder.	It
might	look	a	bit	odd	to	have	another	myapp	folder	inside	the	templates	folder	but
in	this	way	we	don’t	have	to	do	anything	special	for	Django	to	discover	the
template.	We	just	have	to	use	the	right	naming	conventions.

For	example	in	the	myapp	views.py	file	we	used	myapp/index.html	as	an
argument	for	the	render	function:

myapp/views.py
from	django.shortcuts	import	render

def	index(request):

				return	render(request,	'myapp/index.html')	#	here

With	this	parameter	Django’s	template	loading	mechanism	finds	the	correct
template	in	myapp/templates/myapp/index.html.

tests.py	is	a	typical	place	for	the	app	testing	code.

It’s	a	convention	to	put	view	functions	in	the	views.py	file.	View	function	takes	a
web	request	and	returns	a	web	response.	In	our	“hello	world”	example	the	index
view	returns	HTML	contents	generated	with	the	help	of	the	index.html	template.

10.3	Exploring	the	project	package
Let’s	take	a	look	at	the	project	package	files:

Project	package	files
├──	09-Hello-World

│			├──	db.sqlite3

│			├──	manage.py

│			├──	myapp

│			└──	mysite

│							├──	__init__.py

│							├──	__pycache__

│							├──	settings.py	#	<	here

│							├──	urls.py	#	<	here

│							└──	wsgi.py	#	<	here

Most	of	the	project	configuration	happens	in	the	settings.py	file.

For	example	the	default	database	configuration	looks	like	this:
mysite/settings.py

DATABASES	=	{

				'default':	{

								'ENGINE':	'django.db.backends.sqlite3',

								'NAME':	os.path.join(BASE_DIR,	'db.sqlite3'),

				}

}

This	allows	you	to	start	working	with	a	database	immediately.

For	PostgreSQL	database	we	would	do	something	like	this:
PostgreSQL	configuration	example

DATABASES	=	{

				'default':	{

								'ENGINE':	'django.db.backends.postgresql_psycopg2',

								'NAME':	'mysitedb',

								'USER':	'username',

								'PASSWORD':	'password',

								'HOST':	'localhost',

								'PORT':	'',

				}

}

With	Heroku	platform	you	don’t	have	to	configure	this	manually	though	because
the	django-heroku	package	does	it	for	you.

urls.py	file	contains	URL	patterns.	Django	starts	going	through	these	patterns
when	user	requests	a	page	and	stops	when	a	pattern	matches	the	requested	URL.

In	our	“Hello	world!”	example	the	index	view	will	be	called	when	user	visits	the
homepage:

urls.py
from	django.contrib	import	admin

from	django.urls	import	path

from	myapp	import	views	as	myapp_views

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	myapp_views.index,	name='index'),	#	<	here

]

WSGI	is	a	specification	that	deals	with	interactions	between	web	servers	and
Python	web	applications.	The	startproject	command	sets	up	default
configuration	for	it	in	wsgi.py.

10.4	Summary

startproject	command	creates	a	project	skeleton	with	all	the	files	you	need
to	get	started.
Project	package	(folder	with	settings.py	file)	connects	your	Python	project
with	Django.
You	typically	add	features	to	your	project	with	apps.
startapp	command	creates	a	basic	application	skeleton.

11.	Working	with	template	inheritance

This	chapter	covers

How	to	setup	a	base	app
How	the	template	inheritance	works

11.1	Setup
Terminal

cp	-fr	09-Hello-World	11-Template-Inheritance

cd	11-Template-Inheritance

source	../venv/bin/activate

11.2	Creating	a	base	app
Create	a	new	app:

Terminal
python	manage.py	startapp	base

You	should	now	have	this	kind	of	folder	structure:
Folder	structure

11-Template-Inheritance

├──	base	<	#	new	app

├──	db.sqlite3

├──	manage.py

├──	myapp

└──	mysite

Edit	mysite	app	settings.py	file	and	add	the	base	app	to	the	INSTALLED_APPS
list:

mysite/settings.py
INSTALLED_APPS	=	[

				...

				'django.contrib.staticfiles',

				'base',	#	<	here

				'myapp',

]	

11.3	Extending	templates

Create	a	base.html	file	in	the	base	app	templates	folder:
Template	file	location

11-Template-Inheritance

├──	base

│			├──	templates	<--	here

│			│			└──	base		<--	here

│			│							└──	base.html	<--	here

...

Add	these	lines	to	the	base.html	file:
base/templates/base/base.html

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>MySite</title>

</head>

<body>

				<div	id="content">

								{%	block	content	%}{%	endblock	%}

				</div>

</body>

</html>

Replace	myapp	index.html	file	contents	with	these	lines:
myapp/templates/myapp/index.html

{%	extends	'base/base.html'	%}

{%	block	content	%}

								<h1>Hello	from	myapp	index	view!</h1>

{%	endblock	%}

Run	the	development	server:
Terminal

python	manage.py	runserver

Visit	http://127.0.0.1:8000	to	see	the	results:

Right-click	the	web	page	to	view	the	page	source:
Page	source

http://127.0.0.1:8000

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>MySite</title>

</head>

<body>

				<div	id="content">

								

								<h1>Hello	from	myapp	index	view!</h1>

				</div>

</body>

</html>

11.4	Details
Let’s	take	a	closer	look	on	how	this	works.

Parent	and	child	templates
11-Template-Inheritance

├──	base

│			├──	templates

│			│			└──	base

│			│							└──	base.html	#	<	parent	template

├──	myapp

│			├──	templates

│			│			└──	myapp

│			│							└──	index.html	#	<	child	template

With	template	inheritance	we	can	have	a	base	“skeleton”	that	has	blocks	that
child	templates	can	override.

In	base.html	we	define	a	content	block:
base/templates/base/base.html

<div	id="content">

				{%	block	content	%}{%	endblock	%}

</div>

In	index.html	we	also	define	a	content	block:
myapp/templates/myapp/index.html

{%	extends	'base/base.html'	%}

{%	block	content	%}

								<h1>Hello	from	myapp	index	view!</h1>

{%	endblock	%}

This	block	overrides	the	content	block	in	the	base	template.

{%	extends	'base/base.html'	%}	tells	the	templating	engine	that	this	template
extends	another	template.	In	this	case	the	index.html	template	extends	the

base.html	template.

{%	%}	marks	a	tag.	These	provide	several	kinds	of	features	like	for	loops	and
inheritance	related	functionality.

Now	we	don’t	have	to	specify	the	common	boilerplate	markup	for	every	page.
This	is	one	of	the	benefits	you	have	with	dynamic	systems	like	Django.

11.5	Summary

You	can	create	a	base	app	to	hold	things	that	are	common	to	all	apps	like
the	main	HTML	skeleton.
Template	inheritance	allows	you	to	define	blocks	that	child	templates	can
override.

12.	Installing	Bootstrap	4	theme

This	chapter	covers

How	to	use	Bootstrap	4	with	your	templates

12.1	Setup
Terminal

cp	-fr	11-Template-Inheritance	12-Bootstrap

cd	12-Bootstrap

source	../venv/bin/activate

12.2	Modifying	an	existing	template
Visit	https://samuli.to/Bootstrap-Template	and	right-click	the	page	to	see	its
source	code.	Copy	the	source	code	and	replace	the	content	of	the	base.html	file
with	it.

Replace	the	<title>	element	with	this:
base/templates/base/base.html

<title>Base	project	for	the	"Django	-	The	Easy	Way"	book	|	\

MySite</title>

Visit	https://samuli.to/Bootstrap	and	copy	the	BootstrapCDN	CSS	link	that	looks
like	this:

Link	to	copy
<link	rel="stylesheet"	href="https://stackpath.bootstrapcdn\

.com/bootstrap/4.1.3/css/bootstrap.min.css"	integrity="sha3\

84-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8E\

RdknLPMO"	crossorigin="anonymous">

Replace	these	lines	with	the	copied	link:
base/templates/base/base.html

<!--	Bootstrap	core	CSS	-->

<link	href="../../dist/css/bootstrap.min.css"	rel="styleshe\

et">

Replace	these	lines…

https://samuli.to/Bootstrap-Template
https://samuli.to/Bootstrap

Replace	these	lines…
base/templates/base/base.html

<!--	Custom	styles	for	this	template	-->

<link	href="starter-template.css

…with	this	style	element:
base/templates/base/base.html

<style>

				body	{

								padding-top:	5rem;

				}

				.starter-template	{

								padding:	3rem	1.5rem;

								text-align:	center;

				}

</style>

In	the	next	chapter	we	learn	how	to	load	static	files	and	use	a	separate	stylesheet
file	for	CSS.

Change	the	navbar-brand	link	element	to	this:
base/templates/base/base.html

MySite

Replace	the	navbar-nav	mr-auto	ul	list	with	this:
base/templates/base/base.html

<ul	class="navbar-nav	mr-auto">

				<li	class="nav-item	active">

								Home	<span	class="sr-o\

nly">(current)

				

Remove	this	search	form	element:
base/templates/base/base.html

<form	class="form-inline	my-2	my-lg-0">

...

</form>

Replace	the	starter-template	div	container	contents	…
base/templates/base/base.html

<main	role="main"	class="container">

				<div	class="starter-template">

								<h1>Bootstrap	starter	...

								<p	class="lead">Use	...

				</div>

</main><!--	/.container	-->

…	with	the	content	block:
base/templates/base/base.html

<main	role="main"	class="container">

				<div	class="starter-template">

								{%	block	content	%}{%	endblock	%}	<!--	here	-->

				</div>

</main><!--	/.container	-->

Replace	these	three	lines	at	the	end	of	the	base.html	file…
base/templates/base/base.html

<script>window.jQuery	||		...

<script	src="../../assets	...

<script	src="../../dist/j	...

…	with	the	Popper.js	and	jQuery	links	from	the	Bootstrap	front	page:
base/templates/base/base.html

<script	src="https://cdnjs.cloudflare.com/a	...

<script	src="https://stackpath.bootstrapcdn	...

12.3	Updating	the	homepage	template
Replace	myapp	index.html	template	contents	with	these	lines:

myapp/templates/myapp/index.html
{%	extends	'base/base.html'	%}

{%	block	content	%}

<h1>Base	project	for	the	<a	target="_blank"	href="https://l\

eanpub.com/django-the-easy-way">"Django	-	The	Easy	Way"	</a\

>book.</h1>

<p	class="lead">

				Lorem	ipsum	dolor	sit	amet	consectetur	adipisicing	elit\

.	Accusantium	quis	eligendi	cumque	totam	rem	consequuntur	c\

onsequatur?	Est,	provident	dolor.	Velit	nihil	eligendi	faci\

lis	perspiciatis	voluptatum	ad	reiciendis	molestias	molliti\

a	quisquam?

</p>

{%	endblock	%}

Visit	http://127.0.0.1:8000	and	you	should	see	something	like	this:

http://127.0.0.1:8000

In	this	image	we	are	seeing	the	mobile	device	styling	because	I	resized	the
browser	to	fit	everything	in	the	image.

12.4	Details
Bootstrap	is	great	for	prototyping	and	demonstrations	but	it	tends	to	result	in
generic	looking	frontends	unless	you	modify	it	heavily.	I	personally	like	to	build
my	themes	from	scratch	with	HTML,	SASS	and	JavaScript.	This	book	focuses
on	Django	core	concepts	so	I	will	be	covering	theming	related	topics	minimally.

12.5	Summary

It’s	easy	to	start	using	Bootstrap	4	with	Django	by	modifying	an	existing
theme.

13.	Managing	static	files

This	chapter	covers

How	to	add	a	CSS	stylesheet	file
How	to	use	the	static	template	tag
How	to	force	CSS	cache	refresh

13.1	Setup
Terminal

cp	-fr	12-Bootstrap	13-Static-Files-CSS

cd	13-Static-Files-CSS

source	../venv/bin/activate

13.2	Creating	a	stylesheet	file
Create	a	staticbase/css/site.css	file	in	the	base	app	folder.	You	have	to	create	the
folder	structure	manually:

Stylesheet	file	location
base

├──	static	#	<	here

│			└──	base	#	<	here

│							└──	css	#	<	here

│											├──	site.css	#	<	here

Edit	base.html	file	and	copy	the	contents	of	the	style	element	to	the	site.css	file.
Let’s	also	add	a	bright	red	color	for	h1	elements	so	we	can	see	that	the	CSS	is
working.	The	site.css	file	should	now	look	like	this:

basestaticbase/css/site.css
body	{

				padding-top:	5rem;

}

.starter-template	{

				padding:	3rem	1.5rem;

				text-align:	center;

}

h1	{

				color:	red;

}

Replace	the	style	element	in	the	base.html	template…
base/templates/base/base.html

<style>

...

</style>

…with	this	line:
base/templates/base/base.html

<link	rel="stylesheet"	href="{%	static	'base/css/site.css'	\

%}">

Make	sure	to	put	this	link	element	after	the	line	that	loads	the
bootstrap.min.css	file.

Make	the	static	tag	available	in	the	template	by	using	the	load	tag	on	top	of
the	base.html	file:

base/templates/base/base.html
{%	load	static	%}	<!--	here	-->

<!doctype	html>

<html	lang="en">

h1	elements	should	now	be	red:

You	can	now	remove	the	red	styling	from	the	site.css	file.

13.3	Details

13.3.1	Working	with	static	files

Files	like	CSS,	JavaScript	and	images	are	referred	as	static	files.	With	images	I
mean	static	assets	like	background	images,	not	user-uploaded	files.	We	will	deal
with	media	files	later	when	we	allow	users	to	upload	files.

The	django.contrib.staticfiles	app	helps	you	manage	these	static	assets.	It’s
installed	by	default:

mysite/settings.py
INSTALLED_APPS	=	[

	 ...

				'django.contrib.staticfiles',	#	<	here

				'base',

				'myapp',

]

With	the	development	server	the	static	files	will	be	served	automatically	in
debug	mode.	In	production	we	will	use	the	collectstatic	command	to	collect	all
static	files	in	one	place.	They	are	then	typically	served	with	something	like
Nginx	from	a	single	location	like	static:

Media	and	static	files	in	production	environment
├──	media

│			└──	images

│							├──	Agapanthus_africanus1.jpg

│							...

├──	mysite

│			├──	base

│			├──	db.sqlite3

│			├──	manage.py

├──	static	#	<	here

Later	I	will	also	show	you	how	to	serve	these	files	from	an	Amazon	AWS	bucket.

13.3.2	Using	the	static	tag
load	tag	loads	tags	and	filters	registered	in	other	libraries.	In	this	case	we	use	it
to	enable	the	static	tag	for	the	template.	You	have	to	use	{%	load	static	%}
in	every	template	that	uses	the	static	tag.	Even	if	the	parent	template	already
loads	it.

static	tag	generates	absolute	URLS	for	the	static	files.

