

Computational Methods
of Linear Algebra
Second Edition

Granville Sewell
Texas A&M University
Mathematics Department
College Station, Texas
and
University of Texas-El Paso
El Paso, Texas

@ E E L E N C E
A JOHN WILEY & SONS, INC., PUBLICATION

Computational Methods
of Linear Algebra

PURE AND APPLIED MATHEMATICS

A Wiley-Interscience Series of Texts, Monographs, and Tracts

Founded by RICHARD COURANT
Editors Emeriti: MYRON B. ALLEN 111, DAVID A. COX, PETER HILTON,
HARRY HOCHSTADT, PETER LAX, JOHN TOLAND

A complete list of the titles in this series appears at the end of this volume.

Computational Methods
of Linear Algebra
Second Edition

Granville Sewell
Texas A&M University
Mathematics Department
College Station, Texas
and
University of Texas-El Paso
El Paso, Texas

@ E E L E N C E
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 1 1 I River Street, Hoboken, NJ
07030, (201) 748-601 1, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of LiabilityiDisclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. Yon should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic format. For information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Sewell, Granville.
Computational methods of linear algebra / Granville Sewell.-2nd ed.

monographs, and tracts)
Includes bibliographical references and index.
ISBN 13: 978-0-471-73579-3 (acid-free paper)
ISBN 10: 0-471-73579-5 (cloth : acid-free paper)

1. Algebras, Linear-Textbooks. I. Title.

p. cm. - (Pure and applied mathematics; a Wiley-Interscience series of texts,

QA184.2.S44 2005
5 12'.5-dc22 2005041627

Printed in the United States of America

1 0 9 8 7 6 5 4 3 2 1

To my son, Kevin

Contents

Preface ix

0 Reference Material 1
0.1 Miscellaneous Results from Linear Algebra 1
0.2 Special Matrices . 4
0.3 Vector and Matrix Norms . 7

1 Systems of Linear Equations 11
1.1 Introduction . 11
1.2 Gaussian Elimination . 12
1.3 Solving Several Systems with the Same Matrix 20
1.4 The LU Decomposition . 24
1.5 Banded Systems . 27
1.6 Application: Cubic Spline Interpolation 33
1.7 Roundoff Error . 39
1.8 Iterative Methods . 46
1.9 Problems . 57

2 Linear Least Squares Problems 63
2.1 Introduction . 63
2.2 Orthogonal Reduction . 66
2.3 Reduction Using Householder Transformations 73
2.4 Least Squares Approximation with Cubic Splines 78
2.5 Problems . 81

3 The Eigenvalue Problem 86
3.1 Introduction . 86
3.2 The Jacobi Method for Symmetric Matrices 88
3.3 The QR Method for General Real Matrices 96
3.4 Alternative Methods for General Matrices 109
3.5 The Power and Inverse Power Methods 119
3.6 The Generalized Eigenvalue Problem 130

vii

viii CONTENTS

3.7 Problems . 132

4 Linear Programming 138
4.1 Linear Programming Applications 138

4.1.1 The Resource Allocation Problem 138
4.1.2 The Blending Problem 139
4.1.3 The Transportation Problem 139
4.1.4 Curve Fitting . 140

4.2 The Simplex Method, with Artificial Variables 141
4.3 The Dual Solution . 149
4.4 Examples . 153
4.5 A FORTRAN90 Program . 157
4.6 The Revised Simplex Method 165
4.7 Problems . 176

5 The Fast Fourier Transform 182
5.1 The Discrete Fourier Transform 182
5.2 The Fast Fourier Transform . 183
5.3 A FORTRAN90 Program . 186
5.4 Problems . 188

6 Linear Algebra on Supercomputers 196
6.1 Vector Computers . 196
6.2 Parallel Computers . 199
6.3 Problems . 218

Appendix A . MATLAB Programs 221

Appendix B . Answers to Selected Exercises 255

References 263

Index 267

Preface

This text is appropriate for a course on the numerical solution of linear al-
gebraic problems, designed for senior level undergraduate or beginning level
graduate students. Although it will most likely be used for a second course
in numerical analysis, the only prerequisite to using this text is a good course
in linear or matrix algebra; however, such a course is an extremely important
prerequisite.

Chapter 0 presents some basic definitions and results from linear algebra
which are used in the later chapters. By no means can this short chapter be
used to circumvent the linear algebra prerequisite mentioned above; it does
not even contain a comprehensive review of the basic ideas of linear algebra.
It is intended only to present some miscellaneous ideas, selected for inclusion
because they are especially fundamental to later developments or may not be
covered in a typical introductory linear algebra course.

Chapters 1-4 present and analyze methods for the solution of linear sys-
tems of equations (direct and iterative methods), linear least squares prob-
lems, linear eigenvalue problems, and linear programming problems; in short,
we attack everything that begins with the word “linear”. Truly “linear” nu-
merical analysis problems have the common feature that they can be solved
exactly, in a finite number of steps, if exact arithmetic is done. This means
that all errors are due to roundoff; that is, they are attributable to the use
of finite precision by the computer. (Iterative methods for linear systems
and all methods for eigenvalue problems-which are not really linear-are
exceptions.) Thus stability with respect to roundoff error must be a major
consideration in the design of software for linear problems.

Chapter 5 discusses the fast Fourier transform. This is not a topic normally
covered in texts on computational linear algebra. However, the fast Fourier
transform is really just an efficient way of multiplying a special matrix times
an arbitrary vector, and so it does not seem too out of place in a computational
linear algebra text.

Chapter 6 contains a practical introduction for the student interested in
writing computational linear algebra software that runs efficiently on today’s
vector and parallel supercomputers.

Double-precision FORTRAN90 subroutines, which solve each of the main

ix

X PREFACE

problems covered using algorithms studied in the text, are presented and
highlighted. A top priority in designing these subroutines was readability.
Each subroutine is written in a well-documented, readable style, so that the
student will be able to follow the program logic from start to finish. Even
though we have steadfastly resisted the temptation to make them slightly
more efficient at the expense of readability, the subroutines that solve the
truly linear problems are nearly state-of-the-art with regard to efficiency. The
eigenvalue codes, on the other hand, are not state-of-the-art, but nor are they
grossly inferior to the best programs available.

MATLAB@ versions of the codes in Chapters 1-5 are listed in Appendix
A. Machine-readable copies of the FORTRAN90 and MATLAB codes in the
book can be downloaded from

http://www.math.tamu.edu/-sewell/computationalmethods

There is very little difference between the FORTRAN and MATLAB ver-
sions; they are almost line-by-line translations, so the student who is familiar
with MATLAB (or any other programming language, for that matter) will
have no trouble following the logic of the FORTRAN programs in the text.
But students can do the computer problems using either FORTRAN or MAT-
LAB, with the exception of the problems in Chapter 6. The problems in this
chapter require a FORTRAN90 compiler and an MPI library.

Subroutines DEGNON, DPOWER, and DFFT contain double-precision
complex variables, typed COMPLEX* 16, which is a nonstandard, but widely
recognized, type. Otherwise, the subroutines conform to the FORTRAN90
standard and thus should be highly portable. In fact, the programs in Chap-
ters 1-4 will run on most FORTRAN77 compilers.

For extensive surveys on other available mathematical software, including
software for the problems studied in this text, the reader is referred to the
books by Heath [2002; summary in each chapter] and Kincaid and Cheney
[2004; Appendix B].

The author developed this text for a graduate course at the University of
Texas El Paso and has also used it at Universidad Nacional de Tucuman in
Argentina for a course in the Fall of 1999.

Finally, I would like to acknowledge the copyeditor, Christina Della Bar-
tolomea, for some excellent work, that resulted in a much improved final
product.

Reference Material

0.1 Miscellaneous Results from Linear Algebra

As mentioned in the preface, it is assumed that the reader has a good foun-
dation in linear algebra; so we shall make no attempt here to present a com-
prehensive review of even the basic ideas of linear algebra. However, we have
chosen a few results for review in this chapter, selected for inclusion either
because they are especially important to later developments or else because
they may not be covered in a typical introductory course in linear algebra.

Computational linear algebra deals primarily with matrices, rectangular
arrays of real or complex numbers (unless otherwise stated, our matrices will
consist only of real numbers). We shall consider vectors to be N by 1 matrices
(i.e., column vectors), and we shall treat them differently from other matrices
only in that they will be designated by italic boldface type, as b, and their
norms will be defined differently (Section 0.3).

If A is an N by M matrix with aij in row i, column j , then the transpose
of A , denoted by AT, is an M by N matrix with aji in row i, column j . For
example, if

3 1 1
A = 1 4 , then A T = [] [: :] 2 4 5 '

If x and y are vectors, that is, N by 1 matrices, then zT is a 1 by N matrix,
and xTy is a 1 by 1 matrix, namely,

xTg = [zl 5 2 . . . z N]

1

2 0. REFERENCE MATERIAL

Thus xTy is the scalar product of vectors x and y. xyT, on the other hand,
is an N by N matrix.

We now present four miscellaneous theorems, which will be needed in later
chapters.

Theorem 0.1.1. (AB)* = BTAT, for arbitrary matrices A and B, provided
that the product AB exists.

Proof: If A is an N by K matrix with elements aij, and B is a K by M
matrix with elements bij , then, using the definition of matrix multiplication,
we have

= (AB)ji = [(AB)T]ij .

In other words, the transpose of a product is the product of the transposes,
in reverse order.

Theorem 0.1.2.

(a) The product (if it exists) of two upper triangular matrices is an upper
triangular matrix (A is upper triangular if aij = 0 when j < i), and the
product of two lower triangular matrices is lower triangular.

(b) The inverse (if it exists) of an upper triangular matrix is upper trian-
gular, and the inverse (if it exists) of a lower triangular matrix is lower
triangular.

Proof:

(a) If A is an N by K upper triangular matrix with elements aij, and B is
a K by M upper triangular matrix with elements bij , then C E AB has
elements given by

Now, if j < i, it is not possible for j 2 k and k 2 i to hold simul-
taneously, for any k; otherwise we would have j 2 i . Therefore either
j < k or k < i, or both. In the former case, b k j = 0 since B is upper
triangular and, in the latter case, a i k = 0 since A is upper triangular.
Thus at least one of the factors in each term in the expression for cij is
zero, and so cij = 0 if j < i. Therefore, C = AB is upper triangular. If
A and B are lower triangular, the proof that AB is lower triangular is
similar.

0.1. MISCELLANEOUS RESULTS FROM LINEAR ALGEBRA 3

(b) Suppose A is an N by N upper triangular matrix (we can assume that
A is square; otherwise it has no inverse), and suppose B is an N by N
matrix that is not upper triangular. Then let j be a column of B with
nonzero elements below the diagonal, and let i(i > j) be such that bij

is the last nonzero element in that column. Then C A B has elements
given by

k=l

Now, since A is upper triangular, aik = 0 for k < i, and since b;j is the
last nonzero in column j, b k j = 0 for k > i. Thus at least one of the
factors in each term in the expression for cij is zero except the one with
k = i. So cij = aiibi j , but bij # 0 by assumption and, since the upper
triangular matrix A is assumed to be nonsingular, aii # 0 also; therefore
cij # 0. Since i > j, this means the matrix C cannot be diagonal, and
thus A B cannot be equal to the identity matrix I . So we have shown
that, if B is not upper triangular, it cannot be the inverse of A. The
proof that the inverse of a lower triangular matrix is lower triangular is
similar.

Theorem 0.1.3. If p 2 0, and N is a positive integer, then

P + l NP+1 NP+l
< 1 P + 2 p + 3 p + . . . + N p 5 -

p + 1 - p + l (l+N)

Proof: From calculus, we know that the area under the curve y = xp between
x = 0 and x = N is given by

NP+ 1
i N x p dx = -

p + 1 '

Since xp is a nondecreasing function, we see in Figure 0.1.1 that the sum of
the areas of the solid rectangles is less than the area under the curve y = xp.
Thus

NP+ 1
o p + 1 p + 2p + . . . + (N - 1) P 5 -

p + 1 '

Similarly, the sum of the areas of the dashed rectangles is greater than the
area under the curve; so

NP+l
1 P + 2 p + 3 p + . . . + N p 2 -

p + l '

The desired formula follows directly from these two bounds.

4 0. REFERENCE MATERIAL

AiiBii + A12B21

A21Bii + A22B21
A B = [

0 1 2 3 . . . N X

Figure 0.1.1

A11B12 + A12B22 m
A21B12 + A22B22 I N - m

This theorem will be useful when we try to estimate the amount of work
done by certain algorithms. When N is a large number, Theorem 0.1.3 implies
that

(0.1.1)

Theorem 0.1.4. If the matrices A and B have the block structure

m N - m m N - m

where A l l , . . . , A22 and B11,. . . , B22 are matrices with dimensions as indi-
cated, then the product matrix will have the form

m N - m

Proof: The proof involves simply carrying out the indicated multiplications
and will be omitted.

Note that what Theorem 0.1.4 says is that block matrices can be multiplied
as if the subblocks were just scalar elements.

0.2 Special Matrices

The algorithms that we shall study in later chapters involve a number of
special matrix types. The more frequently used types are defined below.

0.2. SPECIAL MATRICES 5

The first few types are characterized by their nonzero structures. We
shall be primarily interested in square matrices of the types listed below, even
though the definitions themselves do not limit us to square matrices.

(1) A is diagonal if aij = 0 when i # j . An example is

[:; 0 0 -1 " .

(2) A is tridiagonal if aij = 0 when li - j l > 1. An example is

(3) A is upper triangular if aij = 0 when j < i. An example is

A lower triangular matrix is defined similarly.

(4) A is upper Hessenberg if aij = 0 when j < i - 1. An example is

A lower Hessenberg matrix is defined similarly.

Note that each of these definitions specifies which positions must contain
zeros and not which contain nonzero elements. Thus, for example, a diagonal
matrix technically qualifies as a tridiagonal, an (upper or lower) triangular,
and an (upper or lower) Hessenberg matrix, although we would not normally
refer to it by any of these names.

The following matrix types are characterized by numerical properties,
rather than by their nonzero structures. Each of the definitions below im-
plicitly require A to be square, although in some cases this is not immediately
obvious.

6 0. REFERENCE MATERIAL

(5) A is symmetric if aij = uji, for each i, j . An example is

A symmetric matrix is thus one for which AT = A . An important
feature of (real) symmetric matrices is that their eigenvalues are all real.
To show this, suppose A z = Xz. Then (the overbar denotes complex
conjugate)

and, since zTz = zTz = 1z1I2 + . . . + 1 2 ~ 1 ~ is real and positive, X = x.
(6) A is nonsingular if a matrix A-' exists such that A-'A = AA-' = I .

(I is the identity matrix, a diagonal matrix with 1 elements along the
diagonal.)

If A is not square, A-'A and AA-l cannot be equal, as they will not
even be of the same size. Thus only a square matrix can be nonsingular.
If A is square, the following are true if and only if A is nonsingular:

(a) the rows of A are linearly independent;

(b) the columns of A are linearly independent;

(c) the determinant of A is nonzero;

(d) A z = b has a unique solution (any b) .

(7) A is positive-definite if it is symmetric, and

z T A z > 0, for all z # 0.

Since a positive-definite matrix A is symmetric, its eigenvalues, and thus
also its eigenvectors, are real. The eigenvalues are also positive for, if
Az = Xz, then, since an eigenvector is by definition nonzero,

and so X > 0. A is said to be positive-semidefinite if it is symmetric and
z T A z 2 0 for all z. Clearly all eigenvalues of a positive-semidefinite
matrix are nonnegative, but not necessarily positive.

0.3. VECTOR AND MATRIX NORMS 7

(8) A is orthogonal if ATA = AAT = I

In other words, A is orthogonal if its transpose is its inverse. Now

Since Iij is 0 when i # j and 1 when i = j , we see that the columns
of an orthogonal matrix are mutually orthogonal and each column is
normalized to have length one. The same can be said of its rows, since
A A ~ = I also.

Orthogonal matrices will be very important in Chapters 2 and 3.

0.3 Vector and Matrix Norms

Vector and matrix norms play important roles in later chapters. As seen
below, although vector and matrix norms employ similar notations, they are
defined quite differently.

For p 2 1, the “pnorm” (or L,-norm) of a vector x = (XI,. . . , ZN) is
defined by

IIxlIp = (1.11” + . . . + IzNy)l/? (0.3.1)

Thus the l-norm of x is the sum of the absolute values of its components, and
the 2-norm (also called the Euclidian norm) is the square root of the sum of
squares of its components. Note that 11x11; = x T x .

max lzil
and K denotes the number of components with Izi) = M , then by (0.3.1)

Now suppose we hold the vector x fixed and let p -+ 00. If M

lim llxllp = J;. (g + . . . + w) ‘”1 = lim [M(K)’/”] = M
P-, MP ”--too

Thus it seems reasonable to define IIxlloc = it4 5 maxlzil. The three norms
11x111, 11x112 and 1 1 ~ 1 1 ~ are the only ones in common use. It is easy to verify
that I(xI(, 5 llxllp 5 N((z (1 , for any p 2 1, so that these norms differ from
each other by at most a factor of N .

For each vector norm, there is an associated matrix norm, defined by

(0.3.2)

Note that it follows immediately from (0.3.2) that IIAzll, _< IIAllpllxllp. How-
ever, it is not feasible to calculate a norm of a matrix using (0.3.2) directly.
The following theorem provides formulas that can be used to calculate the

8 0. REFERENCE MATERIAL

three commonly used matrix norms. Although (0.3.2) does not require that
A be square, in this book we shall only be interested in the norms of square
matrices.

Theorem 0.3.1. If the elements of the N by N matrix A are aij, then

N
(a) llAll1 = lgyN Ci=1 laijlt

N
(b) IlAllm = lgyN C j = i laij I)

(c) llAll2 = pmax,
1 /2

where pmax is the largest eigenvalue of ATA.

Proof: For p = 1, m, and 2, we need to show first that with llAllp defined by
formulas (a), (b), and (c), respectively, llAzll, I IIAllp((zl(p, for arbitrary z.
This verifies that our matrix norm formula is an upper bound on the ratios

(0.3.3)

Then, if we can find one nonzero vector z such that IIAzllp = IIAllpllzllp, we
have shown that our matrix norm formula is actually the least upper bound
to the ratios (0.3.3), and hence it is really the matrix norm.

If J is the value (or one of the values) of j for which the "column sum"
(aij I is maximized, then we can choose z to be the vector that has

ZJ = 1 and all other components equal to zero. Then llzlll = 1 and
since A z is equal to the J t h column of A, llAzll1 = llAlll = IIAlllllzlll.

0.3. VECTOR AND MATRIX NORMS 9

If I is the value (or one of the values) of i for which the “row sum”
zgl laij I is maximized, then we can choose z to be the vector that has
z j = 1 when arj 2 0 and z j = -1 when a ~ j < 0. Then llzllw = 1 and
the largest component of Ax will be component I , which will have the
value (A z) , = arlzl + . . . + U Z N Z N = laill + . . . + ~ U I N ~ = llAllw. Thus
IIAzIlw = IlAllco = IIAllwll~llw-

(c) Even if A is not symmetric, the matrix ATA is, since (ATA)T = ATA. It
is also positive-semidefinite, since zT(ATA)z = (A z) ~ (A ~) = llAz11; 2
0; so the eigenvalues of ATA are all real and nonnegative. Now by a
basic theorem of linear algebra, since ATA is symmetric, there exists an
orthogonal matrix Q (QTQ = I) such that ATA = QTDQ, where D is
a diagonal matrix containing the (nonnegative) eigenvalues of ATA. If
we denote these eigenvalues by pi, and if the components of Q z are qi ,
then

Thus IIAz112 5 py&llz(12. Now, if I is the value (or one of the values)
of i that maximizes pi, we can choose z to be such that Qx has qr = 1,
and all other components equal to 0. Then clearly we can replace the
only inequality in (0.3.4) by an equality, and llAzll2 5 py&llz112. I

Note that, if A is symmetric, the eigenvalues pi of ATA = AA are the
squares of those (X i) of A, and so

IIA112 = P!Cx = IXmaxL

where A,, is the eigenvalue of A of largest modulus.
As an example, consider the matrix

A = [-3 2 4 0 -:I.
3 -2

We calculate that llAll1 = 8, since the sum of the absolute values of the three
columns are 8, 6, and 7, and the l-norm is the maximum of these. Also,
llAlloo = 10, since the sum of the absolute values of the three rows are 8, 3,

10 0. REFERENCE MATERIAL

and 10, and the co-norm is the maximum of these. To calculate the 2-norm
of A is much more difficult. First we form

22 -18 10
A T A = [-it 20 - 6 1

-6 27

Then, using a computer program to be presented in Section 3.2, we find
the eigenvalues of ATA to be 2.668, 20.400, and 45.931. Hence llAlla =
45.93l1I2 = 6.777.

1

Systems of Linear
Equations

1.1 Introduction

Consider the electrical circuit shown in Figure 1.1.1.

Resistance B

Figure 1.1.1.

We want to calculate the current IAB flowing from node A to node B, and
also the currents IBC, IAC, IBD and ICD. It is known that the net current
flowing into any node is zero, and also that the voltage drop (current times

11

12 1. SYSTEMS OF LINEAR EQUATIONS

resistance) around any closed loop is zero. From the first rule we deduce that

10- IAB - IAC = 0,

IAB -IBC -IBD = 0,

IAC +IBC -ICD = 0,
IBD + ICD - 10 = 0.

The second rule gives

(1.1.1 a)

(1.1.1 b)

(1.l.ld)

(1.1 .lc)

(1.1.2a)

(1.1.2b)

(1.1.2c)

It appears that we have seven linear equations for the five unknown cur-
rents. However, if we add equations 1.l.la-1.l.lc together we get equation
1.l.ld; so the last equation is redundant and may be dropped. Similarly, if
we add 1.1.2a and 1.1.2b, we get equation 1.1.2c, so that 1 .1 .2~ can also be
dropped, leaving us with the five equations

(1.1.3)

Systems of simultaneous linear equations, such as 1.1.3, have to be solved
frequently by workers in almost every branch of science and engineering, and
they arise during the solution of many of the other problems faced by numer-
ical analysts, such as nonlinear systems, partial differential equations, and
optimization problems. In this chapter we shall develop and analyze methods
for the computer solution of linear systems.

1.2 Gaussian Elimination

The solution of linear systems is one of the few problems in numerical analysis
where the first method taught in mathematics classes is still used by state-
of-the-art software. The method of Gaussian elimination, whereby a system
of linear equations is systematically reduced to an equivalent system of tri-
angular form and then back solved for the unknowns, is the foundation for
most modern algorithms-at least those designed for small dense systems.
However, a few modifications are employed by sophisticated computer codes.

The basic tool used to reduce a general system of N linear equations in N
unknowns to triangular form is the addition of a multiple of one equation to

1.2. GAUSSIAN ELIMINATION 13

another. For example, the 2 by 2 system

can be reduced to triangular form by adding twice the first row to the second
row:

Now the last equation can be solved for 2 2 = 1, and then the first equation
can be solved for 21 = (5 - 222)/3 = 1.

For a general N by N system, Aa: = b:

and the basic Gaussian elimination process is as follows. First, for j =
2 , . . . , N we take a multiple -ajl/ull of the first row and add it to the j t h row,
to make ajl = 0. Since we are really adding a multiple of the first equation
to the j t h equation, we must also add the same multiple of bl to b j - Once we
have knocked out all elements of A below the “pivot” element all in the first
column, we have the system

all a12 a13 ... alN

0 4, ... a3N

which is equivalent to 1.2.1.
Now, for j = 3 , . . . , N , we take a multiple -uj2/a22 of the second row and

add it to the j t h row. When we have finished this, all subdiagonal elements
in the second column are zero, and we are ready to process the third column.
Applying this process to columns i = 1 , . . . , N - 1 (there are no subdiagonal
elements to knock out in the Nth column) completes the forward elimination
stage, and the coefficient matrix A has been reduced to upper triangular form

14

(see 1.2.7).

1. SYSTEMS OF LINEAR EQUATIONS

row i
A =

row j

column
i

' x x x x x x x x x
o x x x x x x x x
o o x x x x x x x
0 0 0 a ; ~ X X X X X
0 0 0 x x x x x x
0 0 0 x x x x x x
0 0 o a j i x x x x x
0 0 0 x x x x x x
0 0 0 x x x x x x

(1.2.2)

It is important to note that, because we eliminate subdiagonal elements col-
umn by column, beginning with the first column, the zeroed elements remain
zero; while we are adding a multiple -uj;/u;; of row i to row j (j > i), to
knock out uji , we are just adding multiples of zero to zero in columns 1 to
i - 1 (see 1.2.2). In fact, we can skip over these unnecessary calculations when
we program this process.