This…
Using	static	tag	in	templates

href="{%	static	'base/css/site.css'	%}"

…becomes	this:
The	resulting	HTML

href="staticbase/css/site.css"

This	might	seem	unnecessary	because	we	could	just	hard-code	the	correct	URL
there:	staticbase/css/site.css.	But	we	could	also	be	serving	the	static	files
from	some	other	URL.	With	a	proper	configuration	the	same	static	tag	could
be	generating	these	kind	of	links:

Serving	static	files	from	external	location
https://static.mysite.com/base/css/site.css

OR

https://mysite.s3.amazonaws.comstaticbase/css/site.css

Changing	this	URL	will	be	trivial	since	we	are	not	hard-coding	it	in	template
files.

In	general	you	should	avoid	hard-coding	in	templates	when	Django	can	generate
the	markup	for	you.	This	is	especially	helpful	when	providing	URLS	to	views
and	translating	paths.

13.3.3	Forcing	cache	refresh	with	versioning
You	can	also	visit	the	style	URL	directly	to	see	if	the	style	file	is	served
correctly:

Visiting	the	stylesheet	path	directly
/static/base/css/site.css

If	you	are	not	seeing	styling	changes	even	if	the	site.css	seems	to	be	working,
your	browser	might	be	serving	you	stale	content	from	a	cache.	In	Chrome	you
can	do	this:

Visit	View	>	Developer	>	Developer	Tools.
Select	Network	and	Disable	cache.
Keep	the	Developer	Tools	open.

There	are	similar	Developer	tools	in	all	major	browsers.

You	can	also	force	CSS	refresh	by	adding	a	new	GET	parameter	?v=2	each	time
you	make	styling	changes:

CSS	versioning
<link	rel="stylesheet"	href="{%	static	'base/css/site.css'	\

%}?v=2">

Better	yet	is	to	let	Django	generate	a	hash	with	ManifestStaticFileStorage:
https://samuli.to/CSS-Versioning.

13.4	Summary

You	can	override	Bootstrap	theming	with	custom	stylesheets.
static	tag	generates	absolute	URLS	for	static	assets	like	CSS	and
JavaScript	files.
In	local	development	it’s	useful	to	disable	browser	caching.
In	production	environment	it’s	a	common	technic	to	add	a	hash	to	the	CSS
link	path	so	the	stylesheet	is	not	loaded	from	the	visitor’s	browser	cache.
Static	files	can	also	be	served	from	an	external	location	like	Amazon	AWS
bucket.

https://samuli.to/CSS-Versioning

14.	Creating	models

This	chapter	covers

How	to	create	and	use	models
How	to	make	database	queries

14.1	Setup
Terminal

cp	-fr	13-Static-Files-CSS	14-Models

cd	14-Models

source	../venv/bin/activate

14.2	Creating	the	Flower	model
Edit	myapp	models.py	file:

myapp/models.py
├──	14-Models

│			├──	myapp

│			│			├──	models.py	#	<	here

Add	a	Flower	class	and	a	title	attribute:
myapp/models.py

from	django.db	import	models

class	Flower(models.Model):

				title	=	models.CharField(max_length=255,	default='')

Edit	myapp	admin.py	file	and	register	the	Flower	class:
myapp/admin.py

from	django.contrib	import	admin

from	myapp.models	import	Flower

admin.site.register(Flower)

Apply	changes	to	the	database	and	create	a	superuser:
Terminal

python	manage.py	makemigrations

python	manage.py	migrate

python	manage.py	runserver

python	manage.py	createsuperuser

You	can	use	admin	as	the	username	and	password.	Just	bypass	the	validation:
Terminal

Bypass	password	validation	and	create	user	anyway?	[y/N]:	y

Superuser	created	successfully.

Visit	http://127.0.0.1:8000admin	and	add	a	few	flowers.	Here	are	some	examples
from	Wikipedia:

https://samuli.to/Amelanchier-alnifolia
https://samuli.to/Amelanchier-asiatica
https://samuli.to/Agapanthus

“Flower	object	(n)”	is	not	very	descriptive	representation	for	a	Flower	object.
Let’s	show	the	title	instead.

Edit	models.py	file	and	add	a	__str__	method:
myapp/models.py

from	django.db	import	models

class	Flower(models.Model):

				title	=	models.CharField(max_length=255,	default='')

	

				def	__str__(self):

								return	self.title

Now	we	can	see	the	actual	titles:

http://127.0.0.1:8000<i>admin</i>
https://samuli.to/Amelanchier-alnifolia
https://samuli.to/Amelanchier-asiatica
https://samuli.to/Agapanthus

14.3	Listing	flowers
Let’s	list	the	flowers	on	the	frontpage.	Edit	myapp	index.html	template	and
replace	the	contents	with	these	lines:

myapp/templates/myapp/index.html
{%	extends	'base/base.html'	%}

{%	block	content	%}

{%	for	flower	in	flowers	%}

		<div	class="card">

				<div	class="card-body">

						<h5	class="card-title">{{	flower.title	}}</h5>

						<p	class="card-text">Lorem	ipsum,	dolor	sit	amet	cons\

ectetur	adipisicing	elit.</p>

						<a	href="adminmyapp/flower/{{	flower.id	}}/change/"\

	class="card-link">Edit

						<a	href="adminmyapp/flower/{{	flower.id	}}/delete/"\

	class="card-link">Delete

				</div>

		</div>

{%	endfor	%}

{%	endblock	%}

Edit	the	myapp	views.py	file	and	replace	the	contents	with	these	lines:
myapp/views.py

from	django.shortcuts	import	render

from	myapp.models	import	Flower

def	index(request):

				flowers	=	Flower.objects.all()

				

				return	render(request,	'myapp/index.html',	{'flowers':	\

flowers	})

Now	the	frontpage	looks	something	like	this:

For	now	the	edit	and	delete	functionality	is	provided	through	the	admin	user
interface.

14.4	Details

14.4.1	Explaining	models
Models	offer	an	abstracted	way	to	interact	with	data.	With	Django’s	database-
access	API	you	can	use	Flower.objects.all()	to	get	all	Flowers	rather	than
doing	queries	like	"SELECT	*	FROM	Flowers".

To	create	models	we	subclass	django.db.models.Model:
myapp/models.py

from	django.db	import	models

class	Flower(models.Model):

				title	=	models.CharField(max_length=255,	default='')

We	import	other	modules	to	get	access	to	the	code	they	contain.

Flower	class	represents	a	database	table.
title	attribute	represents	a	database	field.

CharField	is	used	for	smaller	size	strings.	Use	TextField	for	larger	texts.

To	make	a	model	editable	in	the	admin	interface,	you	have	to	register	it	as	we
did	in	the	myapp	admin.py	file:

myapp/admin.py
admin.site.register(Flower)

Makemigrations	command	creates	the	migration	files.	These	files	are	usually
moved	with	rest	of	the	code	and	applied	in	other	environments:

Terminal
python	manage.py	makemigrations

migrate	command	updates	the	database	schema.	This	will	create	the	Flower
table	and	title	field:

Terminal
python	manage.py	migrate

createsuperuser	command	creates	the	main	administration	account.	This	user
has	all	permissions	by	default.	Make	sure	to	use	a	decent	password	and	unique
username	in	the	production	server:

Terminal
python	manage.py	createsuperuser

14.4.2	Returning	a	string	representation
__str__	method	returns	a	human-readable	representation	of	an	object.	In	this
case	we	use	the	title	attribute	to	create	it:

myapp/models.py
def	__str__(self):

				return	self.title

You	could	also	format	the	return	string	using	multiple	fields	like	this:
Formatting	the	representation

def	__str__(self):

				return	f"Title:	{self.title},	Date:	{self.date}"

14.4.3	Making	database	queries
Now	that	we	have	models,	we	can	interact	with	the	database	using	an	API.
Flower.objects.all()	returns	a	QuerySet	that	contains	all	Flower	objects	in

the	database:
Fetch	objects	from	a	database

flowers	=	Flower.objects.all()

In	the	myapp	views.py	file	we	pass	the	flowers	QuerySet	to	the	template	using
{'flowers':	flowers	}:

myapp/views.py
def	index(request):

				flowers	=	Flower.objects.all()

				

				return	render(request,	'myapp/index.html',	{'flowers':	\

flowers	})

In	the	template	we	use	a	for	loop	to	go	through	all	the	objects:
myapp/templates/myapp/index.py

{%	for	flower	in	flowers	%}

				{{	flower.title	}}

{%	endfor	%}

14.5	Summary

Django’s	database-access	API	makes	it	easy	to	interact	with	persistent	data.
You	have	to	register	a	model	with	admin.site.register()	to	make	it
available	in	the	admin	interface.
__str__	is	used	to	compute	a	human-readable	representation	of	an	object.
You	can	see	it	in	use	in	the	admin	interface.
You	can	use	a	for	loop	to	iterate	through	a	QuerySet	in	templates.

15.	Creating	a	base	project

This	chapter	covers

How	to	prepare	a	general	base	project

15.1	Setup
Terminal

cp	-fr	14-Models	15-Base-Project

cd	15-Models

source	../venv/bin/activate

15.2	Adding	a	description	field
Open	myapp	models.py	file:

myapp/models.py
├──	15-Base-Project

│			├──	myapp

│			│			├──	models.py	#	<	here

Add	the	description	field:
myapp/models.py

from	django.db	import	models

class	Flower(models.Model):

				title	=	models.CharField(max_length=255,	default='')

				description	=	models.TextField(default='')	#	<	here

Run	migrations:
Terminal

python	manage.py	makemigrations

python	manage.py	migrate

Visit	http://127.0.0.1:8000/admin/	and	add	descriptions	for	the	flowers.	You	can
find	mock	data	in	here:	https://samuli.to/Lorem.

15.3	Adding	masonry	like	columns

http://127.0.0.1:8000/admin/
https://samuli.to/Lorem

Edit	myapp	index.html	template	and	wrap	the	cards	in	card-columns	div	and	use
the	description	attribute	for	the	card	text:

myapp/templates/myapp/index.html
<div	class="card-columns">	<!--	here	-->

{%	for	flower	in	flowers	%}

		<div	class="card">

				<div	class="card-body">

						<h5	class="card-title">{{	flower.title	}}</h5>

						<p	class="card-text">{{	flower.description	|	truncate\

chars:100	}}</p>	<!--	here	-->

	 		...

				</div>

		</div>

{%	endfor	%}

</div>

card-columns	organizes	the	cards	in	a	masonry	like	columns.

truncatechars	filter	truncates	a	string	if	it’s	longer	than	the	number	specified.	It
also	adds	an	ellipsis	sequence	to	the	end.

15.4	Adding	a	footer
Add	footer	element	to	the	base.html	template:

base/templates/base/base.html
...

</main>

						

<footer	class="footer">	<!--	here	-->

				<div	class="container">

								

												Base	project	for	the	<a	target="_blank"	href="h\

ttps://leanpub.com/django-the-easy-way">"Django	-	The	Easy	\

Way"	book.

								

				</div>

</footer>

Edit	the	base	app	site.css	file	and	add	styling	for	the	.footer	class:
base/static/base/css/site.css

.footer	{

				text-align:	center;

				font-size:	16px;

				height:	60px;

				line-height:	60px;

}

You	should	now	see	something	like	this:

15.5	Summary

We	now	have	a	decent	base	project	to	work	with.	We	use	this	for	some	of
the	chapters	as	a	starting	point.	You	might	want	to	use	this	as	a	base	for
your	own	experiments.
Bootstrap	offers	some	helpful	classes	like	card-columns	that	accomplish
quite	a	bit	with	very	little	markup.
Template	filters	allow	you	to	manipulate	template	output	like	truncate
strings	or	format	dates.

16.	Creating	a	detail	page

This	chapter	covers

How	to	add	a	detail	page
How	to	create	slugs
How	to	return	canonical	URLS	with	get_absolute_url()
How	to	reverse	URLS
How	to	use	the	{%	url	%}	template	tag

16.1	Setup
Terminal

cp	-fr	15-Base-Project	16-Detail-Page

cd	16-Detail-Page

source	../venv/bin/activate

16.2	Adding	a	detail	page	path
Edit	mysite	app	urls.py	file	and	add	a	path	to	the	detail	page:

mysite/urls.py
urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('flower/<int:id>/',	myapp_views.detail,	name='deta\

il'),	#	<	here

				path('',	myapp_views.index,	name='index'),

]

16.3	Creating	the	detail	view
Edit	myapp	views.py	file	and	add	the	detail	function:

myapp/views.py
from	django.shortcuts	import	render,	get_object_or_404	#	<	\

here

from	.models	import	Flower

def	index(request):

				flowers	=	Flower.objects.all()

				

				return	render(request,	'myapp/index.html',	{'flowers':	\

flowers})

def	detail(request,	id=None):	#	<	here

				flower	=	get_object_or_404(Flower,	id=id)

				return	render(request,	'myapp/detail.html',	{'flower':	\

flower})

Make	sure	to	import	get_object_or_404.

16.4	Creating	the	detail	page	template
Create	detail.html	file	in	the	myapp	templates	folder:

Detail	page	template
├──	16-Detail-Page

│			├──	myapp

│			│			├──	templates

│			│			│			└──	myapp

│			│			│							├──	detail.html	#	<	here

Fill	it	with	these	lines:
myapp/templates/myapp/detail.py

{%	extends	'base/base.html'	%}

{%	block	content	%}

<div	class="jumbotron">

				<div	class="container">

								<h1	class="display-3">{{	flower.title	}}</h1>

								<div	class="lead">{{	flower.description	}}</div>

				</div>

</div>

Back<a>

{%	endblock	%}

Visit	http://127.0.0.1:8000flower1/	and	you	should	see	the	detail	page
jumbotron:

http://127.0.0.1:8000<i>flower</i>1/

16.5	Creating	slugs
Accessing	individual	flowers	with	an	id	is	not	the	most	friendly	approach.	Let’s
add	a	SlugField	to	hold	a	human-readable	path.

Edit	myapp	models.py	file	and	add	a	SlugField:
myapp/models.py

from	django.utils.text	import	slugify	#	<	here

from	django.db	import	models

class	Flower(models.Model):

				title	=	models.CharField(max_length=255,	default='')

				description	=	models.TextField(default='')

				slug	=	models.SlugField(blank=True,	default='')	#	<	here

				def	__str__(self):

								return	self.title

				def	save(self,	*args,	**kwargs):	#	<	here

								self.slug	=	slugify(self.title)

								super(Flower,	self).save()

We	create	the	slug	using	the	slugify()	function	in	the	save	method.