Obviously, if one of the diagonal pivots a;; is zero, we cannot use ai; to
knock out the elements below it; we cannot change uj; by adding any multiple
of a;; = 0 to it. We must switch row i with another row 1 below it (switching
with a row above i would destroy some of the zeros introduced earlier), which
contains a nonzero element al; in the ith column. Again, since we cannot
switch the left-hand sides of two equations without interchanging the right-
hand sides, we have to switch the values of b; and bl also. Now the new pivot
u;i is not zero, and we can continue the Gaussian elimination scheme as usual.

If al; = 0 for I = i, . . . , N , then it will not be satisfactory to switch row i
with any of the rows below it, as all the potential pivots are zero. It is time
to give up, because the reduced matrix (and thus also the original matrix)
is singular. To see this, note that the last N - i + 1 rows have nonzero
elements only in the last N - i columns (see 1.2.2); so they all belong to the
same (N - i)-dimensional subspace of RN. However, N - i + 1 vectors in
an (N - 2)-dimensional space are necessarily linearly dependent, which means
that the matrix is singular. If A is square and singular, Aa: = b may (or may
not) still have solutions, but it will never have a unique solution. In Chapter
2 we give an algorithm that can be used to return a solution if solutions exist,
or a near-solution if solutions do not exist, but in this chapter we are only
interested in systems with unique solutions, and we shall simply give up if A
is found to be singular.

Now, as long as all arithmetic is done exactly, the above-described forward-
elimination process will, unless A is singular, produce an exactly equivalent
triangular system, from which the unknowns can be solved in reverse order.
However, when we solve linear systems on a computer-which does not do

1.2. GAUSSIAN ELIMINATION 15

arithmetic exactly-we must modify the algorithm somewhat. As long as we
do arithmetic exactly, there is no need to switch rows until a pivot is found
that is exactly zero; when computations are done on a computer we find that
a nearZy zero pivot is also to be avoided, as it can lead to serious inaccuracies
in the final answer.

Perhaps the best way to see that a nearly zero pivot poses a threat to
accuracy is to consider a linear system such as

(1.2.3)

If exact arithmetic is done, we could take -3 times the first equation and add
it to the second and third equations, reducing 1.2.3 to

(1.2.4)

We now have to switch rows 2 and 3, to bring a nonzero up to the pivot (~ 2 2)

position. Then back substitution produces z = y = x = 1, as can easily be
verified.

On the other hand, if exact arithmetic is not done, a22 in 1.2.4 will not in
general be exactly zero, but some number E that is essentially a small random
number:

(1.2.5)

We may argue that “since a22 is not zero, there is no need to switch rows” and
proceed to add - 1 / ~ times the second equation to the third equation, and we
may then back solve for the unknowns. However, we are taking as significant a
number that is essentially garbage (c is as likely to be positive as negative), and
the result on a real computer is that our solution will probably also be garbage.
In fact, when we solved 1.2.3 on an IBM 3081 computer using single-precision
arithmetic, with no row interchanges, the result was x = -4, y = 16, z = 1,
which is nowhere close to the true solution x = y = z = 1. On the same
computer, when rows 2 and 3 were switched, the answer was accurate to six
decimal places in each unknown.

Thus the most important modification to the classical elimination scheme
that must be made to produce a good computer algorithm is this: We inter-
change rows whenever laiil is small, and not only when it is zero.

But how small is “small”? Several strategies are available for deciding
when a pivot is too small to use. We could, for example, switch rows when
laiil is less than a certain arbitrary threshold. However, we shall see when we
program Gaussian elimination (Figure 1.2.1) that switching rows requires a

16 1. SYSTEMS OF LINEAR EQUATIONS

negligible amount of work compared with the actual elimination calculations;
so it is not unreasonable to use the following strategy, called partial pivoting:
For each column i, we always switch row i with row 1 , where ali is the largest
(in absolute value) of all the potential pivots aii, ai+i,i, . . . , a N i .

The partial pivoting strategy avoids the problem of choosing an arbitrary
threshold, by using the largest pivot available each time. Although it is possi-
ble to construct example systems that fool this algorithm into making a poor
choice of pivot (see Section 1.7), partial pivoting is what is used by most of
the popular Gaussian elimination computer codes, and on “real-world” prob-
lems it is very unlikely that we can find another pivoting strategy that will
significantly improve on the accuracy produced by partial pivoting.

A competing strategy is “complete pivoting” in which the entire lower
right hand N - i + 1 by N - i + 1 submatrix is searched for the element that is
largest in absolute value. By row and column interchanges (row interchanges
are accompanied by interchanges in b, while column interchanges must be ac-
companied by interchanges in 5) this element is brought to the pivot position
aii before proceeding. Most experts agree, however, that the gain in numerical
stability offered by complete pivoting is not usually worth the extra effort.

Now let us summarize Gaussian elimination with partial pivoting (see
1.2.6).

0 ... aji ... a j N

0 ... aNi ... a N N

(1.2.6)

For a given column i (i = 1, . . . , N - 1) we first search the potential pivots aii,

ai+l,i,. . . , a N i for the one that has largest absolute value (the method used
to break ties is unimportant). If the largest one lies in row 1 (ali), we switch
rows i and I , and also switch bi and bl. If all the potential pivots are zero,
we give up. Then, for j = i + 1 , . . . , N , we knock out aji by adding -aji/aii

times the ith row to the j t h row, and -aji/aii times bi to b j .

Once we have finished this forward-elimination phase, we begin the back
substitution phase, to solve the reduced triangular system

all ...

~ N N

(1.2.7)

1.2. GAUSSIAN ELIMINATION 17

At this point we know that the diagonal elements (the pivots) are all nonzero;
otherwise we would have given up earlier (actually a” # 0 must be checked
separately, since we have only processed columns 1 to N - 1). Thus we can
Solve the last equation a”XN = bN for X N = bN/a” and then solve for the
other unknowns in reverse order; for each i (i = N - 1 to 1) we have

N

j=i+l

or, since xi+l to X N are by now known,

A FORTRAN program that implements Gaussian elimination with partial
pivoting is shown in Figure 1.2.1. Note that the program considers the ma-
trix to be singular only if the largest potential pivot a t any stage is exactly
zero. Alternatively, it would reasonable to give up when the largest potential
pivot is less than some small threshold, in absolute value. A code that uses
that strategy may occasionally give up prematurely, when it could still have
produced a solution with some significant digits. Our code, on the other hand,
runs a risk of returning garbage without a warning.

There are two features of DLINEQ that may be confusing to the reader
at this point, but whose purposes will be clarified in the next section. One
is the use of the permutations vector IPERM and the other is statement 30,
where A(J, I) is set to LJI, when it clearly should be set to zero (after all,
the whole aim of loop 30 is to make A(J, I) = O!). For now, we can simply
consider IPERM to be an output vector containing useless information, and it
should be noticed that subdiagonal element A(J, I) is never used again after
it is zeroed; so, as long as we remember that it is really zero, we can store
whatever information we like in that piece of memory.

SUBROUTINE DLINEQ(A.N.X,B, IPERM)
IMPLICIT DOUBLE PRECISION (A-H.0-2)

C DECLARATIONS
DOUBLE PRECISION A(N.N) ,X(N) .B(N)
INTEGER N, IPERM (N)

DOUBLE PRECISION LJI
C DECLARATIONS

C

FOR ARGUWENTS

FOR LOCAL VARIABLES

C SUBROUTINE DLINEQ SOLVES THE LINEAR SYSTEM A*X=B
C
C ARGUMENTS
C
C ON INPUT ON OUTPUT

18 1 . SYSTEMS OF LINEAR EQUATIONS

C A - THE N BY N COEFFICIENT MATRIX. THE DIAGONAL AND UPPER
C TRIANGLE OF A CONTAINS U
C AND THE LOWER TRIANGLE
C OF A CONTAINS THE LOWER
C TRIANGLE OF L, WHERE
C PA = LU, P BEING THE
C PERMUTATION MATRIX
C DEFINED BY IPERM .
C
C N - THE SIZE OF MATRIX A.
C
c x - AN N-VECTOR CONTAINING
C THE SOLUTION.
C
C B - THE RIGHT HAND SIDE N-VECTOR. DESTROYED.
C
C IPERM - AN N-VECTOR CONTAINING
C A RECORD OF THE ROW
C INTERCHANGES MADE. IF
C J = IPERM(K), THEN ROW
C J ENDED U p AS THE K-TH
C ROW.
C
C---
C INITIALIZE IPERM = (1,2,3, ..., N)

DO 10 KI1.N
IPERM(K) = K

10 CONTINUE
C BEGIN FORWARD ELIMINATION

C SEARCH FROH A(I.1) ON DOWN FOR
C LARGEST POTENTIAL PIVOT, A(L ,I)

DO 35 I=l.N-l

BIG = ABS(A(I.1))
L = I
DO 15 J=I+I.N

IF (ABS(A(J.1)) .GT.BIG) THEN
BIG = ABS(A(J.1))
L = J

ENDIF
15 CONTINUE

C IF LARGEST POTENTIAL PIVOT IS ZERO.
C MATRIX IS SINGULAR

C SWITCH ROY I WITH ROW L, TO BRING
C UP LARGEST PIVOT

IF (BIG.EQ.O.0) GO TO 50

DO 20 K=l,N

1.2. GAUSSIAN ELIMINATION 19

20
C

C

C

C

25
C

C
C

30

TEMP = A(L,K)
A(L.K) = A(1.K)
A(1.K) = TEMP

CONTINUE

TEMP = B(L)
B(L) = B(1)
B(1) = TEMP

ITEMP = IPERM(L)
IPERM(L) = IPERM(1)
IPERM(1) = ITEMP
DO 30 J=I+l,N

SWITCH B(1) AND B(L)

SWITCH IPERM(1) AND IPERM(L)

CHOOSE MULTIPLIER TO ZERO A(J.1)
LJI = A(J,I)/A(I,I)
IF (LJI.NE.O.0) THEN

DO 25 K=I+l.N

CONTINUE

B(J) = B(J) - LJI*B(I)

SUBTRACT LJI TIMES ROW I FROM ROW J

A(J,K) = A(J,K) - LJI*A(I,K)

SUBTRACT LJI TIMES B(1) F R O M B(J)

ENDIF
SAVE LJI IN A(J.1). IT IS UNDERSTOOD,
HOWEVER. THAT A(J.1) IS REALLY ZERO.

A(J.1) = LJI
35 CONTINUE

IF (A(N,N).EQ.O.O) GO TO 50

X(N) = B(N)/A(N,N)
C SOLVE U*X = B USING BACK SUBSTITUTION.

DO 45 I=N-1,1,-1
SUM = 0.0
DO 40 J=I+l,N

SUM = SUM + A(I,J)*X(J)
40 CONTINUE

45 CONTINUE
RETURN

50 PRINT 55
55 FORMAT (’ ***** THE MATRIX IS SINGULAR *****’I

RETURN
END

X(1) = (B(1) -SUM)/A(I ,I)

C MATRIX IS NUMERICALLY SINGULAR.

Figure 1.2.1

When DLINEQ was used to solve 1.1.3 for the currents in Figure 1.1.1, the
result was IAB = 6.05, IBC = -1.30, IAC = 3.95, IBD = 7.35, and ICD = 2.65.

20 1 . SYSTEMS O F LINEAR EQUATIONS

Note that IBC is negative, which means the current really flows from C to
B. When we try, using DLINEQ, to solve naively the first five of the seven
equations (1.1.1-1.1.2), we get an error message from DLINEQ indicating that
the matrix is singular (owing to the redundancies mentioned earlier).

A superficial analysis of subroutine DLINEQ shows that loop 25, where a
multiple of row i is subtracted from row j , is where nearly all the computer
time is spent, when N is large (note that this is the only triply nested DO
loop in the program). Thus, for large N , the total amount of work done by
DLINEQ is nearly equal to the amount done by the abbreviated program

DO 35 I=l,N-1
DO 30 J=I+I,N

DO 25 K=I+I,N
A(J,K) = A(J,K)- LJI*A(I,K)

25 CONTINUE
30 CONTINUE
35 CONTINUE

The number of multiplications done by this program is (see 0.1.1)

N 3 1
3 3

N-1 N-1

C(N - i) 2 = C(N2 - 2Ni + i 2) M N 3 - N 3 + - = - N 3 .
i= 1 i= l

Thus the total work done by DLINEQ to solve an N by N linear system
is about f N 3 multiplications. Note that the work to carry out the back
substitution is only O (N 2) (it uses only double nested loops); most of the
computer time is spent in the forward-elimination phase.

1.3 Solving Several Systems with the
Same Matrix

Frequently in applications we have to solve several systems with the same co-
efficient matrix but different right-hand side vectors. As an example, consider
the shifted inverse power iteration 3.5.3, where we solve a sequence of linear
systems with identical coefficient matrices. The electrical circuit of Figure
1.1.1 suggests another example. If we connect the battery leads to different
nodes or vary the battery voltage, only the right-hand side of 1.1.3 will change.

One alternative in such situations is obviously to calculate A-l. Once we
have an inverse it only takes N 2 multiplications to solve Az = b by multiplying
A-’ times b. However, there is a more efficient way to accomplish the same
thing; we shall see how to calculate something that serves the same purpose as
an inverse but that falls out “for free” when the first linear system is solved.

If b and c are simultaneously available, we can of course solve two linear
systems Ax = b and A x = c for essentially the price of one, by modifying

1.3. SOLVING SEVERAL SYSTEMS WITH THE SAME MATRIX 21

DLINEQ to process c along with b (switching ci and cl each time that bi and
bl are switched, etc.), but we shall not use this approach, because often it is
necessary to solve the first system before solving the second; for example, in
the inverse power iteration 3.5.3 we must solve (A -pI)v,+l = v, before we
know what the next right-hand side is.

Subroutine DRESLV (Figure 1.3.1) allows us to solve a second system
Ax = c almost for free (in O (N 2) operations) after we have finished solving
the first system Aa: = b the hard way (using DLINEQ). The idea is simply
to keep up with what was done to b when Ax = b was solved and then to
do the same things to c. To explain how DRESLV works, let us first assume
that no row interchanges are done by either DLINEQ or DRESLV. Later we
shall take the row interchanges into account.

SUBROUTINE DRESLV (A, N , X , C ,IPERM)
IMPLICIT DOUBLE PRECISION (A-H.0-2)

DOUBLE PRECISION A(N,N) .X(N) .C(N)
INTEGER N, IPERM (N)

DOUBLE PRECISION LJI

C DECLARATIONS FOR ARGUMENTS

C DECLARATIONS FOR LOCAL VARIABLES

C
C
C AFTER DLINEQ HAS PRODUCED AN LU DECOMPOSITION OF PA.
C
C ARGUMENTS
C
C ON INPUT ON OUTPUT
C
C
C A - THE N BY N COEFFICIENT MATRIX
C AFTER PROCESSING BY DLINEQ.
C AS OUTPUT BY DLINEQ, A CONTAINS
C AN LU DECOMPOSITION OF PA.
C
C N - THE SIZE OF MATRIX A.
C
c x - AN N-VECTOR CONTAINING
C THE SOLUTION.
C
c c - THE RIGHT HAND SIDE N-VECTOR. DESTROYED.
C
C IPERM - THE PERHUTATION VECTOR OF
C LENGTH N OUTPUT BY DLINEQ.
C
C--

C CALCULATE C=P*C. WHERE P IS PERMUTATION
C MATRIX DEFINED BY IPERM.

SUBROUTINE DRESLV SOLVES THE LINEAR SYSTEM A*X=C IN O(N**2) TIME,

- - -- - - - - - - - - - - - - -

22 1. SYSTEMS O F LINEAR EQUATIONS

DO 5 K=l,N
J = IPERM(K)
X(K) = C(J)

5 CONTINUE
DO 10 K=l,N

C(K) = X(K)
10 CONTINUE

C BEGIN FORWARD ELIMINATION, TO CALCULATE
C c = L**(-l)*C

DO 20 1-l.N-1
DO 15 J=I+l.N

C RETRIEVE MULTIPLIER SAVED IN A(J.1)

C SUBTRACT LJI TIllES C(1) FROM C(J)
LJI = A(J.1)

C(J) = C(J) - LJI*C(I)
15 CONTINUE
20 CONTINUE

C SOLVE U*X = C USING BACK SUBSTITUTION.
X(N) = C(N)/A(N,N)
DO 30 I=N-l.l,-l

SUM = 0.0
DO 25 J=I+l,N

SUM = SUM + A(I,J)*X(J)
25 CONTINUE

30 CONTINUE
RETURN
END

X(1) = (C(I)-SUM) /A(I .I)

Figure 1.3.1

When DLINEQ subtracts a multiple l j ; of row i from row j (and the same
multiple of b; from b j) , aji is overwritten by l j i , even though it is understood
that aji is now really zero. This does not cause DLINEQ any problems,
since A (j , i) is never used again by this subroutine, in the rest of the forward
elimination or in the back substitution. When DLINEQ has finished, A has
the form

u 3 N .

u 1 1 u 1 2 u 1 3 - . - U 1 N

(121) u 2 2 u 2 3 ... UZN

(l31) (132) u 3 3 . . . (1.3.1)

U N N : I
A is really, at this point, in its reduced triangular form U. The elements below
the diagonal are enclosed in parentheses to indicate that the corresponding
elements of U are really zero, but we are using A (j , i) (j > i) to store the
multiple (l j i) of row i, which was subtracted from row j to eliminate aji.

1.3. SOLVING SEVERAL SYSTEMS WITH THE SAME MATRIX 23

Thus, when DRESLV is used to solve A z = c, A as output by DLINEQ
contains not only the final upper triangular form of A but also a record of
the multiples used to reduce A to this triangular form. A (j , i) tells us what
multiple of row i we must subtract from row j , and what multiple of ci we
must subtract from c j , in order to reduce A to upper triangular form again.
However, this time we can skip the operations on the rows of A, and only
perform them on c, since we already know what these multiples are going to
be. This allows us to skip the expensive loop 25, where a multiple of row i
is subtracted from row j . The forward-elimination phase (loop 20 in Figure
1.3.1) now requires only about kN2 multiplications, since (see 0.1.1)

Since the upper triangle of A , as output by DLINEQ, already contains the
final (reduced) triangular form of A , we can now back solve for the solution
of A z = c. This back-substitution phase (loop 30 in Figure 1.3.1) requires
another $ N 2 multiplications, since

1
2

1

(N - i) M - N 2 .
i=N-1

So DRESLV does a total of about N 2 multiplications to solve Az = c, the
same number as required by the multiplication z = A- lc , but note that it
cost DLINEQ virtually nothing extra to save the multipliers used by DRESLV,
whereas computing the inverse of A is an expensive process (see Problem 2).

So far we have assumed that no row interchanges are done by DLINEQ, but
usually this will not be the case. However, DLINEQ also provides DRESLV
with a record of the interchanges it makes in the permutation vector IPERM,
so that it can make the same interchanges when it solves A x = c. IPERM is
set to (1 ,2 ,3 , . . . , N) initially by DLINEQ; then each time that rows i and 1 are
switched, IPERM(i) and IPERM(Z) are also interchanged. After DLINEQ is
finished, IPERM(k) contains the number of the original row (equation), which
ended up as the kth row (equation).

Now, if we had known before we began to solve A s = b in what order
the equations would end up, we could have (in DLINEQ) reordered these
equations (i.e., rows of A and elements of b) before we started, and then no
row interchanges would need to be done during the elimination; at each step
the largest potential pivot would already be in the pivot position. Then the
final A (stored multipliers and upper triangle) and the final b would be exactly
the same as if the interchanges were done one by one during the elimination,
as prescribed by the partial pivoting formula. Although DLINEQ in fact has
to do the interchanges one by one (it cannot predict the future), since the final
A and b are the same in either case, we can pretend that the rows of A and

24 1 . SYSTEMS O F LINEAR EQUATIONS

row i

row j

M . . -
21 -

the elements of b are permuted at the beginning only. Note that in DLINEQ
when we switch rows i and 1 (loop 20), we switch not only the nonzero parts in
columns i to N but also the elements of these rows in columns 1 to i - 1, which
contain a record of the multiples used to zero elements in the interchanged
rows. If these elements were actually storing zeros, loop 20 could run from
K = I to K = N .

Now DRESLV, because it has IPERM available to it, does know the find
equation order before it starts, and so it does actually permute the elements
of c into their final order then, just as (let’s pretend!) DLINEQ does with b
and the rows of A. If j = IPERM(k) (k = 1 , . . . , N) , cj is destined to end
up as the kth element of c; so we move it there to begin with. From there
the forward elimination proceeds exactly as described above, with no further
interchanges.

‘ 1

-

1.4 The LU Decomposition

The two row operations used to reduce A to upper triangular form can be
thought of as resulting from premultiplications by certain elementary matri-
ces. Subtracting a multiple l j i of row i from row j (j > i) is the result of
premultiplying A by

column column
i j

1
1

-1..
1=

1
1

1
1

1

(1.4.1)

as is easy to verify.
Also, any row interchanges can be performed by premultiplying with an

appropriate permutation matrix P, where P is equal to the identity matrix
with its rows permuted in a similar manner. For example, if the three rows
of P are the third, first, and second rows of the identity, [0 0 1 1 [all a12 a131 = [zf: zfz zf:]

0 1 0 a31 a32 a 3 3 a21 a22 a23

P A = 1 0 0 a21 a 2 2 a23

and the three rows of P A are the third, first, and second rows of A.
Now we can describe the processes of the last two sections in terms of

premultiplications by P and M matrices. The analysis is much easier if we
pretend, again, that in solving Aa: = b using Gaussian elimination with partial

1.4. THE LU DECOMPOSITION 25

pivoting we somehow have the foresight to permute the equations (rows of A
and elements of b) into their final order at the start, rather than doing the
switches one by one as the need becomes apparent.

After permuting the equations, our linear system now has the form

P A X = P b , (1.4.2)

where P is some appropriate permutation matrix. No further interchanges
will be required.

Now to zero a subdiagonal element aji we can premultiply both sides of
1.4.2 by Mij, where Mij is as shown in 1.4.1, with Zji chosen appropriately. If
we zero the elements in the proper (column by column) order, we have

These premultiplications are designed so that

M N - ~ , N . . . M12PA = U, (1.4.4)

where U is upper triangular. If we call the right-hand side of 1.4.3 y, then
1.4.3 can be written in the form

The upper triangular system U x = y is solved by back substitution.

DRESLV (Figure 1.3.1) solves this system similarly, by forming
Now, if we have a new system A x = c with the same coefficient matrix,

= M N - ~ , N . . . M ~ ~ P c (1.4.5a)

and then back solving

u x = y. (1.4.5b)

That is, DRESLV first premultiplies c by P (using the information saved in
IPERM), then premultiplies by the Mij matrices (Mij is of the form 1.4.1
where Zj; is saved in subdiagonal position (j , i) of A (see 1.3.1)) and finally
solves 1.4.5b by back substitution (U is stored in the diagonal and upper
triangle of A) .

Now from 1.4.4 we have

P A = M;'. . . MjjI1,NU. (1.4.6)

26

The inverse of Mij (see 1.4.1) is easily seen to be

1 . SYSTEMS O F LINEAR EQUATIONS

column column
i j

L = ML1 . . . MN'l,N =

1
row i

1

- -
1

121 1
131 132 1 (1.4.8)

- .

- IN1 I N 2 1 ~ 3 ... 1 -

r o w j I
~

lji 1
1 I 1

y = L-lPc,
u x = y .

(1.4.9a)

(1.4.9b)

Now 1.4.9 is essentially equivalent to the traditional approach, except that
L y = Pc is normally solved by forward substitution (the unknowns are solved
for in forward order).

Since the product of lower triangular matrices is lower triangular (Theorem
0.1.2), from 1.4.6 we have

P A = LU, (1.4.7)

where L E M,' . . . M&Y1,N is a lower triangular matrix, and U is upper
triangular. In fact, it can be verified by direct multiplication (Problem 3)
that

Thus the matrix A as output by DLINEQ (see 1.3.1) contains U on its diagonal
and upper triangle and the lower triangular part of L in its lower triangle. In
other words, DLINEQ calculates the LU decomposition 1.4.7 not of A but of
a row-wise permutation P A of A and overwrites A with L and U (the diagonal
elements of L are not saved, but we can remember that they are all ones).

The traditional way to use this LU decomposition to solve a new system
Aa: = c is to premultiply both sides by P and then to rewrite PAX = Pc as
LUX = Pc; finally, this system is solved in the form

Ly = Pc,

ux = y.