Edit	the	detail	function	in	the	myapp	views.py	file	and	change	all	id	occurrences
to	slug:

myapp/views.py
def	detail(request,	slug=None):	#	<	here

				flower	=	get_object_or_404(Flower,	slug=slug)	#	<	here

				return	render(request,	'myapp/detail.html',	{'flower':	\

flower})

16.6	Updating	the	path
Edit	mysite	app	urls.py	file	and	change	the	detail	path:

mysite/urls.py
#path('flower/<int:id>/',	myapp_views.detail,	name='detail'\

),

path('flower/<slug:slug>/',	myapp_views.detail,	name='detai\

l'),

Run	migrations:
Terminal

python	manage.py	makemigrations

python	manage.py	migrate

Edit	all	flowers	you	have	created	and	save	them	once	to	generate	slugs.

16.7	Defining	get_absolute_url()	method
We	can	add	a	“View	on	site”	link	to	the	admin	by	defining	a	get_absolute_url
method.	Edit	myapp	models.py	file	and	add	the	method	to	the	Flower	class:

myapp/models.py
from	django.utils.text	import	slugify

from	django.db	import	models

from	django.urls	import	reverse	#	<	here

class	Flower(models.Model):

	 ...

				def	__str__(self):

	 ...

				def	save(self,	*args,	**kwargs):

	 ...

				def	get_absolute_url(self):	#	<	here

								return	reverse('detail',	args=[str(self.slug)])

Edit	a	Flower	object	and	you	will	see	a	link	on	the	top	right	corner.	Click	it	to
visit	the	flower	detail	page:

16.8	Using	url	tag
Edit	myapp	index.html	file	and	use	the	url	tag	to	link	the	card	to	the	detail	page:

myapp/templates/myapp/index.html
<h5	class="card-title"><a	href="{%	url	'detail'	flower.slug\

	%}">{{	flower.title	}}</h5>

Note:	make	sure	that	each	flower	has	a	slug	by	editing	and	saving	them	once.

Visit	the	frontpage	and	click	a	title	to	see	the	detail	page.

16.9	Details

16.9.1	Capturing	URL	values
You	can	use	angle	brackets	to	capture	values	from	the	URL.	In	here	we	first
captured	the	id	number	and	then	the	slug:

mysite/urls.py
#path('flower/<int:id>/',	myapp_views.detail,	name='detail'\

),

path('flower/<slug:slug>/',	myapp_views.detail,	name='detai\

l'),

You	can	optionally	specify	a	converter	type.	int	converter	type	in	<int:id>
means	that	the	path	matches	only	integers.

16.9.2	Using	view	parameters
In	the	myapp	views.py	file	we	specify	a	slug	parameter.	The	slug	from	the	URL
will	be	stored	in	this	variable.	slug=None	means	that	the	default	value	is	None	if
a	parameter	is	not	passed	to	this	view.

myapp/views.py
def	detail(request,	slug=None):

get_object_or_404	returns	“404	Page	not	Found”	error	if	the	object	doesn’t
exist.	Otherwise	the	object	with	the	slug	from	the	URL	parameter	will	be	stored
in	the	flower	object:

myapp/views.py
flower	=	get_object_or_404(Flower,	slug=slug)

16.9.3	Explaining	slugs
Slug	is	a	short	label	that	contains	only	letters,	numbers,	underscores	or	hyphens.
It’s	often	used	to	offer	user-friendly	URLS.	“productmacbook/”	is	better	than
“product-113zxc/”.	In	our	app	we	use	the	title	field	to	create	the	slug.

In	the	myapp	models.py	we	add	the	SlugField	and	specify	blank=True	so	that
the	field	can	be	empty	for	the	save()	method	to	run:

myapp/models.py
slug	=	models.SlugField(blank=True,	default='')

Slugify	function	converts	strings	to	URL	slugs.	You	can	find	it	in
django.utils.text:

myapp/models.py
from	django.utils.text	import	slugify

You	can	override	predefined	model	methods	like	save():
myapp/models.py

def	save(self,	*args,	**kwargs):

	 self.slug	=	slugify(self.title)

	 super(Flower,	self).save()

In	the	save()	method	we	can	make	something	happen	when	the	object	is	saved.
In	this	case	we	use	it	to	generate	a	slug.

We	have	to	call	the	superclass	method	super()	so	that	the	save	method	default
behaviour	will	be	executed	and	the	object	stored	in	the	database.

*args	and	**kwargs	allow	you	to	collect	arguments	or	keyword	arguments	and
pass	them	to	the	function.	This	is	a	Python	concept	we	don’t	explore	in	this
book.

16.9.4	Reversing	URLS
You	can	define	get_absolute_url	method	to	calculate	a	canonical	URL	for	an
object.	In	here	we	use	the	reverse()	function	to	get	the	URL	to	a	flower	object:

myapp/models.py
def	get_absolute_url(self):

	 return	reverse('detail',	args=[str(self.slug)])

The	reverse	function	is	similar	to	the	url	tag	that	we	used	with	the	card
markup.	In	here	we	pass	the	detail	path	name	“detail”	and	the	slug	as	a
parameter	to	it.

If	you	have	a	path	like	this…
mysite/urls.py

path('flower',	myapp_views.detail,	name=detail),

…	then	reverse('detail')	will	generate	flower.

If	you	have	a	path	like	this…
mysit/urls.py

path('flower/<slug:slug>/',	myapp_views.detail,	name='detai\

l'),

…	then	reverse('detail',	args=[str(self.slug)])	will	generate	a	path	like
this	floweramelanchier-asiatica/.

16.10	Summary

Use	angle	brackets	with	paths	to	capture	URL	values:
'flower/<slug:slug>/'.
get_object_or_404()	tries	to	fetch	an	object	but	returns	a	“Page	not
Found”	error	if	the	object	is	not	found.
SlugField	can	be	used	to	store	a	user-friendly	path.
It’s	useful	to	define	the	get_absolute_url()	method	for	a	model	to	have
an	easy	access	to	canonical	URLS.
Use	{%	url	%}	tag	or	{{	object.get_absolute_url	}}	in	templates
instead	of	hardcoding	URLS.

17.	Adding	category	as	a	many-to-one
relationhip

This	chapter	covers

Many-to-one	relationships	with	ForeignKey
How	to	access	related	objects

17.1	Setup
Terminal

cp	-fr	15-Base-Project	17-Category-ManyToOne

cd	17-Category-ManyToOne

source	../venv/bin/activate

17.2	Adding	category	field	and	model
Edit	myapp	models.py	file	and	add	a	Category	class	and	a	category	field:

myapp/models.py
from	django.db	import	models

class	Category(models.Model):	#	<	here

				title	=	models.CharField(max_length=255,	default='')

				def	__str__(self):

								return	self.title

class	Flower(models.Model):

				

				title	=	models.CharField(max_length=255,	default='')

	 description	=	models.TextField(default='')

	 category	=	models.ForeignKey(Category,	null=True,	on_delet\

e=models.PROTECT)	#	<	here

				def	__str__(self):

								return	self.title

Edit	myapp	admin.py	and	register	the	Category	model:
myapp/admin.py

from	django.contrib	import	admin

from	myapp.models	import	Flower,	Category	#	<	here

admin.site.register(Flower)

admin.site.register(Category)	#	<	here

Run	migrations:
Terminal

python	manage.py	makemigrations

python	manage.py	migrate

Edit	the	flowers	and	select	a	category	for	each	item.	You	can	create	the
referenced	Category	object	while	you	are	editing	the	Flower	objects:

17.3	Updating	the	homepage	template
Edit	the	myapp	index.html	template	file	and	print	out	the	category:

myapp/templates/myapp/index.html
<p	class="card-text">{{	flower.description	|	truncatechars:\

100	}}</p>

{{	flower.category	}}	<!-\

-	here	-->

17.4	Details

17.4.1	Examining	many-to-one	relationships
ForeignKey	is	a	many-to-one	relationship:

myapp/models.py
category	=	models.ForeignKey(Category,	on_delete=models.PRO\

TECT,	null=True)

Categories	can	link	to	many	flowers	but	each	flower	can	have	a	reference	to	only
one	category.

ForeignKey	field	requires	two	arguments:	the	related	model	class	and	on_delete
option.

The	Flower	model	is	related	to	Category	class	so	we	specify	that	as	the	first
argument.

on_delete=models.PROTECT	prevents	the	deletion	of	a	Category	object	if	it’s
referenced	by	a	Flower	object:

You	can	delete	categories	that	are	not	referenced	by	any	flower.

null=True	means	that	an	empty	field	will	be	stored	as	NULL	in	the	database.
This	allows	us	to	run	the	initial	migration	without	specifying	a	default	value.

17.4.2	Accessing	related	objects
You	can	access	related	objects	the	same	way	you	access	any	attribute:

Dot	notation

{{	flower.category	}}

If	you	need	to	get	all	flowers	that	link	to	a	specific	category,	you	can	use	_set
like	this:

Get	related	flowers
{{	category.flower_set	}}

You	can	test	this	by	adding	the	following	code	inside	the	card	div	in	the	myapp
index.html	file:

myapp/templates/myapp/index.html
<div	class="card">

	 ...

				<hr>

		

				All	flowers	in	the	{{	flower.category	}}</stron\

g>	category:

				{%	for	c_flower	in	flower.category.flower_set.all	%}

						{{	c_flower	}}

				{%	endfor	%}

						

</div>

Use	all	in	flower.category.flower_set.all	so	you	have	an	iterable	to	loop
through.

17.5	Summary

ForeignKey	is	a	many-to-one	relationship.	Another	example	would	be	a	car
model	that	has	a	foreignkey	relationship	to	a	brand	model.	Each	car	object

can	link	to	only	one	brand	object	like	“Audi”	or	“Mercedes-Benz”	but	the
brands	can	link	to	many	car	objects.
Make	sure	to	register	the	Category	model	in	the	admin.py	file	so	you	can
create	the	referenced	objects	on	the	fly.
If	you	set	null=True	for	a	field,	empty	values	will	be	stored	as	NULL	in	the
database.

18.	Referencing	tags	with	a	ManyToMany	field

This	chapter	covers

How	to	reference	multiple	items	with	many-to-many	relationships

18.1	Setup
Terminal

cp	-fr	15-Base-Project	18-Tags-ManyToMany

cd	18-Tags-ManyToMany

source	../venv/bin/activate

18.2	Adding	the	tags	field
Edit	myapp	models.py	file	and	add	Tag	model	and	tags	field:

myapp/models.py
from	django.db	import	models

class	Tag(models.Model):	#	<	here

				title	=	models.CharField(max_length=255,	default='')

				def	__str__(self):

								return	self.title

class	Flower(models.Model):

				

				title	=	models.CharField(max_length=255,	default='')

				description	=	models.TextField(default='')

				tags	=	models.ManyToManyField(Tag)	#	<	here

				def	__str__(self):

								return	self.title

Edit	myapp	admin.py	file	and	register	the	Tag	model:
myapp/admin.py

from	django.contrib	import	admin

from	myapp.models	import	Flower,	Tag	#	<	here

admin.site.register(Flower)

admin.site.register(Tag)	#	<	here

Run	migrations:

Run	migrations:
Terminal

python	manage.py	makemigrations

python	manage.py	migrate

Edit	a	flower	and	add	some	tags.	Make	sure	to	select	more	than	one	tag:

18.3	Updating	the	homepage	template
Edit	the	myapp	index.html	template	file	and	print	out	the	tags:

myapp/templates/myapp/index.html
<div	class="card">

	 ...

				<hr>

				{%	for	tag	in	flower.tags.all	%}

	 {{	tag	}}

				{%	endfor	%}

</div>

18.4	Summary

ManyToMany	relationship	allows	our	flowers	to	reference	many	tags	and
the	tags	to	reference	many	flowers.

19.	Creating	a	tags	page

This	chapter	covers

How	to	create	a	“tags”	page	to	display	tagged	items
How	to	do	lookups	across	relationships
How	to	re-use	templates

19.1	Setup
Terminal

cp	-fr	18-Tags-ManyToMany	19-Tags-Page

cd	19-Tags-Page

source	../venv/bin/activate

19.2	Adding	tags	path
Edit	mysite	urls.py	file	and	add	a	path	to	the	tags	page:

mysite/urls.py
urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	myapp_views.index,	name='index'),

				path('tags/<slug:slug>/',	myapp_views.tags,	name='tags'\

),	#	<	here

]

19.3	Adding	the	slug	field
Edit	myapp	models.py	file	and	add	a	SlugField	to	the	Tag	model:

myapp/models.py
from	django.db	import	models

from	django.utils.text	import	slugify	#	<	here

class	Tag(models.Model):	

				title	=	models.CharField(max_length=255,	default='')

				slug	=	models.SlugField(blank=True,	default='')	#	<	here

				def	__str__(self):

								return	self.title

				def	save(self,	*args,	**kwargs):	#	<	here

								self.slug	=	slugify(self.title)

								super(Tag,	self).save()

19.4	Creating	the	tags	view
Edit	myapp	views.py	file	and	add	a	tags	view	function:

myapp/views.py
from	django.shortcuts	import	render

from	myapp.models	import	Flower

def	index(request):

				flowers	=	Flower.objects.all()

				

				return	render(request,	'myapp/index.html',	{'flowers':	\

flowers	})

def	tags(request,	slug=None):	#	<	here

				flowers	=	Flower.objects.filter(tags__slug=slug)

				

				return	render(request,	'myapp/index.html',	{'flowers':	\

flowers	})

Run	migrations:
Terminal

python	manage.py	makemigrations

python	manage.py	migrate

Visit	adminmyapp/tag/.	Edit	and	save	the	tag	objects	to	generate	slugs.

19.5	Updating	homepage	template
Edit	myapp	index.html	file	and	use	{%	url	'tags'	tag.slug	%}	to	generate	the
link:

myapp/templates/myapp/index.html
<hr>

{%	for	tag	in	flower.tags.all	%}

	 {{	t\

ag	}}	<!--	here	-->

{%	endfor	%}

Now	the	frontpage	tags	link	to	the	tags	page:

Click	the	tag	links	and	you	will	see	the	according	tag	page:	tagsrosales/.	If
you	have	Flowers	tagged	with	“Rosales”,	you	will	only	see	those	items	in	this
page:

19.6	Details

19.6.1	Doing	lookups	across	relationships
In	myapp	views.py	file	we	fetch	objects	that	are	tagged	with	a	specific	tag:

myapp/views.py
def	tags(request,	slug=None):

				flowers	=	Flower.objects.filter(tags__slug=slug)	#	<	he\

re

				

				return	render(request,	'myapp/index.html',	{'flowers':	\

flowers	})

With	filter	function	you	can	return	a	QuerySet	that	match	lookup	parameters.
In	this	case	our	parameter	is	tags__slug=slug.	This	will	return	all	flower
objects	that	has	a	reference	to	a	tag	object	with	the	slug	from	the	URL.
tagsrosales/	would	fetch	all	flowers	tagged	with	“Rosales”.