Recalling the definition (see 1.4.8) of L, we see that the equations 1.4.5 used
by DRESLV to solve a new system Aa: = c can be written in the form

1.5. BANDED SYSTEMS 27

If A is positive-definite, the diagonal elements are all positive initially,
since aii = eTAei > 0, where ei is the vector with 1 in position i and zeros
elsewhere. Now it can be shown [Sewell 2005, Section 0.21 that, if no pivoting
is done, the diagonal elements will remain positive throughout the Gaussian
elimination process. Thus, when the LU decomposition of A is formed, the
diagonal portion D of U consists of positive elements. It is shown in Problem
4b that (since A is symmetric) A = P A = LU = LDLT. Now, since D
consists of positive elements, D112 is real, and

Equation 1.4.10 is called the Cholesky decomposition of a positive-definite
matrix, and it will be useful later (Section 3.6). Note that L1 E LD'/2 is
lower triangular and, since it has positive diagonal elements (the square roots
of the elements of D) , it is nonsingular. Now

and, since LT is nonsingular, this can be zero only when x = 0 . Thus we see
that A has a Cholesky decomposition if and only if it is positive-definite.

1.5 Banded Systems

The large linear systems that arise in applications are usually sparse; that
is, most of the matrix coefficients are zero. Many of these systems can, by
properly ordering the equations and unknowns, be put into "banded" form,
where all elements of the coefficient matrix are zero outside some relatively
small band around the main diagonal. For example, the huge linear systems
that arise when differential equations are solved using finite difference or finite
element methods are nearly always banded. A typical band matrix is exhibited
in Figure 1.5.1. NLD is the number of diagonals below the main diagonal which
contain some nonzero elements and NUD is the number of diagonals above the
main diagonal. For the matrix shown in Figure 1.5.1, NLD = 2 and NUD = 3.
Thus the total number of diagonals, called the band width, is NLD + NUD + 1.

When Gaussian elimination is applied to a linear system with a banded
coefficient matrix, if we take advantage of the fact that the elements outside
the band are zero, we can solve such a system much more rapidly than a
similar size system with a full coefficient matrix.

28 1. SYSTEMS OF LINEAR EQUATIONS

I

N L D

row i

row i+NLD

1 NU D

Figure 1.5.1
Band Matrix

X, not necessarily zero.

column i column i+NUD
I I

Figure 1.5.2
Partially Processed Band Matrix (No Pivoting).

In fact, if no row interchanges are done, all elements outside the band
remain zero throughout the forward elimination. This is clear when we look
at Figure 1.5.2, which shows a partially processed band matrix. When the
pivot element aii is used to knock out the NLD nonzero subdiagonal elements,
only the elements in the NLD + 1 by N ~ D + 1 rectangle shown will change, as
multiples of the pivot row i are subtracted from rows i + 1 to i + N ~ ~ (m i n (i +
NLD, N) actually).

Furthermore, since the LU decomposition of A is formed by simply over-
writing the zeroed elements aji with the multipliers l j i , we see that L and

1.5. BANDED SYSTEMS 29

U (see 1.3.1) will necessarily be band matrices also, and neither will extend
outside the original band of A. The inverse of a band matrix is generally a
full matrix; so we see that for banded systems the LU decomposition is much
more economical to form and use than the inverse (and it serves the same
purpose).

If partial pivoting is used, as it normally should be, the NLD diagonals
immediately above the band may “fill in” and become nonzero during the
Gaussian elimination, but all elements below the band will remain zero. Figure
1.5.3 illustrates how these diagonals may fill in. In the worst case, row i may
have to be interchanged with row i + NLD, in which case row i will then be
nonzero out to column i + NUD + NLD and, when multiples of row i are added
to rows i + 1 to i + NLD, everything inside the rectangle shown may fill in.

columii i column itN,,, tNLD

- new band Iiouiidcit y

- old tK?nd t)01111d.l1 v

Figure 1.5.3
Partially Processed Band Matrix (Pivoting Allowed)
X , nonzero originally; Y, nonzero owing to previous fill-in.

FORTRAN subroutine DBAND (Figure 1.5.4) solves a banded linear sys-
tem Aa: = b using Gaussian elimination with partial pivoting. The program
follows closely the pattern of DLINEQ, but the limits of most of the DO loops
are designed to take advantage of the fact that only the first NLD subdiag-
onals, the main diagonal, and the first NUD + NLD superdiagonals will ever
contain nonzero elements. Furthermore, only these ~ N L D + NUD + 1 diagonals
are actually stored; we do not waste computer memory storing elements that
will always be zero. The columns of the FORTRAN array A hold the diago-
nals of the matrix A , as shown in Figure 1.5.5. The first subscript of array A
represents the row number, while the second represents the diagonal number,
which can vary from -NLD to NUD + NLD. Diagonal number 0 (column 0 of
array A) is the main diagonal. In general we see that array element A(i , j - i)
holds matrix element (i , j) . There will be some elements of the array A (de-
noted by Z in Figure 1.5.5) that represent positions outside the matrix, and

30 1 . SYSTEMS OF LINEAR EQUATIONS

these will never be used, but they represent only a small amount of wasted
st or age.

C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE DBAND(A,N.NLD.NUD.X.B)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

DOUBLE PRECISION A(N,-NLD:NUD+NLD) ,X(N) .B(N)
INTEGER N,NLD,NUD

DOUBLE PRECISION LJI

DECLARATIONS FOR ARGUMENTS

DECLARATIONS FOR LOCAL VARIABLES

SUBROUTINE DBAND SOLVES THE LINEAR SYSTEM A*X=B. WHERE A IS A
BAND MATRIX.

ARGWENTS

A -

N

NLD -

-

N U D -

X -

B -

THE BAND MATRIX OF SIZE N, DESTROYED.
DIMENSIONED A (N, -NLD : NUD+NLD)
IN THE MAIN PROGRAM. COLUMNS
-NLD THROUGH NUD OF A CONTAIN
THE NONZERO DIAGONALS OF A. THE
LAST NLD COLUMNS ARE USED AS
WORKSPACE (TO HOLD THE FILL-IN
IN THE NLD DIAGONALS DIRECTLY
ABOVE A).

THE SIZE OF MATRIX A.

NUMBER OF NONZERO LOWER DIAGONALS
IN A, I.E., NUMBER OF DIAGONALS
BELOW THE MAIN DIAGONAL.

NUMBER OF NONZERO UPPER DIAGONALS
IN A, I.E.. NUMBER OF DIAGONALS
ABOVE THE MAIN DIAGONAL.

AN N-VECTOR CONTAINING
THE SOLUTION.

THE RIGHT HAND SIDE N-VECTOR. DESTROYED

1.5. BANDED SYSTEMS 31

DO 10 J=NUD+l,NUD+NLD
A(1,J) = 0.0

10 CONTINUE
C BEGIN FORWARD ELIMINATION

DO 35 I=l,N-l
C
C

15
C
C

C
C

20
C

C

C

25
C

30

SEARCH FROM A11 ON DOWN FOR
LARGEST POTENTIAL PIVOT, ALI

BIG = ABS(A(I.0))
L = I
DO 15 J=I+l.MIN(I+NLD.N)

IF (ABS(A(J.1-J)) .GT.BIG) THEN
BIG = ABS(A(J.1-J))
L = J

ENDIF
CONTINUE

IF LARGEST POTENTIAL PIVOT IS ZERO,
MATRIX IS SINGULAR

SWITCH ROW I WITH ROW L, TO BRING
UP LARGEST PIVOT

IF (BIG.EQ.O.0) GO TO 50

DO 20 K=I,MIN(I+NUD+NLD,N)
TEMP = A(L.K-L)
A(L,K-L) = A(1,K-I)
A(1.K-I) = TEMP

CONTINUE

TEMP = B(L)
B(L) = B(1)
B(1) = TEMP
DO 30 J=I+l,MIN(I+NLD,N)

LJI = A(J,I-J)/A(I.O)
IF (LJI.NE.O.0) THEN

SWITCH B(1) AND B(L)

CHOOSE MULTIPLIER TO ZERO AJI

SUBTRACT LJI TIMES ROW I FROM ROW J
DO 25 K=I,MIN(I+NUD+NLD.N)

CONTINUE

B(J) = B(J) - LJI*B(I)

A(J,K-J) = A(J.K-J) - LJI*A(I,K-I)

SUBTRACT LJI TIMES B(1) FROM B(J)

ENDIF
CONTINUE

35 CONTINUE
IF (A(N.O).EO.O.O) GO TO 50

X(N) = B(N)/A(N.O)
C SOLVE U*X = B USING BACK SUBSTITUTION.

DO 45 I=N-1,1.-1
SUM = 0.0
DO 40 J=I+I.MIN(I+NUD+NLD,N)

32 1. SYSTEMS OF LINEAR EQUATIONS

SUM = SUM + A(1,J-I)*X(J)
40 CONTINUE

45 CONTINUE
RETURN

C MATRIX IS NUMERICALLY
50 PRINT 55
55 FORMAT (’ ***** THE MATRIX IS SINGULAR *****’I

RETURN
END

X(1) = (B(I)-SUM)/A(I,O)

Figure 1.5.4

SINGULAR.

column (diagonal) number

x x x x x z z

-
Figure 1.5.5

Diagonals of Matrix Stored in Columns of FORTRAN Array
X, nonzero originally; Y, nonzero owing to fill-in;

2, unaccessed elements outside A.

Loop 25 is (as it was for DLINEQ) where most of the computer time is
spent, if NLD and NUD are large compared with 1. Then the following abbre-
viated program does approximately the same quantity of work as DBAND:

DO 35 I=l,N-l
DO 30 J=I+l,MIN(I+NLD,N)

DO 25 K=I,MIN(I+NUD+NLD.N)
A(J,K-J)=A(J,K-J)-LJI*A(I,K-I)

25 CONTINUE
30 CONTINUE
35 CONTINUE

If we also assume that, even though they are large compared with 1, NLD
and NUD are small compared with N , then “usualIy” min(i + NLD, N) =

1.6. APPLICATION: CUBIC SPLINE INTERPOLATION 33

i + NLD and min(i + NUD + NLD, N) = i + NUD + NLD and the total number
of multiplications done by this program is about

(N - ~)NLD(NuD + NLD + 1) M NNLD(NUD + NLD).

Hence this also approximates the work done by DBAND.
If NLD and NUD are constant (e.g., tridiagonal matrices have NLD = 1 and

NUD = l), the total work required to solve a banded linear system is O (N) ,
which compares very favorably with the O (N 3) work required by DLINEQ
to solve a full N by N system. The amount of computer memory required
is N(2NLD + NUD + l), which also compares very favorably with the o (N 2)
memory used by DLINEQ.

Although the simplest way to take advantage of sparsity during Gaus-
sian elimination is to order the unknowns and equations so that the matrix
is banded, there are often other orderings, such as the “minimal degree” or-
dering, which may produce even less fill-in. These algorithms are generally
somewhat complicated to implement efficiently and are beyond the scope of
this book. Useful references for these “sparse direct” methods are Duff and
Reid [1986], and George and Liu [1981]. Problem 12b gives a simple exam-
ple of a linear system that is sparse but not banded, and that can be solved
efficiently using Gaussian elimination.

1.6 Application: Cubic Spline Interpolation
Many of the algorithms used to solve other numerical analysis problems have
as one of their steps the solution of a system of linear equations. If you look,
for example, at a subroutine in the IMSL or NAG library which solves partial
differential equations, integral equations, systems of nonlinear equations, or
multivariate optimization problems, you will often find that it calls a linear
system solver; in fact, for most of these applications, the bulk of the computer
time is spent in the linear system solver.

Interpolation and smoothing of data are other problem areas where the
solution of a linear system is often required. Currently the functions that are
most widely used to interpolate between accurate data points, or to smooth
a set of inaccurate data points, are cubic splines. A cubic spline is a function
s(z) that is a cubic polynomial in each subinterval (~ i , z i + l) of the range of
data, with s(z),s’(z), and s”(z) continuous at the knots zi. Thus for z in
(zi ,z i+l) we have

s(2) = ai + bz(z -Xi) + Ci(X - Zi)2 + di(X - 4 3 . (1-6.1)

Suppose we want to determine the coefficients of a cubic spline s(z) that
interpolates to the data points (xi, yi), i = 1,. . . , N . The requirement that
s(zi) = yi and s(~i+l) = yi+l gives us two equations that must be satisfied
by the four coefficients ai, bi, ci, and di that determine the form of s(z) in

34 1 . SYSTEMS OF LINEAR EQUATIONS

(z i , z i + l) . If we also specify the second derivative s”(zi) = oi at each data
point, setting s”(zi) = (~ i and s”(z i+ l) = gi+1 will give us two more equa-
tions, and the coefficients of s(z) in the subinterval (z i , z i+ l) are uniquely
determined, namely,

(1.6.2)

where hi q + l - zi. It is easy to verify by direct calculation that s(z) as
expressed in 1.6.1 with coefficients given by 1.6.2, does satisfy s(zi) = gi,

Now how should the second derivatives o1 , . ~. , ON be chosen? We have
already ensured that the piecewise cubic polynomial s(z) will interpolate to
the data points (xi, gi); so all that remains is to make sure that s(z) is a cubic
spline, that is, that s,srl and s” are continuous. However, no matter what
the values of the y-coordinates 91, . . . , Y N are, s(z) will be continuous at the
knots, since the cubic polynomials on each side of a knot have to match the
same value (y i) . Similarly, no matter how we choose the values 01,. . . , ON of
the second derivatives, s”(z) will be continuous at the knots, since the cubic
polynomials on each side of a knot have the same second derivative oi. So
our only consideration in choosing the parameters (~ i is that s’(z) must also
be continuous at each knot.