Django	has	plenty	of	other	query	interaction	tools.	See
https://samuli.to/QuerySet-API.

19.6.2	Reusing	templates
You	might	have	noticed	that	we	are	using	the	same	myapp	index.html	in	the
frontpage	and	in	the	tags	page.	Reusing	templates	will	save	you	a	lot	of	time	and
makes	it	easier	to	make	changes.	Now	if	we	want	to	change	the	card	styling	or
markup,	we	can	do	it	in	one	place.	The	changes	will	show	up	in	the	frontpage
and	in	the	tags	page.

19.7	Summary

Django	offers	a	big	selection	of	methods	like	filter()	to	modify	your	data
queries.
You	can	do	lookups	through	relationships	using	the	double	underscore	(__)
syntax:	tags__slug=slug.
Reusing	templates	will	make	your	app	look	consistent	and	easier	to
maintain.

https://samuli.to/QuerySet-API

20.	Creating	a	search	feature

This	chapter	covers

How	to	create	a	simple	search	feature
How	to	work	with	GET	parameters

20.1	Setup
Terminal

cp	-fr	18-Tags-ManyToMany	20-Search

cd	20-Search

source	../venv/bin/activate	

20.2	Adding	a	search	form
Edit	base.html	file	and	add	the	following	<form>	element	at	the	bottom	of	the
<nav>	element:

base/templates/base/base.html
<nav>

..

				<form	action="/"	method="get"	class="form-inline	mt-2	m\

t-md-0">

								<input	id="q"	name="q"	value="{{	request.GET.q	}}"	\

class="form-control	mr-sm-2"	type="text"	placeholder="Searc\

h..."	aria-label="Search">

								<button	class="btn	btn-outline-success	my-2	my-sm-0\

"	type="submit">Search</button>

				</form>

</nav>

20.3	Updating	the	index	view
Edit	the	myapp	views.py	file	and	replace	the	contents	with	these	lines:

myapp/views.py

from	django.shortcuts	import	render

from	myapp.models	import	Flower

def	index(request):

				q	=	request.GET.get('q',	None)

				items	=	''

				if	q	is	None	or	q	is	"":

								flowers	=	Flower.objects.all()

				elif	q	is	not	None:

								flowers	=	Flower.objects.filter(title__contains=q)

				

				return	render(request,	'myapp/index.html',	{'flowers':	\

flowers	})

Now	you	can	search	titles	by	providing	a	q	GET	parameter	in	the	URL:

http://127.0.0.1:8000/?q=aga

We	are	again	using	the	same	index.html	template:

20.4	Details
When	a	user	requests	a	page	like	our	frontpage,	Django	creates	an	HttpRequest
object.	This	object	contains	metadata	about	that	request.	This	includes	all	GET
parameters.

We	can	then	access	those	parameters	in	HttpRequest.GET.	In	this	case	we	only
send	one,	the	q	parameter.	This	is	then	used	in	the	myapp	index	view.

If	we	don’t	provide	the	q	parameter	or	it	is	an	empty	string,	then	all	objects	are
fetched:	flowers	=	Flower.objects.all().

If	q	is	provided,	we	fetch	all	flowers	where	the	title	field	contains	the	query
string:	Flower.objects.filter(title__contains=q).

20.5	Summary

Bootstrap	provides	a	generic	template	that	you	can	use	for	the	search	form.
HttpRequest	object	contains	metadata	about	a	request.	We	can	act	on	that
data	inside	views.	Like	filter	items	based	on	a	GET	parameter.

21.	Working	with	forms:	creating	items

This	chapter	covers

How	to	create	forms	with	ModelForm

21.1	Setup
Terminal

cp	-fr	15-Base-Project	21-Forms-Create

cd	21-Forms-Create

source	../venv/bin/activate

21.2	Creating	the	edit	form
Create	an	edit.html	file	in	the	myapp	templates	folder:

Template	location
├──	myapp

│			├──	templates

│			│			└──	myapp

│			│							├──	edit.html	#	<	here

│			│							├──	index.html

Fill	it	with	these	lines:
myapp/templates/myapp/edit.html

{%	extends	'base/base.html'	%}

{%	block	content	%}

<form	action=""	method="post">

				{%	csrf_token	%}

				<div	class="row	justify-content-center">

						<div	class="col-6">

								{{	form	}}

								<hr	class="mb-3">

								<button	class="btn	btn-primary	btn-lg	btn-block"	ty\

pe="submit">Submit</button>

						</div>

				</div>

</form>

{%	endblock	%}

We	will	use	this	template	to	create	and	edit	flower	items.

21.3	Creating	the	form	class
Create	forms.py	file	in	the	myapp	folder:

forms.py	location
├──	myapp

	 ..

│			├──	admin.py

│			├──	apps.py

│			├──	forms.py	#	<	here

Fill	it	with	these	lines:
myapp/forms.py

from	django	import	forms

from	django.forms	import	ModelForm

from	.models	import	Flower

class	MyForm(ModelForm):

				title	=	forms.CharField(label='Title',	

								widget=	forms.TextInput(attrs={'class':	'form-contr\

ol	'}))	

				class	Meta:

								model	=	Flower

								fields	=	['title']

21.4	Updating	urlpatterns
Edit	mysite	app	urls.py	file	and	add	the	create	path:

mysite/urls.py
urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	myapp_views.index,	name='index'),

				path('flower/create/',	myapp_views.create,	name='create\

'),	#	<	here

]

21.5	Creating	the	view	function
Edit	myapp	views.py	file	and	add	a	create	view	below	the	index	view:

myapp/views.py
from	django.shortcuts	import	render

from	.models	import	Flower

from	django.http	import	HttpResponseRedirect	#	<	here

from	.forms	import	MyForm	#	<	here

def	index(request):

	 ...

def	create(request):	#	<	here

				if	request.method	==	'POST':

								form	=	MyForm(request.POST)

								if	form.is_valid():

												form.save()

												return	HttpResponseRedirect('/')

				else:

								form	=	MyForm()

				return	render(request,	'myapp/edit.html',	{'form':	form\

})

21.6	Adding	a	menu	item
Edit	base	app	base.html	file	and	add	a	menu	link	to	the	flower	creation	form:

base/templates/base/base.html

				<a>Home

				<li	class="nav-item">	<!--	here	-->

								

								Create	Flower

								

				

I	removed	unimportant	CSS	classes	for	the	book.	The	complete	markup	is
available	at	the	GitHub	repository.

Visit	flowercreate/	and	create	a	flower:

The	new	flower	will	now	show	up	on	the	frontpage:

Note	that	the	bootstrap	class	card-columns	creates	a	masonry	like	arrangement,
not	a	grid.

21.7	Details

21.7.1	Protecting	against	cross	site	request	forgeries
In	the	myapp	edit.html	file	we	define	a	CSRF	token:

myapp/templates/myapp/edit.html
<form	action=""	method="post">

				{%	csrf_token	%}	#	<	here

	 ...

</form>

This	token	adds	protection	against	Cross	Site	Request	Forgeries	where	malicious
parties	can	cause	visitor’s	browser	to	make	a	request	to	your	website.	The
cookies	in	the	visitor	browser	make	the	app	think	that	the	request	came	from	an
authorized	source.

Use	the	token	only	in	POST	requests.	You	don’t	need	it	with	GET	requests.	Any
request	that	has	a	potential	to	change	the	system	shoud	be	a	POST	request.	Like
when	we	add	flowers	to	the	database.

GET	requests	are	often	used	in	situations	where	the	system	state	is	not	changed,
like	when	we	query	database	with	the	search	form.	The	q	search	word	parameter
is	public	data	we	don’t	need	to	hide.	You	want	to	be	able	to	share	links	like	this:
https://samulinatri.com/search?q=Django.

Also	you	shouldn’t	use	the	token	with	forms	that	point	to	external	URLS.	This
introduces	a	vulnerability	as	the	token	is	leaked.	action=""	in	the	form	means

https://samulinatri.com/search?q=Django

that	the	POST	data	is	sent	to	the	current	internal	URL	(flowercreate/).

21.7.2	Adding	form	fields
Easiest	way	to	generate	HTML	markup	for	the	form	fields	is	to	use	the	{{	form
}}	template	variable:

myapp/templates/myapp/edit.html
<div	class="col-6">

				{{	form	}}

</div>

This	will	produce	the	following	HTML:
Generated	HTML

<div	class="col-6">

				<label	for="id_title">Title:</label>

				<input	type="text"	name="title"	maxlength="255"	class="\

form-control"	required=""	id="id_title">

</div>

21.7.3	Using	the	Form	class
Form	class	represents	a	form.	It	describes	a	form	in	a	similar	way	the	Flower
model	describes	how	fields	map	to	database	fields.	With	forms	the	fields	map	to
HTML	elements.

ModelForm	is	a	helper	class	that	creates	that	Form	class	from	a	Model:
myapp/forms.py

class	MyForm(ModelForm):

				title	=	forms.CharField(label='Title',	

								widget=	forms.TextInput(attrs={'class':	'form-contr\

ol	'}))	

				class	Meta:

								model	=	Flower

								fields	=	['title']

With	ModelForm	we	don’t	need	to	specify	the	fields	again.	We	already	add	the
fields	in	the	Flower	model:

Fields	are	already	specified	in	the	models.py	file
class	Flower(models.Model):

				title	=	models.CharField(max_length=255,	default='')

				description	=	models.TextField(default='')

This	would	be	enough	to	create	a	form	to	edit	all	Flower	fields:
myapp/forms.py

myapp/forms.py
class	MyForm(ModelForm):

				class	Meta:

								model	=	Flower

								fields	=	'__all__'	#	<	here

It’s	recommended	to	explicitly	specify	all	the	fields	like	this	though:
Fields	should	be	explicitly	specified

fields	=	['title',	'description']

Otherwise	you	could	unintentionally	expose	fields	to	users	when	you	add	them
to	the	model.

A	form	field	is	represented	as	an	HTML	“widget”	that	produces	some	default
markup.	We	can	modify	that	widget	in	the	form	definition:

Adding	CSS	class	for	Bootstrap
title	=	forms.CharField(label='Title',	

								widget	=	forms.TextInput(attrs={'class':	'form-cont\

rol	'}))	

The	only	reason	we	did	this	is	because	we	wanted	to	add	the	form-control	CSS
class	to	the	title	input	element.	This	way	we	can	take	advantage	of	the	Bootstrap
textual	form	control	styling.

21.7.4	Examining	the	view	function
In	the	myapp	views.py	file	we	added	the	create	view	function:

myapp/views.py
def	create(request):

				if	request.method	==	'POST':

								form	=	MyForm(request.POST)

								if	form.is_valid():

												form.save()

												return	HttpResponseRedirect('/')

				else:

								form	=	MyForm()

				return	render(request,	'myapp/edit.html',	{'form':	form\

})

First	we	check	if	the	request	is	POST.	If	it’s	not,	we	create	an	empty	form	that
we	pass	to	the	edit.html	template:

Empty	form	is	passed	to	the	template
if	request.method	==	'POST':

				..

else

				form	=	MyForm()

return	render(request,	'myapp/edit.html',	{'form':	form})

This	is	the	default	scenario	when	you	first	visit	the	flowercreate/	page.	We	need
to	create	the	form	object	so	that	the	form	HTML	can	be	generated	using	the
template	tags.

If	the	request	is	POST,	we	create	the	form	object	and	populate	it	with	the	data
from	the	request:

Populating	the	form	object	with	the	POST	data
if	request.method	==	'POST':

				form	=	MyForm(request.POST)

Then	we	check	if	the	form	data	is	valid	and	save	the	flower:
Validating	and	saving	the	data

if	form.is_valid():

				form.save()

				return	HttpResponseRedirect('/')

Django	has	built-in	validators	that	it	uses	internally.	For	example
EmailValidator	for	email	addresses	and	validate_slug	for	slugs.	If	the	input
doesn’t	satisfy	the	validator,	a	ValidationError	is	raised.

The	save()	method	creates	the	flower	object	from	the	data	bound	to	the	form
and	stores	it	in	the	database.

When	we	submit	a	form	using	a	POST	request,	our	create	view	will	instantiate
the	form	object	and	populate	it	with	the	form	data	from	the	request.	We	“bind”
the	data	to	the	form.	It’s	now	a	“bound”	form.

The	validated	data	can	be	accessed	in	the	form.cleaned_data	dictionary:
Accessing	validated	data

if	form.is_valid():

				print(form.cleaned_data['title'])	#	<	here

				form.save()

				return	HttpResponseRedirect('/')

This	will	print	the	validated	title	field	data	in	the	terminal:

And	finally	HttpResponseRedirect('/')	redirects	the	visitor	to	the	frontpage.

21.8	Summary

Use	{%	csrf_token	%}	with	internal	POST	forms	to	protect	against	Cross
Site	Request	Forgeries.
{{	form	}}	template	variable	generates	markup	for	all	form	fields.
Form	class	represents	a	form.	Its	fields	map	to	HTML	elements.
ModelForm	is	a	helper	class	that	allows	us	create	the	Form	class	from	a
Django	model.
A	form	field	is	represented	as	an	HTML	“widget”.	You	can	modify	this
widget	in	the	form	definition.
The	submitted	form	is	processed	in	the	create	view.
Django	has	built-in	validation	that	triggers	a	ValidationError	when	the	data
doesn’t	validate.
validated	data	is	stored	in	the	form.cleaned_data	dictionary.
In	the	create	view	we	bind	the	form	data	to	the	form	instance.
form.save()	method	creates	a	database	object	using	the	bound	data.

22.	Working	with	forms:	editing	items

This	chapter	covers

How	to	create	an	edit	form
Primary	key	and	id	field

22.1	Setup
Terminal

cp	-fr	21-Forms-Create	22-Forms-Edit

cd	22-Forms-Edit

source	../venv/bin/activate

22.2	Adding	the	path
Edit	mysite	app	urls.py	file	and	add	the	edit	path:

mysite/urls.py
urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	myapp_views.index,	name='index'),

				path('flower/create/',	myapp_views.create,	name='create\

'),

				path('flower/edit/<int:pk>/',	myapp_views.edit,	name='e\

dit'),	#	<	here

]

22.3	Creating	the	edit	view
Edit	myapp	views.py	file	and	add	the	edit	view	function:

myapp/views.py
from	django.shortcuts	import	render,	get_object_or_404	#	<	\

here

from	.models	import	Flower

from	django.http	import	HttpResponseRedirect

from	.forms	import	MyForm

def	index(request):

	 ...

def	create(request):

	 ...

def	edit(request,	pk=None):	#	<	here

				flower	=	get_object_or_404(Flower,	pk=pk)

				if	request.method	==	"POST":

								form	=	MyForm(request.POST,	instance=flower)

								if	form.is_valid():

												form.save()

												return	HttpResponseRedirect('/')

				else:

								form	=	MyForm(instance=flower)

								

				return	render(request,	'myapp/edit.html',	{'form':	form\

})

22.4	Updating	the	edit	link
Edit	myapp	index.html	file	and	change	the	edit	link	to	this:

myapp/templates/myapp/index.html
E\

dit

You	can	now	edit	flowers	by	clicking	the	Edit	links	on	the	frontpage.