~ (~ i + l) = y i + l , s”(z~) = ~ i , and ~ “ (~ i + l) = 0i+1.

From 1.6.1 we see that, in (zi ,zi+l) ,

~’(2) = bi + 2ci(2 - xi) + 3di(z - xi)’,

s ‘ (z ~ + I) = bi + 2cihi + 3dih?,

while, in (zi+l, z i + 2) ,

s’(z) = bi+l + 2ci+1(~ - zi+l) + 3di+l(z - z i + ~) ~ ,
s ’ (z i+ l) = bi+l.

Thus for continuity of d(z) across the knot zi+l, we must have

bi + 2cihi + 3d;h: = bi+l.

Using equations 1.6.2, this equation simplifies to

(i = 1 , . . . , N - 2) . (1.6.3)

1.6. APPLICATION: CUBIC SPLINE INTERPOLATION 35

Equation 1.6.3 must hold at each knot zi+l that is not an end point (there
are no continuity requirements a t the end points); that is, 1.6.3 must hold for
i = 1 , . . . , N - 2. This gives us N - 2 linear equations for the N unknowns
0 1 , . . . , O N . If we arbitrarily specify values for 01 and O N , then we have the
same number of equations as unknowns, and the linear system 1.6.3 has the
form shown in Figure 1.6.1.

['"""
h; h;+h;+l &

6

hnr-2 hnr-n-I-hnr-1 I 6 3

0 2

O3

Oi+l

Oi+2

O N - 2

O N - 1

1
h r1 - +al

where ~i = (yi+2 - y i + l) / h i + l - (y i+ l - y i) / h

Figure 1.6.1
Tridiagonal Linear System for Spline Second Derivatives

In Figure 1.6.2 a FORTRAN subroutine is given which calculates the cubic
spline that interpolates to a set of data points (xi, yi), i = 1 , . . . , N . The user
specifies the second derivatives 01 and ON at the end points, and the other
second derivatives 0 2 , . . . , ON-^ are determined by solving the tridiagonal lin-
ear system in Figure 1.6.1, using the banded system solver DBAND in Figure
1.5.4. The number of lower diagonals and the number of upper diagonals are
NLD = NUD = 1 for a tridiagonal system; so the total work to solve this N
by N linear system is only O (N) . Once we have 0 1 , . . . ,ON, the coefficients
of the cubic spline in (z i , z i + l) are determined by equations 1.6.2, and then
this spline is evaluated at user-specified output points, using equation 1.6.1.

How should the user specify the second derivatives 01 = s"(zi) and ON =
s"(zN)? One popular choice is simply to set 01 = ON = 0. The resulting
spline is called a "natural" cubic spline. The popularity of the natural cubic
spline interpolant derives from the following theorem.

SUBROUTINE DSPLN(X,Y ,N,YXXl ,YXXN.XOUT.YOUT.NOUT)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)

DOUBLE PRECISION X(N) .Y(N) ,YXXl.YXXN,XOUT(NOUT) .YOUT(NOUT)
INTEGER N.NOUT

C DECLARATIONS FOR LOCAL VARIABLES
DOUBLE PRECISION A(N-2.-1:2) ,COEFF(4.N) .SIG(N) ,R(N)

C

C DECLARATIONS FOR ARGUMENTS

36 1. SYSTEMS OF LINEAR EQUATIONS

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE DSPLN FITS AN INTERPOLATORY CUBIC SPLINE THROUGH THE
POINTS (X(I),Y(I)), I=l, ..., N, WITH SPECIFIED SECOND DERIVATIVES
AT THE END POINTS, AND EVALUATES THIS SPLINE AT THE OUTPUT POINTS
XOUT(l), . . . ,XOUT(NOUT).

ARGUMENTS

X

Y

N

YXXl

Y XXN

XOUT

YOUT

NOUT

A VECTOR OF LENGTH N
THE X-COORDINATES OF
POINTS.

A VECTOR OF LENGTH N
THE Y-COORDINATES OF
POINTS.

CONTAINING
THE DATA

CONTAINING
THE DATA

THE NUMBER OF DATA POINTS
(N.GE.3).

THE SECOND DERIVATIVE OF THE
CUBIC SPLINE AT X(1).

THE SECOND DERIVATIVE OF THE
CUBIC SPLINE AT X(N). (YXXl=O
AND YXXN=O GIVES A NATURAL
CUBIC SPLINE)

A VECTOR OF LENGTH NOUT CONTAINING
THE X-COORDINATES AT WHICH THE
CUBIC SPLINE IS EVALUATED. THE
ELEMENTS OF XOUT MUST BE IN
ASCENDING ORDER.

A VECTOR OF LENGTH NOUT.
YOUT(1) CONTAINS THE
VALUE OF THE SPLINE
AT XOUT(1).

THE NUMBER OF OUTPUT POINTS.

SIG(1) = YXXl
SIG(N) = YXXN

C SET UP TRIDIAGONAL SYSTEM SATISFIED
C BY SECOND DERIVATIVES (SIC(I)=SECOND
C DERIVATIVE AT X(1)).

1.6. APPLICATION: CUBIC SPLINE INTERPOLATION 37

C

C
C

C
C

DO 5 I=l,N-2
HI X(I+l)-X(I)
HIP1 = X(I+2) -X(I+l)
R(1) = (Y (1+2)-Y(I+l))/HIPl - (Y(I+l)-Y (I))/HI
A(I,-l) = HI/6.0
A(1, 0) = (HI + HIP1)/3.O
A(1, 1) = HIP1/6.O
IF (I.EQ. 1) R(1) = R(1) - HI/ G.O*SIG(l)
IF (1.EQ.N-2) R(N-2) = R(N-2) - HIPl/G.O*SIG(N)

5 CONTINUE

NLD = 1
NUD = 1

CALL DBAND TO SOLVE TRIDIAGONAL SYSTEM

CALL DBAND(A,N-2.NLD.NUD.SIG(2),R)
CALCULATE COEFFICIENTS OF CUBIC SPLINE
IN EACH SUBINTERVAL

DO 10 I=l.N-l
HI X(I+l)-X(I)
COEFF(1,I) = Y(1)
COEFF(2.I) = (Y(I+l)-Y(I))/HI - HI/6.0*(2*SIC(I)+SIG(I+1))
COEFF(3,I) = SIG(I)/P.O
COEFF(4.I) = (SIG(I+l) -SIG(I)) / (6.O*HI)

10 CONTINUE
L = l
DO 25 I=l,NOUT

FIND FIRST VALUE OF J FOR WHICH X(J+1) IS
GREATER THAN OR EQUAL TO XOIJT(1). SINCE
ELEMENTS OF XOUT ARE IN ASCENDING ORDER.
WE ONLY NEED CHECK THE KNOTS X(L+l). . .X(N)
WHICH ARE GREATER THAN OR EQUAL TO
XOuT(1-1).

DO 15 J=L.N-l
JSAVE = J
IF (X(J+l).GE.XOUT(I)) GO TO 20

15 CONTINUE
20 L = JSAVE

EVALUATE CUBIC SPLINE IN INTERVAL
(X(L) ,X(L+l))

P = XOuT(I)-X(L)
YOuT(1) = COEFF(1,L) + COEFF(P,L)*P

R + COEFF(3.L)*P*P + COEFF(4,L)*P*P*P
25 CONTINUE

RETURN
END

Figure 1.6.2

38 1. SYSTEMS OF LINEAR EQUATIONS

Theorem 1.6.1. Among all functions that are continuous, with continuous
first and second derivatives, which interpolate to the data points (x i ,y i) , i =
1,. . . , N , the natural cubic spline s (x) interpolant minimizes

1:" [~ ~ ' (x)] ~ d x .

Proof: Let U (X) be any other function that is continuous, with continuous
first and second derivatives, which also interpolates to the data points. Then
define e(z) E ~ (z) - s(x) and

J x 1 J s i J X l

+2 lIN s"(z)e"(z)dz.

If we can show that the last integral (of s"(z)e"(x)) is zero, we are finished,
since then the integral of ~ " (2) ~ is less than or equal to the integral of u"(z)'.
Now

N-1 x ; + 1 N-1 X i + l lIN s"e"dx = c li sr'e''dx = 1; (s"e')' - (s"'e)' + siVe dx.
i=l i=l

Since s (x) is a polynomial of degree three in (xi, zi+l), siv
of s""' becomes

0; so the integral

N-1 c s"(zi+l)e'(xi+l) - s"(zi)e'(zi) - s"'(zi+i)e(zi+i) + s"'(zi)e(zi).
i=l

Since s(z) and ~ (z) interpolate the same values at the knots, .(xi) = e(xi+l) =
0. Finally, since s"(z)e'(z) is continuous across the knots, the sums involving
s"e' telescope and, since s" = 0 at the end points, we have

s"(z)e"(x)dz = s"(zN)e ' (zN) - s ' ' (zI)e ' (z l) = 0.

Since the Lz-norm of the second derivative is a measure of the curvature of
a function, we can state Theorem 1.6.1 in the following words: Of all functions
of continuous curvature that can be drawn through a given set of data points,
the natural cubic spline has the least curvature. If we take a semirigid rod
and force it (using nails?) to pass through our data points, it will very nearly
take on the form of the natural cubic spline interpolant. This gives some
insight into the nature of the natural cubic spline interpolant; it remains as
"straight" as it can, given that it has to pass through the data points.

It is remarkable that Theorem 1.6.1 does not say that the natural cubic
spline interpolant is the piecewise cubic of minimum curvature, or even the

1.7. ROUNDOFF ERROR 39

piecewise polynomial of minimum curvature, which interpolates to the data,
but the (smooth) function of minimum curvature.

If (xi,yi) represent points on a smooth curve y = f(x) (which may or
may not be known explicitly), there is another obvious choice for the user-
specified end conditions: We can set 01 and ISN equal to estimates of f"(x1)
and ~"(xN). If we know (or can at least estimate) the second derivative
of f, we would expect s(x) to be a better approximation to f(x) if we set
~"(21) = f"(x1) and S " (Z N) = ~"(xN), rather than arbitrarily setting the
second derivatives to zero. The following theorem, stated without proof, con-
firms this expectation.

Theorem 1.6.2. If the cubic spline s(x) interpolates to f(x) at the knots
21,. . . , XN, and if s"(x) = f"(x) at x = x1 and x = XN, then (assuming that
the right-hand side is finite)

11s - f l l 2 5 h411fiV112,

where h = max(hi), and the %norm of a function is defined by

11.11% = LYN [.(4I2dx.
Thus, if we set s"(x) equal to f"(x) a t the end points, the cubic spline

error is O(h4). It can be shown [de Boor 1978, Chapter 41 that setting s" = 0
at the end points knocks the order of accuracy down to O(h2), unless, of
course, f" happens to be zero at the end points.

In summary, if the data points lie on a smooth curve y = f(x), and if
f"(x) can be estimated, we shall get a more accurate representation of f(x)
if we set s"(x1) x f"(z1) and S " (Z N) x f " (z ~) . However, if we simply want
to draw a smooth, visually pleasing curve through a set of given data points,
the natural cubic spline end conditions are recommended.

Figure 1.6.3 shows the natural cubic spline, calculated by DSPLN, which
interpolates to the points (l , l) , (2,3), (3,2), (4,3), and (5,4). In Section
2.4 we shall see cubic splines used in another application, one designed to
illustrate linear least squares applications.

1.7 Roundoff Error

The errors committed by numerical methods can be grouped into two cate-
gories. Those that would still exist even if the arithmetic were done exactly
are called truncation errors, and those that go away when exact arithmetic
is done are called roundoff errors. Since Gaussian elimination with partial
pivoting gives exact answers when the arithmetic is exact (as do most meth-
ods applied to linear problems of any sort), there is no truncation error to
worry about; so we have to worry about roundoff errors in this section. Un-
fortunately, while the analysis of truncation errors is a science, the analysis of

40

0

1 . SYSTEMS OF LINEAR EQUATIONS

0
0

0 :.
>

0

N -
9

O
0

X] , , , , $ 0

0.00 1 .oo 2.00 3.00 4.00 5.00
X

Figure 1.6.3
Natural Cubic Spline Interpolation

roundoff errors is an art, and the best that we can hope to do is to find some
qualitative rules that allow us to predict (usually) the order of magnitude of
the roundoff errors. As evidence that we cannot hope for more, recall that,
even when we solve problems that are inherently susceptible to roundoff, it is
possible for the roundoff error to be zero, owing to fortuitous cancellations.

Let us direct our attention first to 2 by 2 linear systems, since in this
case we can analyze the situation geometrically. When we solve two linear
equations in two unknowns, we are really just finding the intersection of two
straight lines. If the lines a112 + a12y = bl and U Z I Z + azzy = bz are parallel,
the matrix

A = [2 21
is singular, and there are either many solutions (if the two lines coincide) or
no solutions (if they do not coincide). If the two lines are nearly parallel, we

1.7. ROUNDOFF ERROR 41

say that the system Ax = b is “ill-conditioned” and we should expect to have
problems, because A is nearly singular. In fact, it is clear that, if the two lines
are nearly parallel, the minute that we store bl in our computer memory we
are in trouble, as chopping it off to fit our floating point word length changes
bl slightly, effectively translating the first line slightly (Figure 1.7.1).

02 I x + ~2~ y = b2 old solution

o l l x + n l z Y = b l - u l l x + a , l y = b ;
t . new solution

Figure 1.7.1
The Intersection of Nearly Parallel Lines

If the two lines are nearly parallel, this small change in bl will make a large
change in the solution, even if we could solve the new system exactly. Further
errors are introduced when we store the other coefficients b2, all, a12, a21, a22

and--of coursewhen we do the Gaussian elimination arithmetic itself. Note
that, since we cannot generally even store the coefficients of a linear system
exactly, no modification to our solution algorithm (e.g., to employ a better
pivoting strategy) can save us from large errors if the system is ill-conditioned.
The only thing we can do is to use higher-precision arithmetic.

If there is no cure for ill-conditioning, we would at least like to develop
some tools to help us to diagnose this disease. This is not as easy as it sounds.
Consider, for example, the following four linear systems:

B x = b , C x = c , D x = d , E x = e (1.7.1)

where

c = [10-20 10-10 1 1 10-20 10-10 7

10-10 10-20 1 B = [
10001 1

D = [] , E = [‘ 1 1 1 ’

and the right-hand side vectors b, c, d , e are chosen so that the exact solution
in each case is (1 , l) .

If we plot the two lines for each system, it is clear that E x = e is the most
ill-conditioned system, since the first three involve two nearly perpendicular
lines, while the last involves two nearly parallel lines. This conclusion was
confirmed when we actually solved the four systems, using single precision on
an IBM 3081 computer, with partial pivoting (equivalent to no pivoting, in
each case). For the first three systems the calculated solution was accurate to
machine precision, but the last system produced a 1% error in each compo-
nent. Thus, for systems of two equations, the angle 0 between the two lines

42 1. SYSTEMS OF LINEAR EQUATIONS

appears to be a good measure of conditioning, but we would like a measure
that generalizes to N by N systems.

Since a singular matrix has zero determinant, we might naively take the
size of the determinant as a measure of how ill-conditioned a matrix is. The
determinants of the above four matrices are

det(B) z lo-", det(C) x lo-", det(D) x 1, det(E) M

The determinant incorrectly points to Bx = b as the most poorly conditioned
system, because it is scale sensitive: det(aA) = aN det A. The systems Bx =
b and D x = d represent the exact same pairs of lines but, since B = 10-'oD,
B has a smaller determinant.

A more commonly used measure of the condition of a matrix is

c(A) = IIAIIIIA-lll,

where any matrix norm may be used. This measure has the advantage that it
is not scale sensitive, since c(crA) = llcvAll II(aA)-'(l = c(A), and the following
theorem accounts for the popularity of this condition number.

Theorem 1.7.1. If the right-hand side of Ax = b is changed b y Ab, and the
coeficient matrix is changed by AA, the change A x in the solution satisfies

where any vector-matrix norm pair can be used.

Proof: If Ax = b and (A + AA)(x + A x) = b + Ab, then

A A x = A b - A A x - A A A x
AX = A-lAb - A-lAA x - A-'AA AX

llAxll L l l ~ - ' l l l l ~ ~ l l + llA-lll llAAllll~ll + IIA-'AAllllA41

Since b = Aa: and so llbll 5 llAllllxll, the result of Theorem 1.7.1 follows
immediately.

When AA is small, the quantity in parentheses on the left-hand side is
nearly equal to one; so in this case Theorem 1.7.1 says that the relative change
in the solution is bounded by the relative change in b plus the relative change
in A, all multiplied by c (A) .

1.7. ROUNDOFF ERROR 43

As mentioned earlier, just chopping off the elements of A and b to fit
them into memory causes A and b to change. In fact, the relative changes
in A and b should be no more than about e, the machine relative precision.
Thus Theorem 1.7.1 suggests that an upper bound on the relative error in the
solution, owing to the inaccuracies in A and b, should be around c(A)E.

Of course, additional errors arise when we actually do the arithmetic of
Gaussian elimination. However, it has been shown [Stewart 1973, Section 3.51
that, when Gaussian elimination with partial pivoting is done, the resulting
approximate solution x1 is always the exact solution to another linear system
(A + AA)xl = b, where IlAAII/IIAll M E. Thus the errors resulting from doing
inexact arithmetic during Gaussian elimination can be thought of as resulting
from making further changes to A, changes that are comparable with those
made when we chop the coefficients off to fit them into memory. So Theorem
1.7.1 effectively gives a bound on the overall error in x .

Note that c(A) = IIAI)IIA-lll 2 IIAA-'II = 111)) = 1 (in any matrix norm),
so that the condition number is always greater than or equal to one. The
condition number is essentially the factor by which the small errors in the
coefficients are amplified when Ax = b is solved.

Now the condition number c(A) appears to be the roundoff error predictor
for which we were looking. If c(A) = lom, we can use Theorem 1.7.1 t o
predict that the relative error in our solution will be at most about lorn€;
that is, we expect to lose at most m significant decimal digits in our answer.
Unfortunately, Theorem 1.7.1 provides only an upper bound, and this bound
can be so pessimistic as to be very misleading. For example, let us calculate
the condition numbers of the four systems 1.7.1, using the matrix infinity
norm:

c (B) M 1, c(C) M lo1', c(D) M 1, c(E) M 4 x lo4.

We see that the condition number incorrectly points to C x = c as the most
poorly conditioned system. It predicts that we may lose up to ten signifi-
cant decimal digits in our answer, whereas we have already mentioned that
essentially no significant digits are lost in the actual computer solution of this
system.

Although the condition number c(A) is not fooled (as is the determinant)
when we multiply all equations by a scalar, and it is able to recognize that
B x = b and Da: = d are equally well-conditioned, it is fooled (for reasons
explored in Problem 6) when we multiply a single equation through by a
scalar, and it is not able to recognize that C x = c is essentially equivalent
to Dx = d , as it involves the same pair of lines. When, in the Gaussian
elimination process, we add a multiple of one row to another, the scaling of
the rows affects the size of the multiple used, and nothing else.

However, this does not mean that c(A) is useless as a predictor of roundoff,

44 1. SYSTEMS OF LINEAR EQUATIONS

for consider the 2 by 2 system

It can be shown (Problem 7) that

(1.7.2)

where M is the largest element of A, in absolute value. It can also be shown
(Problem 7) that

(1.7.3)

where 8 is the angle of intersection of the two lines, and Mi is the largest
element in row i, in absolute value. From 1.7.2 and 1.7.3 we see that, if the
rows of A are scaled so that M1 z M2 z M,c(A) is approximately equal to
1/1 sin($) 1. Since we have taken 8 as our definitive measure of the condition of
a system of two equations, we conclude that c(A) = ~ ~ A ~ ~ m ~ ~ A - ' ~ ~ m is a good
measure of conditioning, provided that the rows of A are comparably scaled.
Although we have only analyzed the situation for N = 2, the above conclusion
is more generally valid.

In the above discussion, we have assumed that the norm (any norm) of Ax
is a reasonable way to measure roundoff error. However, if the components of
x are scaled very differently-for example, if (21,22) represent the coordinates
of a ship, with 21 measured in microns and 2 2 measured in kilometers-llAzll
may be an unreasonable way to measure error. For the example just given,
a norm of (10-6Az1,103Az2) would be a better way to measure error. In
general, if the unknowns are poorly scaled, we should use I(D Ax11 to measure
roundoff, where D is a diagonal matrix of appropriately chosen weights. Then,
if we write Ax = b in the form (AD-')(Dx) = b, we can see that c(AD-')
is a better estimate of the true condition of the system than is c(A), since
it predicts the error D Ax, rather than Ax. Since postmultiplying by D-'
multiplies column i of A by l/&, we are really just rescaling the columns of
A, when we calculate AD-'.

In summary, the size of c(A) is a reasonable predictor of the accuracy
in the solution to be expected when Ax = b is solved, provided that the
rows of A are comparably scaled. Fortunately, in most "real-world" applica-
tions, the rows (and columns) are already comparably scaled, since usually
the unknowns represent similar quantities, and the equations are generated
by similar considerations. However, if the equations (rows) are not similarly
scaled, we must rescale the rows before calculating c(A) if we want to estimate
the loss of accuracy in x and, if we want to estimate the loss of accuracy in
Dz, we must rescale the columns (postmultiply A by 0-l) also.

1.7. ROUNDOFF ERROR 45

Now rescaling the rows and columns of A is not important only for pre-
dicting roundoff error. Rescaling the rows is also important for the proper
functioning of our algorithm itself. Consider the linear system Dx = d ex-
hibited in 1.7.1. The partial pivoting strategy correctly tells us not to switch
rows. Switching rows would bring the to the pivot position with disas-
trous results, despite the fact that this is a very well-conditioned system and
large roundoff errors are by no means inevitable. Now suppose we multiply
the second equation of Dx = d through by loll:

1 10-10 1 + 10-’0 [10 loll] [;] = [10 + 10”] (1.7.4)

Now, when Gaussian elimination with partial pivoting is applied to the linear
system 1.7.4, the rows wall be switched, since 10 is larger than 1. The result
is still a disaster: The calculated solution (using single precision) is (0, l),
whereas the exact solution is (1,l). The vastly different norms of the two
rows fools our partial pivoting algorithm into switching rows; it does not
realize that a21 = 10 is really a very small number, while all = 1 is really
a large number and should be used as the pivot. So we see that scaling the
rows comparably may be important not only for predicting the error but also
for the proper functioning of our algorithm itself.

A popular alternative to actually rescaling the equations is “scaled partial
pivoting”. In this approach, we compare laii[/si,. . . , l a ~ i I / s ~ , rather than
laiil,. . . , l a ~ i l , to determine which element to use as the pivot for column
i, where s, is the magnitude of the largest element in row i of the original
matrix. The resulting pivoting strategy is exactly the same as results from
partial pivoting applied to the matrix after each row has been rescaled to have
the largest element of magnitude one. Scaled partial pivoting, or actually
rescaling the equations, is only necessary, however, when the equations are
grossly out of scale. Modifying DLINEQ to do scaled partial pivoting would
no doubt make it more robust, but differences of several orders of magnitude
in the scaling factors s1,. . . , s N can be tolerated by DLINEQ as written.

Let us now perform a numerical experiment. The Hilbert matrix H N ,
whose elements are given by the formula

i , j = 1 ,..., N,

is known to be very ill-conditioned, for large N . Note that HN has reasonably
well-scaled rows and columns. We solve several systems of the form H N Z = b,
where b is rigged so that the exact solution is z* = (1,1, . . . , l), for different
values of N . The results using DLINEQ are displayed in Table 1.7.1.

Note that, for large N , the relative error in x is large and approximately
equal to c (H N) E , as expected, where E M since double-precision arith-
metic was used on an IBM 3081. However, even when the approximate so-
lution appears to be pure garbage (N = 15), it still satisfies H N X = b very
closely-see Problem 8 for an explanation.