22.5	Details

22.5.1	Capturing	the	id
In	the	edit	path	we	capture	the	flower	id:

Edit	path
path('flower/edit/<int:pk>/',	myapp_views.edit,	name='edit'\

),

“pk”	is	a	shortcut	to	the	model	primary	key.	“id”	is	the	name	of	the	default
primary	key	field.	Take	a	look	at	the	0001_initial.py	file	in	the	myapp	migrations

folder:
Django	creates	the	id	field	automatically

...

fields=[

	 ('id',	models.AutoField..),	#	<	here

	 ('title',	models.CharFi..)],

...

Django	will	automatically	add	the	id	AutoField	if	you	don’t	specify
primary_key=True	on	any	of	the	fields.

It’s	more	flexible	to	use	the	flower.pk	shortcut	when	accessing	the	id	field.	This
way	you	can	use	the	same	code	to	access	the	id	even	if	you	change	the	primary
key	field.

22.5.2	Examining	the	edit	view
In	myapp	views.py	file	we	add	the	edit	view	function.	It	is	very	much	like	the
create	view	function	but	with	a	few	changes:

Edit	view	is	almost	like	the	create	view
def	edit(request,	pk=None):	#	<	new

				flower	=	get_object_or_404(Flower,	pk=pk)	#	<	new

				if	request.method	==	"POST":

								form	=	MyForm(request.POST,	instance=flower)	#	<	new

								if	form.is_valid():

												form.save()

												return	HttpResponseRedirect('/')

				else:

								form	=	MyForm(instance=flower)	#	<	new

								

				return	render(request,	'myapp/edit.html',	{'form':	form\

})

First	we	pass	the	captured	pk	to	the	view	with	pk=None.	None	is	the	default	value
if	pk	argument	is	not	provided.

get_object_or_404	raises	an	Http404	exception	and	returns	a	standard	404
(page	not	found)	error	page	if	the	object	matching	the	lookup	parameters
(pk=pk)	is	not	found.

MyForm	inherits	from	ModelForm	that	can	accept	a	model	instance	as	a
keyword	argument.	This	means	that	the	form.save()	method	will	now	update
an	existing	flower	instead	of	creating	a	new	one.

We	also	use	it	to	populate	the	initial	form	with	form	=
MyForm(instance=flower).	When	you	visit	floweredit/<pk>/	you	will	be	able
to	see	and	edit	the	existing	data:

22.6	Summary

pk	is	a	shortcut	to	the	model	primary	key	field.	Django	creates	a	default	id
field	automatically	unless	you	set	the	primary	key	on	any	field	with
primary_key=True.
get_object_or_404	fetches	an	object	or	returns	a	page	not	found	view	if	it
can’t	find	the	object	matching	the	lookup	parameters.
instance	keyword	argument	allows	us	to	update	an	existing	object	with
form.save()	method	and	populate	the	form	with	an	existing	data	for
editing.

23.	Working	with	forms:	customization

This	chapter	covers

How	to	change	the	order	of	the	fields
How	to	render	validation	errors	manually

23.1	Setup
Terminal

cp	-fr	22-Forms-Edit	23-Forms-Customization

cd	23-Forms-Customization

source	../venv/bin/activate

23.2	Adding	the	description	field
If	you	want	to	have	more	control	for	the	form	markup,	you	can	print	out	the
form	fields	manually.	Let’s	add	a	description	field	to	the	form	and	customize	the
template.

Edit	myapp	forms.py	file	and	add	the	description	field	to	the	fields	list:
myapp/forms

from	django	import	forms

from	django.forms	import	ModelForm

from	.models	import	Flower

class	MyForm(ModelForm):

				title	=	forms.CharField(label='Title',	

								widget	=	forms.TextInput(attrs={'class':	'form-cont\

rol	'}))	

				description	=	forms.CharField(label='Description',	#	<	\

here

								widget	=	forms.Textarea(attrs={'class':	'form-contr\

ol	'}))	

				class	Meta:

								model	=	Flower

								fields	=	['title',	'description']	#	<	here

Edit	myapp	edit.html	template	and	replace	the	{{	form	}}	template	variable
with	these	lines:

myapp/templates/myapp/edit.html
{{	form.non_field_errors	}}

<div	class="form-group">

				{{	form.description.errors	}}

				{{	form.description.label_tag	}}

				{{	form.description	}}

</div>

<div	class="form-group">

				{{	form.title.errors	}}

				{{	form.title.label_tag	}}

				{{	form.title	}}

</div>

23.3	Details

23.3.1	Changing	field	order
If	you	just	need	to	change	the	order	of	the	fields,	you	can	do	it	in	the	myapp
forms.py	file:

Update	fields	list	to	change	order
class	Meta:

				model	=	Flower

				fields	=	['description',	'title']	#	<	here

If	you	need	more	flexibility,	edit	the	myapp	edit.html	template	and	print	the	form
fields	manually.

23.3.2	Customizing	validation	errors

Inputing	invalid	data	generates	a	validation	error.	Use	{{	form.title.errors
}}	to	display	those	errors	manually.

{{	form.non_field_errors	}}	will	render	non-field	specific	general	errors.

Note	that	{{	form	}}	renders	all	fields	with	the	errors.

You	could	go	even	further	and	loop	through	the	errors	manually.	Replace	{{
form.title.errors	}}	with	these	lines:

Looping	through	errors	manually
{%	if	form.title.errors	%}

				<ol	class="alert	alert-danger">

				{%	for	error	in	form.title.errors	%}

								{{	error|escape	}}

				{%	endfor	%}

				

{%	endif	%}

Check	out	the	official	documentation	for	more	theming	options:
https://samuli.to/Form-Templates

23.4	Summary

You	can	change	the	form	field	order	in	the	form	definition:	fields	=
['description',	'title'].
{{	form	}}	renders	all	markup	for	the	fields	you	specified	in	the	form
class.	Including	the	errors.

https://samuli.to/Form-Templates

For	more	control,	you	can	use	{{	form.title.errors	}},	{{
form.title.label_tag	}}	and	{{	form.title	}}	to	render	the	form
markup	manually.

24.	Creating	and	deleting	objects

This	chapter	covers

How	to	delete	Flower	objects	with	a	custom	view
How	to	use	the	Python	interactive	interpreter	to	manipulate	objects	and
interact	with	Django

24.1	Setup
Terminal

cp	-fr	23-Forms-Customization	24-Object-Manipulation

cd	24-Object-Manipulation

source	../venv/bin/activate

24.2	Adding	the	delete	path
Edit	mysite	urls.py	file	and	add	the	delete	path:

mysite/urls.py
urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	myapp_views.index,	name='index'),

				path('flower/create/',	myapp_views.create,	name='create\

'),

				path('flower/edit/<int:pk>/',	myapp_views.edit,	name='e\

dit'),

				path('flower/delete/<int:pk>/',	myapp_views.delete,	nam\

e='delete'),	#	<	here

]

24.3	Adding	the	delete	view
We	don’t	necessary	need	a	form	to	delete	items.	You	could	simple	capture	the	pk
from	the	URL	and	do	the	deletion	logic	in	a	view.

Edit	myapp	views.py	file	and	add	the	delete	view:
myapp/views.py

def	index(request):

	 ...

def	create(request):

	 ...

def	edit(request,	pk=None):

	 ...

def	delete(request,	pk=None):	#	<	here

				flower	=	get_object_or_404(Flower,	pk=pk)

				flower.delete()

								

				return	render(request,	'myapp/index.html')

24.4	Updating	the	delete	link
Edit	the	myapp	index.html	template	and	update	the	delete	link:

myapp/templates/myapp/index.html
<div	class="card-body">

	 ...

	 \

Edit

	 <a	href="{%	url	'delete'	pk=flower.pk	%}"	class="card-link\

">Delete	#	<	here

</div>

You	can	now	use	the	delete	links	on	the	homepage	to	erase	items.

24.5	Details
Make	sure	you	have	activated	the	virtual	environment	and	open	the	Python
interactive	interpreter:

Interactive	interpreter
python	manage.py	shell

>>>	from	myapp.models	import	Flower

>>>	flower	=	Flower(title="Agathis")

>>>	flower	

<Flower:	Agathis>

>>>	flower.save()

python	manage.py	shell	starts	the	interactive	session.

Flower	model	can	be	instantiated	like	any	class.	Flower(title="Agathis")
creates	a	new	Flower	object	with	the	title	“Agathis”.

Flower.save()	stores	it	in	the	database.	Visit	homepage	to	confirm	that	it	was
actually	created:

In	the	myapp	views.py	file	we	use	flower.delete()	method	to	delete	the	object
from	the	database:

delete()	method	erases	the	object	from	the	database
flower	=	get_object_or_404(Flower,	pk=pk)

flower.delete()

You	can	do	the	same	thing	in	the	interactive	interpreter:
Interactive	interpreter

>>>	flower.delete()

(1,	{'myapp.Flower':	1})

>>>

flower.delete()	returns	how	many	objects	were	deleted	and	how	many
deletions	were	executed	by	object	type:	{'myapp.Flower':	1}.	We	deleted	1
object	of	the	type	Flower.

You	can	get	and	update	an	object	like	this:
Interactive	interpreter

>>>	flower	=	Flower.objects.get(pk=1)

>>>	flower

<Flower:	Amelanchier	alnifolia...>

>>>	flower.title	=	"UPDATED"

>>>	flower.save()

>>>	flower

<Flower:	UPDATED>

>>>

24.6	Summary

You	can	use	the	Python	interactive	interpreter	to	run	Python	code	and
interact	with	your	Django	apps.
object	=	Class()	instantiates	a	Class	object.
object.save()	saves	the	object	to	the	database	or	updates	it.
object.delete()	deletes	the	object	from	the	database.

25.	Authenticating	users	with	Allauth

This	chapter	covers

How	to	create	a	complete	authentication	system	with	Allauth
How	to	use	Bootstrap	4	with	the	default	templates

25.1	Setup
Terminal

cp	-fr	15-Base-Project	25-Authentication

cd	25-Authentication

source	../venv/bin/activate	

25.2	Installing	Allauth
Install	the	Allauth	package:

Terminal
pip	install	django-allauth

Update	the	settings.py	file:
mysite/settings.py

INSTALLED_APPS	=	[

				'django.contrib.admin',

				'django.contrib.auth',

				'django.contrib.contenttypes',

				'django.contrib.sessions',

				'django.contrib.messages',

				'django.contrib.staticfiles',

				'django.contrib.sites',	#	<	here

				'allauth',	#	<	here

				'allauth.account',	#	<	here

				'allauth.socialaccount',	#	<	here

				'base',

				'myapp',

]

SITE_ID	=	1	#	<	here

EMAIL_BACKEND	=	'django.core.mail.backends.console.EmailBac\

kend'	#	<	here

LOGIN_REDIRECT_URL	=	'/'	#	<	here

Add	accounts	path	to	the	urls.py	file:
mysite/urls.py

mysite/urls.py
from	django.contrib	import	admin

from	django.urls	import	path,	include	#	<	here

from	myapp	import	views	as	myapp_views

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	myapp_views.index,	name='index'),

				path('accounts/',	include('allauth.urls')),	#	<	here

]

Run	migrations:
Terminal

python	manage.py	migrate

Open	another	browser	or	logout	and	create	a	test	account	in	accountssignup/:

25.3	Creating	template	files
Edit	mysite	app	settings.py	file	and	add	the	templates	folder	to	the	'DIRS':	[],
list:

Locating	templates

'DIRS':	[os.path.join(BASE_DIR,	'templates'),	os.path.join(\

BASE_DIR,	'templates',	'allauth')],

Create	a	templates	folder	in	the	root	of	the	site.	Create	allauth	folder	inside	it.
Copy	the	account	folder	from	the	allauth	package	folder	inside	it:

Terminal
mkdir	templates

cd	templates

mkdir	allauth

cd	allauth

cp	-fr	../../../venv/lib/python3.7/site-packages/allauth/te\

mplates/account	.

The	folder	structure	should	now	look	like	this:
Allauth	templates

.

├──	base

├──	db.sqlite3

├──	manage.py

├──	myapp

├──	mysite

└──	templates

				└──	allauth

								└──	account

	 	 	 ...

												├──	base.html

												├──	login.html

												├──	logout.html

	 	 	 ...

Change	the	base.html	contents	in	the	account	folder	to	this:
templates/allauth/account/base.html

{%	extends	"base/base.html"	%}

Logout	in	accounts/logout/	and	visit	accountssignin/.	You	should	see	the	login
form	wrapped	inside	the	base	theme:

25.4	Updating	the	templates	for	Bootstrap	4
Install	django-widget-tweaks	package:

Terminal
pip	install	django-widget-tweaks

Add	widget_tweaks	to	the	INSTALLED_APPS	list:
mysite/settings.py

INSTALLED_APPS	=	[

	 ...

				'allauth',

				'allauth.account',

				'allauth.socialaccount',

				'widget_tweaks',	#	<	here

				'base',

				'myapp',

]

Create	a	form_snippet.html	inside	the	root	templates	folder:
templates/form_snippet.html

{%	load	widget_tweaks	%}

{%	for	field	in	form	%}

<div	class="fieldWrapper	mb-1">

		{{	field.errors	}}

		{%	if	field.field.widget.input_type	!=	'checkbox'	%}

				<label	class="sr-only"	for="{{	form_field.auto_id	}}">{\

{	form_field.label	}}</label>

				{{	field|add_class:"form-control"	}}

		{%	else	%}

				{{	field.label_tag	}}

				{{	field	}}

		{%	endif	%}

</div>

{%	endfor	%}

We	can	now	re-use	this	snippet	to	render	all	fields	in	any	template.

Edit	login.html	file	in	the	templates	allauth/account/	folder.	Replace	the	form
element	with	these	lines:

templates/allauth/account/login.html
<form	class="form-account	login"	method="POST"	action="{%	u\

rl	'account_login'	%}">

		{%	csrf_token	%}

		

		{%	include	'form_snippet.html'	%}	<!--	here	-->

		

		{%	if	redirect_field_value	%}

				<input	type="hidden"	name="{{	redirect_field_name	}}"	v\

alue="{{	redirect_field_value	}}"	/>

		{%	endif	%}

				

		<a	class="button	secondaryAction	d-block	mb-2"	href="{%	u\

rl	'account_reset_password'	%}">{%	trans	"Forgot	Password?"\

	%}

		<button	class="btn	btn-lg	btn-primary	btn-block"	type="su\

bmit">{%	trans	"Sign	In"	%}</button>

		

</form>

Notice	the	form	element	form-account	CSS	class.	Add	the	form	styling	in
site.css:

base/static/base/css/site.css
body	{

				padding-top:	5rem;

}

.starter-template	{

				padding:	3rem	1.5rem;

				text-align:	center;

}

.footer	{

				text-align:	center;

				font-size:	16px;

				height:	60px;

				line-height:	60px;

}

.form-account	{	//	<	here

				width:	100%;

				max-width:	330px;

				padding:	15px;

				margin:	auto;

}

Visit	accountslogin/	and	you	should	see	this:

Edit	signup.html	file	in	the	templates	allauth/account/	folder.	Replace	the	form
element	with	this:

templates/allauth/account/signup.html
<form	class="form-account	signup"	id="signup_form"	method="\

post"	action="{%	url	'account_signup'	%}">

		{%	csrf_token	%}

		

		{%	include	'form_snippet.html'	%}

		

		{%	if	redirect_field_value	%}

		<input	type="hidden"	name="{{	redirect_field_name	}}"	val\

ue="{{	redirect_field_value	}}"	/>

		{%	endif	%}

	

	<button	class="btn	btn-lg	btn-primary	btn-block"	type="sub\

mit">{%	trans	"Sign	Up"	%}	»</button>

</form>

Edit	password_change.html	file	in	the	templates	allauth/account/	folder.	Replace
the	form	element	with	these	lines:

templates/allauth/account/password_change.html
<form	method="POST"	action="{%	url	'account_change_password\

'	%}"	class="	form-account	password_change">

	 {%	csrf_token	%}

	 {%	include	'form_snippet.html'	%}

	 <button	class="mt-1"	type="submit"	name="action">{%	trans	\

"Change	Password"	%}</button>

</form>

25.5	Details

25.5.1	Configuration	options
The	Allauth	package	offers	quite	a	bit	configuration	options.	Let’s	take	a	look	at
what	we	used:

mysite/settings.py
SITE_ID	=	1	#	<	here

EMAIL_BACKEND	=	'django.core.mail.backends.console.EmailBac\

kend'	#	<	here

LOGIN_REDIRECT_URL	=	'/'	#	<	here

SITE_ID	=	1	has	to	match	the	site	added	in	admin/sites/site/.	In	this	case	we	use
the	default	example.com	site.

With	EMAIL_BACKEND	variable	we	tell	Django	to	write	emails	to	the	standard
output	instead	of	trying	to	send	the	emails.	This	is	useful	for	development	but	for
production	you	should	use	something	like	SendGrid.	We	will	do	that	in	the
Sending	Emails	chapter.

You	can	try	this	by	visiting	accounts/password/reset/:

Emails	are	written	in	the	standard	output	stream
...

Subject:	[example.com]	Password	Reset	E-mail

From:	webmaster@localhost

To:	test@example.org

...

With	LOGIN_REDIRECT_URL	we	redirect	the	user	to	the	home	page	after	a
successful	login.	Otherwise	you	would	be	redirected	to	a	profile	page	that
doesn’t	exist	by	default.

Check	out	the	official	documentation	for	more	configuration	options:
https://samuli.to/Django-Allauth.

25.5.2	Adding	the	paths
In	the	urls.py	file	we	included	all	django-allauth	paths	with	one	line:

mysite/urls.py
from	django.contrib	import	admin

from	django.urls	import	path,	include	#	<	here

from	myapp	import	views	as	myapp_views

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	myapp_views.index,	name='index'),

				path('accounts/',	include('allauth.urls')),	#	<	here

]

Here	is	a	list	for	all	paths	it	provides:
All	django-allauth	paths

accounts/signup/

accounts/login/

https://samuli.to/Django-Allauth

accounts/logout/

accounts/password/change/

accounts/password/set/

accounts/inactive/

accounts/email/

accounts/confirm-email/

accounts/confirm-email/<key>/

accounts/password/reset/

accounts/password/reset/done/

accounts/password/reset/key/<uidb36>/

accounts/password/reset/key/done/

accounts/social/login/cancelled/

accounts/social/login/error/

accounts/social/signup/

accounts/social/connections/

Note	that	we	only	customized	all	major	templates	but	you	can	take	a	look	at	the
templates/allauth	folder	and	go	through	all	of	them.

25.5.3	django-widget-tweaks
With	django-widget-tweaks	you	can	manipulate	form	field	rendering	in
templates.	I	use	it	to	add	the	form-control	CSS	class	to	input	fields:

templates/form_snippet.html
{%	load	widget_tweaks	%}

{%	for	field	in	form	%}

<div	class="fieldWrapper	mb-1">

		{{	field.errors	}}

		{%	if	field.field.widget.input_type	!=	'checkbox'	%}

				<label	class="sr-only"	for="{{	form_field.auto_id	}}">{\

{	form_field.label	}}</label>

				{{	field|add_class:"form-control"	}}	<!--	here	-->

		{%	else	%}

				{{	field.label_tag	}}

				{{	field	}}

		{%	endif	%}

</div>

{%	endfor	%}

I	use	if	statement	to	exclude	the	form-control	CSS	class	from	checkboxes.

Read	more	about	the	django-widget-tweaks	package:	https://samuli.to/Widget-
Tweaks

25.6	Summary

With	django-allauth	package	you	can	add	an	account	management
functionality	without	writing	any	custom	views.

https://samuli.to/Widget-Tweaks

In	development	environment	you	can	use	EMAIL_BACKEND	variable	to
write	emails	to	the	standard	output	for	easy	debugging.
With	django-widget-tweak	package	you	can	change	form	field	rendering
in	templates.

26.	Authorization

This	chapter	covers

How	to	manage	user	permissions	with	groups
How	to	manage	access	using	decorators

26.1	Setup
Terminal

cp	-fr	24-Object-Manipulation	26-Authorization

cd	26-Authorization

source	../venv/bin/activate	

26.2	Adding	the	Editor	group
Visit	admin	and	add	a	new	“Editor”	group	using	the	“+Add”	link:

Select	the	following	permissions	and	click	save:

26.3	Creating	a	test	user
Visit	admin	and	add	a	new	user	using	the	“+Add”	link.

Add	user	to	the	Editor	group:

Check	Staff	status	checkbox	and	save:

Open	another	browser	and	log	in	the	testuser	in	admin.	Our	testuser	has	now
permissions	to	manage	Flower	items:

If	you	remove	the	testuser	from	the	Editor	group,	then	the	admin	interface	would
show	the	following	message:

Our	testuser	can	still	login	to	the	admin	because	the	Staff	status	is	still	enabled
for	the	account.

26.4	Using	permissions

Edit	myapp	index.html	page	and	add	if	statements	to	check	the	user	permissions:
myapp/templates/myapp/index.html

{{	request.user.get_all_permissions	}}	<!--	here	-->

<div	class="card-columns">

{%	for	flower	in	flowers	%}

...

						{%	if	perms.myapp.change_flower	%}	<!--	here	-->

								<a	href="{%	url	'edit'	pk=flower.pk	%}"	class="card\

-link">Edit

						{%	endif	%}

						{%	if	perms.myapp.delete_flower	%}	<!--	here	-->

								<a	href="{%	url	'delete'	pk=flower.pk	%}"	class="ca\

rd-link">Delete

						{%	endif	%}

...

{%	endfor	%}

</div>

{{	request.user.get_all_permissions	}}	shows	the	current	user
permissions.

Now	only	users	with	correct	permissions	will	see	the	Edit	and	Delete	links.

26.5	Using	decorators
But	currently	anyone	can	manage	flowers	using	our	custom	forms.	Let’s	restrict
access	with	decorators.

Edit	myapp	views.py	file	and	add	the	decorators:
myapp/views.py

from	django.contrib.auth.decorators	import	permission_requi\

red	#	<	here

...

def	index(request):

	 ...

@permission_required('myapp.add_flower')	#	<	here

def	create(request):

	 ...

	

@permission_required('myapp.change_flower')	#	<	here

def	edit(request,	pk=None):

	 ...

@permission_required('myapp.change_delete')	#	<	here

def	delete(request,	pk=None):

	 ...

Now	only	accounts	with	the	right	permissions	can	access	these	views.

26.6	Details

26.6.1	Authentication	vs	authorization
Authentication	is	about	verifying	a	user.	Authorization	is	about	restricting	or
allowing	access	to	resources.

With	Groups	you	can	give	multiple	permissions	to	users	at	once.	The	Editor
group	contains	permissions	for	adding,	changing	and	deleting	flowers.	The	user
who	belongs	to	the	Editor	group	will	get	all	these	permissions.

{{	request.user.get_all_permissions	}}	reveals	the	machine	names	for	the
current	user	permissions:

User	permissions
{'myapp.delete_flower',	

'myapp.change_flower',	

'myapp.add_flower'}	

You	can	use	perms.PERMISSION	in	templates	to	access	the	current	user
permissions:

Checking	user	permissions
{%	if	perms.myapp.change_flower	%}

...

{%	endif	%}

26.6.2	Controlling	access	with	decorators
Decorators	allow	us	to	dynamically	alter	a	function	or	a	class.	Django	provides
some	useful	decorators	related	to	user	access:	https://samuli.to/Auth-Decorators.

Using	a	decorator

https://samuli.to/Auth-Decorators

Using	a	decorator
@permission_required('myapp.add_flower')

def	create(request):

	 ...

Another	useful	is	the	login_required	decorator:
@login_required	decorator

@login_required

def	profile(request):

	 ...

In	this	case	you	would	have	to	be	logged-in	to	access	the	profile	page.	Otherwise
the	visitor	will	be	redirected	to	a	URL	specified	with	settings.LOGIN_URL.

26.7	Summary

You	can	group	permissions	and	assign	users	to	these	groups.
Current	user	permissions	are	available	in	templates	using	the	{{	perms	}}
template	variable.
{{	request.user.get_all_permissions	}}	displays	all	permissions	for
the	current	logged-in	user.
@permission_required()	decorator	checks	if	the	current	user	has	a
particular	permission.	This	is	a	convenient	way	to	restrict	access	to	specific
views.
@login_required	is	a	more	general	decorator	that	requires	that	user	has	to
be	logged-in.

27.	Creating	an	image	gallery

This	chapter	covers

How	to	upload	images
How	to	serve	the	images	in	localhost
How	to	show	the	images	in	a	grid	using	Bootstrap	4	album

27.1	Setup
Terminal

cp	-fr	15-Base-Project	27-Image-Gallery

cd	27-Image-Gallery

source	../venv/bin/activate

27.2	Installing	pillow
Install	the	pillow	package:

Terminal
pip	install	pillow

27.3	Configuring	media	variables
Edit	mysite	app	settings.py	file	and	specify	MEDIA_URL	and	MEDIA_ROOT
variables:

mysite/settings.py
STATIC_URL	=	'static'

MEDIA_URL	=	'media'

MEDIA_ROOT	=	'media/'

27.4	Adding	ImageField
Edit	myapp	models.py	file	and	add	an	ImageField:

myapp/models.py
from	django.db	import	models

class	Flower(models.Model):

				title	=	models.CharField(max_length=255,	default='')

				description	=	models.TextField(default='')

				image	=	models.ImageField(default='',	blank=True,	uploa\

d_to='images')	#	<	here

				def	__str__(self):

								return	self.title

Run	migrations:
Terminal

python	manage.py	makemigrations

python	manage.py	migrate

27.5	Adding	images	to	flowers
Visit	admin,	edit	the	flowers	and	add	some	images:

You	can	find	example	images	in	this	folder:	https://samuli.to/Flowers.

Images	are	uploaded	in	the	mediaimages/	folder:

27.6	Using	the	static	helper	function
Edit	mysite	app	urls.py	file	and	use	the	static()	helper	function:

mysite/urls.py
from	django.contrib	import	admin

from	django.urls	import	path

from	myapp	import	views	as	myapp_views

from	django.conf	import	settings	#	<	here

from	django.conf.urls.static	import	static	#	<	here

https://samuli.to/Flowers

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	myapp_views.index,	name='index'),

]	+	static(settings.MEDIA_URL,	document_root=settings.MEDIA\

_ROOT)	#	<	here

27.7	Adding	the	grid
Edit	myapp	index.html	file	and	replace	the	contents	with	these	lines:

myapp/templates/myapp/index.html
{%	extends	'base/base.html'	%}

{%	block	content	%}

<div	class="album	py-5">

				<div	class="container">

								<div	class="row">

												{%	for	flower	in	flowers	%}

												<div	class="col-md-4">

																<div	class="card	mb-4	shadow-sm">

																				<img	class="card-img-top"	src="{{	flowe\

r.image.url	}}"

																								alt="Card	image	cap">

																				<div	class="card-body">

																								<p	class="card-text">This	is	a	wide\

r	card	with	supporting	text	below	as	a	natural	lead-in	to

																												additional	content.	This	conten\

t	is	a	little	bit	longer.</p>

																								<div	class="d-flex	justify-content-\

between	align-items-center">

																												<div	class="btn-group">

																																<button	type="button"	class\

="btn	btn-sm	btn-outline-secondary">View</button>

																																<button	type="button"	class\

="btn	btn-sm	btn-outline-secondary">Edit</button>

																												</div>

																												<small	class="text-muted">9	min\

s</small>

																								</div>

																				</div>

																</div>

												</div>

												{%	endfor	%}

								</div>

				</div>

</div>

{%	endblock	%}

You	can	find	the	grid	markup	in	here:	https://samuli.to/Grid.

Visit	home	page	and	you	should	see	the	album	grid:

https://samuli.to/Grid

27.8	Details
You	need	to	install	the	Pillow	library	to	add	an	ImageField:

myapp/models.py
image	=	models.ImageField(default='',	blank=True,	upload_to\

='images')

upload_to='images'	stores	the	uploaded	images	in	the	media/images/	folder.

In	the	development	phase	you	can	serve	these	user-uploaded	files	using
static()	helper	function:

myapp/urls.py
urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	myapp_views.index,	name='index'),

]	+	static(settings.MEDIA_URL,	document_root=settings.MEDIA\

_ROOT)	#	<	here

This	function	works	only	in	debug	mode.	You	have	to	have	DEBUG	=	True
configured	in	the	settings.py	file.	With	Heroku	platform	we	will	serve	the	media
files	from	an	Amazons	AWS	bucket	later	in	the	book.

Use	{{	flower.image.url	}}	to	access	image	URLS	in	templates:
Accessing	the	image	url

<img	class="card-img-top"	src="{{	flower.image.url	}}"

The	grid	is	just	a	basic	Bootstrap	album:	https://samuli.to/Bootstrap-Album

https://samuli.to/Bootstrap-Album

27.9	Summary

Pillow	package	adds	image	uploading	and	processing	capabilities.
MEDIA_ROOT	is	the	physical	path	to	the	images.
MEDIA_URL	is	the	URL	path	you	use	to	access	the	media	files.
You	can	use	static()	function	to	serve	the	files	in	debug	mode.	In
production	environment	you	have	to	implement	other	ways	to	serve	the
images.
In	templates	the	image	URLS	are	accessed	with	the	familiar	dot	“.”
notation:	{{	flower.image.url	}}.

In	the	next	chapter	we	generate	smaller	images	and	crop	them.

28.	Adding	image	thumbnails

This	chapter	covers

How	to	create	thumbnails	with	ImageKit

28.1	Setup
Terminal

cp	-fr	27-Image-Gallery	28-Image-Thumbnails

cd	28-Image-Thumbnails

source	../venv/bin/activate

28.2	Installing	ImageKit
Terminal

pip	install	django-imagekit

Edit	mysite	app	settings.py	file	and	add	imagekit	to	the	INSTALLED_APPS	list:
mysite/settings.py

INSTALLED_APPS	=	[

	 ...

				'base',

				'myapp',

				'imagekit',	#	<	here

]

28.3	Adding	the	thumbnail	field
Edit	myapp	models.py	file	and	add	the	image_thumbnail	field:

mysite/models.py
from	django.db	import	models

from	imagekit.models	import	ImageSpecField	#	<	here

from	pilkit.processors	import	ResizeToFill	#	<	here

class	Flower(models.Model):

				title	=	models.CharField(max_length=255,	default='')

				description	=	models.TextField(default='')

				image	=	models.ImageField(default='',	blank=True,	uploa\

d_to='images')

				image_thumbnail	=	ImageSpecField(source='image',

								processors=[ResizeToFill(350,	200)],

								format='JPEG',

								options={'quality':	60})	#	<	here

Edit	myapp	index.html	file	and	replace	{{	flower.image.url	}}	with	{{
flower.image_thumbnail.url	}}:

myapp/templates/myapp/index.html
<img	class="card-img-top"	src="{{	flower.image_thumbnail.ur\

l	}}"

Visit	the	homepage	to	generate	the	image	thumbnails.	They	will	be	served	from
paths	like	this:

mediaCACHE/images/images/Agapanthus.jpg

28.4	Details
It’s	very	useful	to	generate	thumbnails	for	images.	You	can	always	add	links	to
the	original	images	if	needed.	We	use	ImageKit	to	crop	and	resize	the	images.
The	thumbnails	are	generated	as	the	page	where	the	images	are	used	is	accessed
the	first	time.

Using	the	original	uploaded	images	can	result	in	very	heavy	pages.	For	example
Amelanchier_asiatica5.jpg	that	I	used	for	testing	was	4.3MB.	Image	processing
reduced	that	size	to	18.2KB!

ImageSpecField	is	similar	to	ImageField	but	it	automatically	applies	the	image
processing	we	specify:

ImageSpecField	does	the	image	proccessing
image	=	models.ImageField(default='',	blank=True,	upload_to\

='images')

image_thumbnail	=	ImageSpecField(source='image',

	 processors=[ResizeToFill(350,	200)],

	 format='JPEG',

	 options={'quality':	60})

source='image'	is	the	original	image	field.	We	can	add	different	processors
(https://samuli.to/Processors)	to	manipulate	the	image.	ResizeToFill	resizes	and
crops	the	image.	Here	we	also	specify	image	format	and	compression.

You	can	access	the	thumbnail	URL	using	the	dot	“.”	notation	in	templates:	{{
flower.image_thumbnail.url	}}.

28.5	Summary

https://samuli.to/Processors

Creating	thumbnails	can	reduce	the	image	sizes	substantially.
ImageKit	package	enables	a	selection	of	image	processing	tools.

29.	Deploying	on	Heroku

This	chapter	covers

How	to	deploy	to	Heroku

29.1	Setup
Create	a	folder	outside	the	projects	folder:

Terminal
mkdir	deployments

cd	deployments

mkdir	heroku

cd	heroku

python3	-m	venv	venv

source	venv/bin/activate

pip	install	django	django-heroku	gunicorn

pip	freeze	>	requirements.txt

django-admin	startproject	mysite	.

python	manage.py	runserver

django-heroku	package	installs	some	dependencies	like	psycopg2	for
PostgreSQL	support	and	whitenoise	for	serving	static	files	straight	from	the	app.

Terminal
├──	deployments	#	<	here

│			├──	heroku	#	<	here

├──	projects

29.2	Creating	a	Heroku	app
Visit	https://samuli.to/Heroku	and	create	an	account:

https://samuli.to/Heroku

Press	Create	new	app:

Rest	of	the	chapter	shows	sn-01	as	the	app	name.	Replace	it	with	the	name	of
your	app.

29.3	Installing	Heroku	CLI

29.3.1	Installation	in	Windows
Visit	https://samuli.to/Heroku-CLI	and	download	the	Windows	installer.

29.3.2	Installation	in	macOS
Terminal

https://samuli.to/Heroku-CLI

Terminal
xcode-select	--install

brew	install	heroku/brew/heroku

29.3.3	Installation	in	Ubuntu
Terminal

sudo	snap	install	--classic	heroku

29.3.4	Authenticating	with	a	browser
Use	heroku	login	in	terminal	to	login:

Terminal
heroku	login

heroku:	Press	any	key	to	open	up	the	browser	to	login	or	q	\

to	exit:

Logging	in...	done

Logged	in	as	user@example.org

29.4	Creating	a	Procfile
Create	a	file	called	Procfile	in	the	project	root	and	write	this	line	in	it:

Procfile	contents
web:	gunicorn	mysite.wsgi

29.5	Updating	the	settings.py	file
Edit	settings.py	file	and	import	django_heroku	package	on	the	top	and	change
DEBUG	and	ALLOWED_HOSTS	variables:

mysite/settings.py
import	django_heroku	#	<	here

import	os

DEBUG	=	False	#	<	here

ALLOWED_HOSTS	=	['sn-01.herokuapp.com']	#	<	here

Add	the	following	lines	at	the	bottom	of	the	file:
mysite/settings.py

django_heroku.settings(locals())

try:

				from	.local_settings	import	*

except	ImportError:

				pass

Create	a	local_settings.py	file:
mysite/local_settings.py

DEBUG	=	True

ALLOWED_HOSTS	=	[]

29.6	Creating	the	repository
Visit	https://samuli.to/Git	and	install	Git.

Create	a	.gitignore	file	in	the	site	root:
.gitignore	file

venv

local_settings.py

db.sqlite3

*.pyc

__pycache__/

*.py[cod]

.DS_Store

Visit	https://samuli.to/Dj-Gitignore	too	see	more	comprehensive	.gitignore
example.

Initialise	git	repository	and	push	it:
Terminal

git	init

git	add	.

git	commit	-m	"Initial"

heroku	git:remote	-a	sn-01

git	push	heroku	master

Run	migrate	and	create	a	superuser:
Terminal

heroku	run	python	manage.py	migrate

heroku	run	python	manage.py	createsuperuser

Visit	your	app	admin	pages	in	https://sn-01.herokuapp.com/admin/.

Note:	we	don’t	see	the	welcome	screen	on	the	frontpage	because	the	production
site	is	not	in	debug	mode.	You	get	“The	requested	URL	/	was	not	found	on	this
server.”	instead	because	we	don’t	have	a	view	for	the	homepage.

29.7	Pushing	changes

https://samuli.to/Git
https://samuli.to/Dj-Gitignore
https://sn-01.herokuapp.com/admin/

Let’s	add	a	homepage	and	some	CSS	styling.	The	django-heroku	package
installs	the	Whitenoise	package	that	allows	your	web	app	to	serve	its	own	static
files.	Check	out	the	next	chapter	on	how	to	serve	static	files	and	user-uploaded
files	from	Amazon	AWS.

Terminal
django-admin	startapp	blog

Add	an	index	view:
blog/views.py

from	django.shortcuts	import	render

def	index(request):	#	<	here

				return	render(request,	'blog/index.html')

Create	an	index.html	file	with	this	content:
blog/templatesblogindex.html

{%	load	static	%}

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Blog</title>

				<link	rel="stylesheet"	href="{%	static	'blog/css/site.c\

ss'	%}">

</head>

<body>

				<div	id="content">

								<h1>Home</h1>

				</div>

</body>

</html>

You	have	to	create	the	folder	structure:	blogtemplatesblog.

Create	a	site.css	file	with	this	content:
blog/staticblogcss/site.css

h1	{	color:	red;}

You	have	to	create	the	folder	structure:	blogstaticblogcss/.

Edit	urls.py	file	and	add	the	index	path:
mysite/urls.py

from	django.contrib	import	admin

from	django.urls	import	path

from	blog	import	views	#	<	here

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('',	views.index,	name='index')	#	<	here

]

Add	‘blog’	to	the	INSTALLED_APPS	list:
mysite/settings.py

INSTALLED_APPS	=	[

	 ...

				'django.contrib.staticfiles',

				'blog',	#	<	here

]

Terminal
git	add	.

git	commit	-m	"Add	Blog	app"

git	push	heroku	master

Visit	the	production	site	homepage	and	you	should	see	this:

Note:	we	didn’t	have	to	run	“heroku	run	python	manage.py	migrate”	because	we
didn’t	make	any	changes	that	require	database	updates.

29.8	Updating	the	database
Let’s	create	a	Post	model	and	update	the	database:

blog/models.py
from	django.db	import	models

class	Post(models.Model):

				title	=	models.CharField(max_length=255,	default='')

Register	it	in	admin.py:
blog/admin.py

from	django.contrib	import	admin

from	.models	import	Post

admin.site.register(Post)

Run	local	migrations:
Terminal

python	manage.py	makemigrations

python	manage.py	migrate

python	manage.py	createsuperuser

python	manage.py	runserver

Login	and	create	a	post	item	to	see	that	it	works	locally	before	you	push	it.

Push	the	changes:
Terminal

git	add	.

git	commit	-m	"Add	Post	model"

git	push	heroku	master

Apply	changes	to	the	remote	database:
Terminal

heroku	run	python	manage.py	migrate

Visit	your	heroku	app	admin	page	and	add	content:

29.9	Summary

django-heroku	adds	settings	configuration.	This	includes	things	like
DATABASE_URL	so	that	you	don’t	have	to	add	database	configuration
manually.	It	also	install	some	extra	packages	like	whitenoise	that	allows

you	to	serve	static	files	directly	from	the	app	without	using	Nginx,	Amazon
S3	or	any	other	similar	solution.
Use	“pip	freeze	>	requirements.txt”	to	generate	a	dependency	list.	These
will	be	installed	automatically	when	you	push	the	code.
Remember	to	set	DEBUG	=	False	and	configure	ALLOWED_HOSTS	variable	in
the	settings.py	file	for	production	environments.
It’s	useful	to	create	multiple	settings	files	like	local_settings.py	to	add
environment	specific	configuration.
Heroku	CLI	allows	you	to	interact	with	the	platform	using	a	command	line.
It	requires	GIT	to	work.
You	can	run	remote	commands	with	“heroku	run	<command>”.	For
example,	if	you	make	changes	to	the	database	schema,	you	should	run
“heroku	run	python	manage.py	migrate”.
Use	“git	push	heroku	master”	to	push	changes	to	the	platform.	Check	out
the	“Heroku	Pipelines”	chapter	on	how	to	create	a	proper	deployment	flow.

30.	Using	Amazon	AWS	to	serve	files

This	chapter	covers

How	to	serve	static	assets	and	user-uploaded	files	from	an	Amazon	bucket

30.1	Setup
Use	the	project	from	the	“Heroku	Deployment”	chapter	to	test	this.

30.2	Creating	an	Amazon	AWS	bucket
Visit	https://samuli.to/AWS	and	create	an	account.

Visit	https://samuli.to/S3	and	add	a	bucket:

https://samuli.to/AWS
https://samuli.to/S3

Click	Next	for	the	rest	of	the	settings	and	hit	Create	bucket.

30.3	Setting	up	permissions
Visit	Services	and	click	IAM	under	the	Security,	Identity	&	Compliance	label:

Click	Users	and	Add	user:

Check	Programmatic	access:

Create	a	new	group:

Check	AmazonS3FullAccess:

Click	Next:	Tags:

Click	Next:	Review:

Click	Create	user:

We	will	use	this	information	in	the	settings.py	file:

30.4	Updating	settings.py	file
Update	settings.py	file	and	add	the	configuration:

mysite/settings.py
django_heroku.settings(locals())

AWS_ACCESS_KEY_ID	=	'ACCESS_KEY'

AWS_SECRET_ACCESS_KEY	=	'SECRET'

AWS_STORAGE_BUCKET_NAME	=	'sn-test-01'

AWS_DEFAULT_ACL	=	None

AWS_LOCATION	=	'static'

AWS_MEDIA_LOCATION	=	'media'

STATIC_URL	=	'https://%s.s3.amazonaws.com/%s/'	%	(AWS_STORA\

GE_BUCKET_NAME,	AWS_LOCATION)

STATICFILES_STORAGE	=	'storages.backends.s3boto3.S3Boto3Sto\

rage'

DEFAULT_FILE_STORAGE	=	'mysite.storages.MediaStorage'

try:

				from	.local_settings	import	*

except	ImportError:

				pass

Create	a	storages.py	file	and	fill	it	with	these	lines:
mysite/storages.py

from	django.conf	import	settings

from	storages.backends.s3boto3	import	S3Boto3Storage

class	MediaStorage(S3Boto3Storage):

				location	=	settings.AWS_MEDIA_LOCATION

				file_overwrite	=	False

30.5	Adding	an	image	field	to	the	Post	model
Edit	blog	app	models.py	file	and	add	an	ImageField:

blog/models.py

from	django.db	import	models

class	Post(models.Model):

				title	=	models.CharField(max_length=255,	default='')

				image	=	models.ImageField(default='',	blank=True,	uploa\

d_to='images')	#	<	here

30.6	Installing	packages
Install	packages	and	push:

Terminal
pip	install	django-storages	boto3	pillow

python	manage.py	makemigrations

python	manage.py	migrate

pip	freeze	>	requirements.txt

git	add	.

git	commit	-m	"Add	django-storages,	boto3,	pillow	and	Post	\

model	image	field"

git	push	heroku	master

heroku	run	python	manage.py	migrate

Visit	the	production	site	in	https://YOUR_APP.herokuapp.com/	and	create	a
Post	with	an	image.

The	post	image	will	be	now	served	from	an	URL	like	this:	sn-test-
01.amazonaws.com/media/images/Agapanthus.png

Open	the	page	source	code	and	you	will	see	that	the	static	files	are	now	served
from	URLS	like	this:	sn-test-01.s3.amazonaws.com/static/admin/css/base.css

In	the	bucket	folder	you	now	have	separate	folders	for	media	and	static	files:

https://YOUR_APP.herokuapp.com/

30.7	Summary

Boto3	is	an	Amazon	software	development	kit	that	allows	Python	programs
to	use	services	like	Amazon	S3.
It’s	not	uncommon	to	serve	static	assets	and	user-uploaded	files	from
external	sources.
Amazon	S3	can	also	be	integrated	with	a	content	delivery	network	like
Amazon	CloudFront	https://samuli.to/Amazon-CloudFront.

https://samuli.to/Amazon-CloudFront

31.	Setting	up	Heroku	pipelines

This	chapter	covers

How	to	create	a	continuous	deployment	workflow	with	Heroku	pipelines

31.1	Setup
Use	the	project	from	the	“Heroku	Deployment”	chapter	to	test	this.

31.2	Creating	a	GitHub	repository
Visit	https://samuli.to/GitHub	and	create	an	account.

Create	a	new	repository:

Go	to	your	project	folder.	Add	a	remote	and	push	the	code	to	GitHub:
Terminal

git	remote	add	origin	git@github.com:SamuliNatri/sn-01.git

git	push	-u	origin	master

https://samuli.to/GitHub

Refresh	the	GitHub	page	and	you	should	see	the	project	code:

31.3	Creating	a	pipeline
Visit	your	Heroku	app	Deploy	page	and	create	a	pipeline:

Press	Connect	to	GitHub:

Login	to	GitHub	and	Authorize	heroku:

Search	for	the	repository	and	Connect	it:

Visit	the	Pipeline	page	and	Enable	Automatic	Deploys:

31.4	Testing	deployment
Edit	the	index.html	template	and	change	the	“Home”	text:

blog/templates/blog/index.html
{%	load	static	%}

<!DOCTYPE	html>

<html	lang="en">

<head>

				<title>Blog</title>

				<link	rel="stylesheet"	href="{%	static	'blog/css/site.c\

ss'	%}">

</head>

<body>

				<div	id="content">

								<h1>Home	(Update)</h1>	#	<	here

				</div>

</body>

</html>

Terminal
git	add	.

git	commit	-m	"Update	homepage"

git	push

In	a	moment	you	will	see	“Building	app”	text	on	the	page:

And	“Deployed..”	text	when	the	deployment	is	ready:

Visit	the	app	URL	and	you	should	see	the	changes:

These	deployments	will	also	show	in	the	GitHub	Deployments	section:

31.5	Adding	a	production	app
Visit	the	Pipeline	page:

Add	a	Production	app:

Press	your	staging	app	Promote	to	production	button:

Visit	your	production	app	homepage	and	it	should	look	like	the	staging	app
homepage:

31.6	Enabling	review	apps
Visit	the	Pipeline	page	and	press	Enable	Review	Apps:

Create	an	app.json	file:

Scroll	to	the	bottom	and	press	Commit	to	Repo:

Check	Create	new	review	apps…automatically	and	Destroy	stale	review	apps.
Press	Enable:

Note	that	review	apps	may	incur	dyno	and	add-on	charges:
https://samuli.to/Review-Apps!

You	can	also	not	check	the	Create	new	review	apps…automatically	option	and
create	preview	apps	manually	on	the	Pipeline	page.

31.7	Using	pull	requests
Let’s	make	a	change	and	create	a	pull	request.

Pull	changes	and	create	a	branch:
Terminal

git	pull

git	checkout	-b	new_homepage

We	need	to	pull	the	app.json	file	that	the	platform	added	to	the	repo.

Edit	the	index.html	template	and	make	some	changes:

https://samuli.to/Review-Apps

blog/templates/blog/index.html
<div	id="content">

				<h1>NEW	FANCY	HOMEPAGE</h1>	<!--	here	-->

</div>

Terminal
git	add	.

git	commit	-m	"New	homepage	suggestion"

git	push	--set-upstream	origin	new_homepage

Use	link	in	the	Terminal	to	create	a	Pull	request	or	visit	the	Pull	requests	page
on	GitHub:

Write	a	description	and	create	a	Pull	request:

Visit	the	Pipeline	page	and	click	Open	app	in	browser	after	the	preview	app	is
ready:

You	can	now	evaluate	the	pull	request	in	the	preview	app:

Visit	GitHub	and	merge	the	pull	request:

Visit	the	Pipeline	page	and	wait	for	the	staging	app	to	be	deployed.	Press
Promote	to	production	and	the	new	fancy	home	page	is	now	live:

The	pull	request	and	merging	flow	is	also	visible	in	GitHub:

31.8	Deleting	the	branch
We	don’t	need	the	new_homepage	branch	anymore	since	it’s	now	merged	to	the
master	branch:

Terminal
git	branch

git	checkout	master

git	pull

git	branch	-d	new_homepage

31.9	Summary

Heroku	provides	a	nice	continuous	delivery	workflow	out	of	the	box.
Review	apps	allow	you	to	test	GitHub	pull	requests	with	disposable	Heroku
apps.

32.	Sending	emails	with	SendGrid

This	chapter	covers

How	to	send	emails	with	SendGrid

32.1	Creating	an	account
Visit	https://samuli.to/SendGrid	and	create	an	account:

Copy	the	base	project:
Terminal

cp	-fr	15-Base-Project	32-Sending-Emails

cd	32-Sending-Emails

source	../venv/bin/activate

Edit	settings.py	file	and	add	the	following	configuration	using	the	username	and
password	you	provided	in	the	sign-in	process:

mysite/settings.py

https://samuli.to/SendGrid

EMAIL_HOST	=	'smtp.sendgrid.net'

EMAIL_HOST_USER	=	'sendgrid_username'

EMAIL_HOST_PASSWORD	=	'sendgrid_password'

EMAIL_PORT	=	587

EMAIL_USE_TLS	=	True

Test	the	mail	in	the	interactive	interpreter:
Interactive	interpreter

python	manage.py	shell

>>>	from	django.core.mail	import	send_mail

>>>	send_mail('Subject	here',	'Here	is	the	message.',	'admi\

n-mail@gmail.com',	['some-other-mail@gmail.com'],	fail_sile\

ntly=False)

You	should	now	receive	the	email	in	your	inbox:

32.2	Summary

Sending	emails	with	SendGrid	is	just	matter	of	creating	an	account	with	the
service	and	adding	the	right	configuration	to	the	settings.py	file.

Licenses

Images	in	the	book	and	source	code	repository	are	licensed	under	CC	BY-SA
3.0.and	CC	BY-SA	4.0.

“Amelanchier	Asiatica”	by	KENPEI	is	licensed	under	CC	BY-SA	3.0.

“Agapanthus	africanus”	by	Kurt	Stuber	is	licensed	under	CC	BY-SA	3.0.

“Amelanchier	alnifolia	at	Icicle	Canyon,	Chelan	County	Washington”	by
Thayne	Tuason	is	licensed	under	CC	BY-SA	4.0.

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Amelanchier_asiatica#/media/File:Amelanchier_asiatica5.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Agapanthus#/media/File:Agapanthus_africanus1.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Amelanchier_alnifolia#/media/File:Amelanchier_alnifolia_var._semiintegrifolia_4.jpg
https://creativecommons.org/licenses/by-sa/4.0/

	Preface
	About this book
	Who is this book for?
	What this book is NOT about?
	How this book is organized
	Chapters 1-7
	Chapters 8-10
	Chapters 11-13
	Chapters 14-16
	Chapters 17-20
	Chapters 21-24
	Chapters 25-26
	Chapters 27-28
	Chapters 29-32

	About the author

	1. Installing Python on Windows
	1.1 Downloading and installing Python
	1.2 Using the interactive prompt
	1.3 Details
	1.3.1 Python interpreter

	1.4 Summary

	2. Installing Python on macOS
	2.1 Downloading and installing Python
	2.2 Using the interactive prompt
	2.3 Details
	2.3.1 Python interpreter

	2.4 Summary

	3. Installing Python on Linux
	3.1 Installing Python
	3.2 Using the interactive prompt
	3.3 Details
	3.3.1 Python interpreter

	3.4 Summary

	4. Creating virtual environments in Windows
	4.1 Creating and activating virtual environments
	4.2 Summary

	5. Creating virtual environments in macOS
	5.1 Creating and activating virtual environments
	5.2 Summary

	6. Creating virtual environments in Linux
	6.1 Creating and activating virtual environments
	6.2 Summary

	7. Virtual environments and pip
	7.1 Why use virtual environments?
	7.2 Details
	7.2.1 Organizing folders
	7.2.2 Freezing requirements
	7.2.3 Excluding venv from the repository
	7.2.4 Using other tools
	7.2.5 Using python vs python3

	7.3 Summary

	8. Creating a Django project
	8.1 Setup
	8.2 Creating a new Project
	8.3 Running the development server
	8.4 Details
	8.5 Summary

	9. Creating a Hello World app
	9.1 Setup
	9.2 Creating apps
	9.3 Creating template files
	9.4 Creating views
	9.5 Adding a homepage path
	9.6 Summary

	10. Examining the project structure and apps
	10.1 Adding features with apps
	10.2 Exploring the project structure
	10.3 Exploring the project package
	10.4 Summary

	11. Working with template inheritance
	11.1 Setup
	11.2 Creating a base app
	11.3 Extending templates
	11.4 Details
	11.5 Summary

	12. Installing Bootstrap 4 theme
	12.1 Setup
	12.2 Modifying an existing template
	12.3 Updating the homepage template
	12.4 Details
	12.5 Summary

	13. Managing static files
	13.1 Setup
	13.2 Creating a stylesheet file
	13.3 Details
	13.3.1 Working with static files
	13.3.2 Using the static tag
	13.3.3 Forcing cache refresh with versioning

	13.4 Summary

	14. Creating models
	14.1 Setup
	14.2 Creating the Flower model
	14.3 Listing flowers
	14.4 Details
	14.4.1 Explaining models
	14.4.2 Returning a string representation
	14.4.3 Making database queries

	14.5 Summary

	15. Creating a base project
	15.1 Setup
	15.2 Adding a description field
	15.3 Adding masonry like columns
	15.4 Adding a footer
	15.5 Summary

	16. Creating a detail page
	16.1 Setup
	16.2 Adding a detail page path
	16.3 Creating the detail view
	16.4 Creating the detail page template
	16.5 Creating slugs
	16.6 Updating the path
	16.7 Defining get_absolute_url() method
	16.8 Using url tag
	16.9 Details
	16.9.1 Capturing URL values
	16.9.2 Using view parameters
	16.9.3 Explaining slugs
	16.9.4 Reversing URLS

	16.10 Summary

	17. Adding category as a many-to-one relationhip
	17.1 Setup
	17.2 Adding category field and model
	17.3 Updating the homepage template
	17.4 Details
	17.4.1 Examining many-to-one relationships
	17.4.2 Accessing related objects

	17.5 Summary

	18. Referencing tags with a ManyToMany field
	18.1 Setup
	18.2 Adding the tags field
	18.3 Updating the homepage template
	18.4 Summary

	19. Creating a tags page
	19.1 Setup
	19.2 Adding tags path
	19.3 Adding the slug field
	19.4 Creating the tags view
	19.5 Updating homepage template
	19.6 Details
	19.6.1 Doing lookups across relationships
	19.6.2 Reusing templates

	19.7 Summary

	20. Creating a search feature
	20.1 Setup
	20.2 Adding a search form
	20.3 Updating the index view
	20.4 Details
	20.5 Summary

	21. Working with forms: creating items
	21.1 Setup
	21.2 Creating the edit form
	21.3 Creating the form class
	21.4 Updating urlpatterns
	21.5 Creating the view function
	21.6 Adding a menu item
	21.7 Details
	21.7.1 Protecting against cross site request forgeries
	21.7.2 Adding form fields
	21.7.3 Using the Form class
	21.7.4 Examining the view function

	21.8 Summary

	22. Working with forms: editing items
	22.1 Setup
	22.2 Adding the path
	22.3 Creating the edit view
	22.4 Updating the edit link
	22.5 Details
	22.5.1 Capturing the id
	22.5.2 Examining the edit view

	22.6 Summary

	23. Working with forms: customization
	23.1 Setup
	23.2 Adding the description field
	23.3 Details
	23.3.1 Changing field order
	23.3.2 Customizing validation errors

	23.4 Summary

	24. Creating and deleting objects
	24.1 Setup
	24.2 Adding the delete path
	24.3 Adding the delete view
	24.4 Updating the delete link
	24.5 Details
	24.6 Summary

	25. Authenticating users with Allauth
	25.1 Setup
	25.2 Installing Allauth
	25.3 Creating template files
	25.4 Updating the templates for Bootstrap 4
	25.5 Details
	25.5.1 Configuration options
	25.5.2 Adding the paths
	25.5.3 django-widget-tweaks

	25.6 Summary

	26. Authorization
	26.1 Setup
	26.2 Adding the Editor group
	26.3 Creating a test user
	26.4 Using permissions
	26.5 Using decorators
	26.6 Details
	26.6.1 Authentication vs authorization
	26.6.2 Controlling access with decorators

	26.7 Summary

	27. Creating an image gallery
	27.1 Setup
	27.2 Installing pillow
	27.3 Configuring media variables
	27.4 Adding ImageField
	27.5 Adding images to flowers
	27.6 Using the static helper function
	27.7 Adding the grid
	27.8 Details
	27.9 Summary

	28. Adding image thumbnails
	28.1 Setup
	28.2 Installing ImageKit
	28.3 Adding the thumbnail field
	28.4 Details
	28.5 Summary

	29. Deploying on Heroku
	29.1 Setup
	29.2 Creating a Heroku app
	29.3 Installing Heroku CLI
	29.3.1 Installation in Windows
	29.3.2 Installation in macOS
	29.3.3 Installation in Ubuntu
	29.3.4 Authenticating with a browser

	29.4 Creating a Procfile
	29.5 Updating the settings.py file
	29.6 Creating the repository
	29.7 Pushing changes
	29.8 Updating the database
	29.9 Summary

	30. Using Amazon AWS to serve files
	30.1 Setup
	30.2 Creating an Amazon AWS bucket
	30.3 Setting up permissions
	30.4 Updating settings.py file
	30.5 Adding an image field to the Post model
	30.6 Installing packages
	30.7 Summary

	31. Setting up Heroku pipelines
	31.1 Setup
	31.2 Creating a GitHub repository
	31.3 Creating a pipeline
	31.4 Testing deployment
	31.5 Adding a production app
	31.6 Enabling review apps
	31.7 Using pull requests
	31.8 Deleting the branch
	31.9 Summary

	32. Sending emails with SendGrid
	32.1 Creating an account
	32.2 Summary

	Licenses