46 1 . SYSTEMS OF LINEAR EQUATIONS

Table 1.7.1
Hilbert Matrix Example

N C W N) = IIHNllculIH~llloo 115 - ~ * 1 1 ~ / 1 1 ~ * l l c u IIHNa: - b I L
3 7.5 x lo2 0.1 x 10-13 0.3 x 10-15
6 2.9 x 107 0.1 x 10-9 0.4 x 10-15
9 1.1 x 10'2 0.3 x 10-5 0.6 x 10-15
12 4.2 x 10l6 0.4 x lo-' 0.6 x 10-15
15 3.3 x 1020 223 0.2 x 10-14

At this point we may well ask, if we have to calculate A-' in order to
compute the condition number, of what practical use is c(A)? The answer
is that it is possible, if we are clever, to estimate ~ ~ A - ' ~ ~ without actually
calculating A-' [Hagar 1988, Section 3.41. The usual approach is to solve
several systems Axi = b,, where the right-hand sides are chosen cleverly (or
even randomly), and to estimate the norm of A-' by

As discussed in Section 1.4, the systems Axi = bi can be solved inexpensively
once an LU decomposition of A is available.

Some sophisticated codes [Forsythe et al. 1977, Dongarra et al. 19791 for
solving Ax = b return an estimate of c(A) = JIAIIIIA-lll along with the solu-
tion, so that the user has some idea of the accuracy of the returned solution.

1.8 Iterative Methods

If direct methods for linear systems, which find the exact answer (to within
roundoff error) in a finite number of steps, are available to us, why would
anyone bother to develop iterative methods? The answer is that iterative
methods are attractive only for the linear systems that arise in certain types
of applications. We cannot do better than Gaussian elimination if our linear
system has an arbitrary full coefficient matrix, but the huge sparse systems
that arise in certain applications often can be solved more efficiently by it-
erative methods. The iterative methods that we shall discuss were designed
primarily to solve the systems that arise when partial differential equations
are solved by finite difference or finite element methods, but they are useful
in some other applications also.

The iterative methods that we shall introduce here are all based on the
following idea. We split A into two parts, B and A - B, and write Ax = b in
the form

BX + (A - B)z = b

1.8. ITERATIVE METHODS 47

or

BX = (B - A)z + b. (1.8.1)

Now we define an iterative method based on this formula:

Bz,+~ = (B - A)z, + b. (1.8.2)

First, it is clear that we must choose B so that we can easily solve 1.8.2;
otherwise each iteration may require as much work as solving the original
system Az = b. Now, when we compare 1.8.1 and 1.8.2, we see that, if
z, converges to a vector z,, then z, will satisfy 1.8.1, and thus will be a
solution to A z = b.

To determine when this iteration will converge, we subtract 1.8.1 from
1.8.2 and get

Be,+' = (B - A h ,

where e, 3 z, - z is the error after n iterations. Then

en+' = (I - B-'A)e, = (I - B-'A)"+'eo. (1.8.3)

The question of convergence reduces to whether or not the powers of the
matrix I - B-'A converge to zero. To answer this question we need the
following theorem.

Theorem 1.8.1. H" converges to zero as n + 00, if and only if all eigen-
values of H are less than one in absolute value.

Proof: The proof is almost trivial if H is diagonalizable, but not every matrix
is similar to a diagonal matrix. However, for any matrix H there exists a
matrix J of Jordan canonical form such that H = SJS-' and J has the
nearly diagonal form [Wilkinson 19651

J = [J1 J2 ... 1 ,
Jm

where each Ji is an ai by C Y ~ square block of the form

The diagonal elements X i of Ji are eigenvalues of the upper triangular matrix
J , and thus also of H . Now H n = (S J S - ') (S J S - ') . . . (S J S - ') = S P S - ' ;

48 1. SYSTEMS OF LINEAR EQUATIONS

so (since J" = S-'H"S also) H" + 0 if and only if J" + 0. Now (see
Theorem 0.1.4)

Let us look at an individual block JF. If Ji is 2 by 2, JF has the form (Problem
13)

0 A; 1 , Jt? = [A2 1 I"= [xy n x y
0 xa

and if Ji is 3 by 3, J,'" has the form

A2 1 0 xy nx1-1 $n(n - 1py-2
J , ' " = [0 X i l] " = [0 A;

0 0 x i 0 0
nXYL-' x;

In general, we see that, if Ji is ai by ai, the components of JF will all be
polynomials in n of order less than a(, times A;. Now clearly, if (A i l 2 1,
the nonzero elements of J,'" do not converge to zero as n + 00, and it is well
known (and easy to prove) that, if < 1, Xy times any polynomial in n goes
to zero as n + 00. Thus, in summary, if all eigenvalues X i of H are less than
one in absolute value, each JF, and thus J", converges to the zero matrix
while, if any eigenvalue is greater than or equal to one in absolute value, J"
does not converge to the zero matrix. 8

Now we can give a convergence theorem.

Theorem 1.8.2. If A and B are both nonsingular, and the initial guess xo is
not exactly equal to the solution x of Ax = b, and if Bx,+1 = (B - A)x, + b,
then x , converges to x if and only if all eigenvalues of I - B-lA are less than
one in absolute value.

Proof: The result follows immediately by applying Theorem 1.8.1 to equation
1.8.3, with H I - B-'A. 8

Note that neither the right-hand side vector b nor the initial guess xo has
any influence on whether or not the iteration converges, although choosing xo
close to the true solution will clearly cause convergence to occur earlier, if the
iteration does converge.

How then should we choose B? As mentioned earlier, we must choose B so
that Bx,+l = (B - A)x, + b is easily solved for x,+1; otherwise the iteration
is not of much use. However, from the proof of Theorem 1.8.1 it is obvious
that the smaller the maximum eigenvalue of I - B-'A = B-'(B - A), the

1.8. ITERATIVE METHODS 49

-
0 - a d a 1 1 - a 1 3 / a 1 1 . . . - a l N / a l l -

- a 2 1 / a 2 2 0 - a 2 3 / a 2 2 ... - ~ Z N l a 2 2

- a 3 1 / a 3 3 -&a33 0 ... - a 3 N / a 3 3 .

- - a N l / a N N - a N 2 / a N N - a N 3 / a N N . . * 0 -

faster the iteration will converge; so we also want to choose B as close to A
(in some sense) as we can, so that the eigenvalues of B-'(B - A) are as small
as possible, and certainly less than one in absolute value.

One obvious choice for B is D , the diagonal matrix that is equal to A on
the diagonal; it is easy to solve a linear system with a diagonal coefficient
matrix. This choice defines the Jacobi iteration

or

(1.8.4)

Intuitively, we expect that the Jacobi method will converge if A is in some
sense well approximated by its diagonal portion, and this is confirmed by the
following theorem.

Theorem 1.8.3. If A is daagonal-dominant, that is, if for each i

Since A is diagonal-dominant, the sum of the absolute values of the elements
of any row of the above matrix is less than one; hence the infinity norm of
I - D-'A is less than one. Now we shall show that, for any matrix H , all
eigenvalues are less (in absolute value) than any matrix norm IlHll. If X is an
eigenvalue of H , with eigenvector z , then

Since an eigenvector cannot be zero, we see that 1x1 I IlHll, and so any
matrix norm of H is an upper bound on the absolute values of the eigenvalues
of H . We have found a matrix norm of I - D-'A which is less than one, and
therefore all eigenvalues of I - D-'A must be less than one, and the Jacobi
method converges, by Theorem 1.8.2.

50 1. SYSTEMS O F LINEAR EQUATIONS

Note that this theorem does not say that the Jacobi method will converge
only if A is diagonal-dominant. In fact, the matrix

is not diagonal-dominant, and yet

I - D - ' a = [, 0 -2 o]

has eigenvalues X I = X2 = 0; so the Jacobi method will converge (in only
two iterations!) when applied to a system A x = b. Intuitively, however, for
the Jacobi method to converge, the diagonal elements must be large in some
sense; indeed we cannot even solve for =,+I if any of the diagonal elements
aii are zero.

Another reasonable choice for B is B = L + D , where L is defined to be the
matrix that is equal to A below the diagonal and equal to 0 on and above the
diagonal, and D is the diagonal matrix that has the same diagonal elements
as A. Since B is lower triangular, it is easy to solve for x,+1 each iteration,
and L + D would seem to be a better approximation to A than D alone. This
choice for B gives the Gauss-Seidel iteration. If we further define U to be the
matrix that is equal to A above the diagonal and equal to 0 on and below the
diagonal, A = L + D + U , and the Gauss-Seidel iteration can be written in
matrix-vector form as

or

z,+1 = D - l (b - L2,+1 - Ux,),

or in component form as

(1.8.5)

Although 1.8.5 appears to be implicit, note that, if we calculate new unknowns
in the natural order i = 1 , . . . , N , then, by the time that we calculate a new
value for zi, new values for 5 1 , . . . , xi-1 are already available, so that every-
thing on the right-hand side is known. In fact, the only difference between
iterations 1.8.4 and 1.8.5 is that the Jacobi method insists that all variables
on the right-hand side be from the previous iteration vector xn, while the
Gauss-Seidel method uses the latest available values for the variables on the
right-hand side.

dominant (see Problem 15).
The Gauss-Seidel iteration is also guaranteed to converge when A is diagonal-

1.8. ITERATIVE METHODS 51

A third popular iterative method, called successive overrelaxation (SOR)
[Young 19711, is defined by the choice B = L + D / w , where w is a parameter
whose value will be discussed shortly. The SOR iteration can be written in
matrix-vector form as

or

2,+1 = wD-'(b - Lz,+~ - VZ,) + (1 -w)z,,

or in component form as

Note that the SOR formula assigns a value to the new zi, which is a weighted
average of the old value of zi and the new value assigned by the Gauss-Seidel
formula. When w = 1, SOR reduces to the Gauss-Seidel method.

We shall now show that, if A is positive-definite and 0 < w < 2, the SOR
method (and thus also the Gauss-Seidel method) will converge to the solution
of Aa: = b.

Theorem 1.8.4. If A is positive-definite and 0 < w < 2, the eigenvalues
of I - B-lA are all less than one in absolute value, when B = L + D / w .
Therefore, the SOR iteration 1.8.6 will converge.

Proof: Suppose

(I - B-'A)z = XZ.

Since I - B-'A is not necessarily symmetric (even though A is), we have to
assume that the eigenvalue X and eigenvector z may be complex. Then

(B - A) z = XBZ,
(D - WD - WU)Z = X(D + wL)z.

Since A is symmetric, U = LT. Now we premultiply both sides by E T :

(1 - w)ZTDz - wZTLTz = X,ZTDz: + XwZTLz. (1.8.7)

If we define d E ZTDz and 1 = ZTLs, we have

i = Z ~ L Z = (z ~ L E) ~ = Z ~ L ~ Z .

Then 1.8.7 can be written

(1 - w)d - wd= Ad + Awl. (1.8.8)

52 1. SYSTEMS OF LINEAR EQUATIONS

Since A = L + D + LT, we also have

ETAz = f T L z + f T D z + ZTLTz.

If we further define a ? ZTAz, we can write this as

a = 1 + d + i. (1.8.9)

Since A is positive-definite, both a and d must be real and positive (see Prob-
lem 9); 1 may be complex, however. Now replace f in 1.8.8 by f = a - I - d,
then solve 1.8.8 for I, giving 1 = -d/w + a/(l - A). Finally, replacing I and
its conjugate by this formula in 1.8.9 gives

d (2 - w) l l - XI2
1 - 1x12 =

aw

Since a, d , 2 - w , and w are positive, the right-hand side is positive, unless
X is exactly equal to 1. However, if X were equal to 1, then we would have
(I - B-'A)z = z, or A z = 0, which is impossible for nonzero z, since A is
positive-definite and therefore nonsingular. Thus the left-hand side must be
positive, and so (XI2 < 1, for an arbitrary eigenvalue X of I - &'A.

Since these three iterative methods were originally designed to solve the
types of linear systems that arise when partial differential equations are solved,
and they are not very useful for solving arbitrary full systems, to appreciate
them fully we must study them in their native habitat. So let us consider the
partial differential equation

- U z s - U y y - U r t = l i n O S z L 1 , O < g < l , O L z l l

with

U = 0 on the boundary.

We can approximate the differential equation and boundary conditions using
finite differences as follows:

- U i + l , j , k - 2 U i , j , k + u i - l , j , k - u i , j + l , k - 2 u i , j , k + u i , j - l , k

h2 h2
U i , j , k + l - 2 u i , j , k + U i , j , k - l

= 1, for i , j , l c = 1 ,..., M - 1, -
h2

or

with

u. w , k . - - (1.8. lob)

1.8. ITERATIVE METHODS 53

when

i = O , i = M , j = O , j = M , k = 0 , k = M ,

where h = 1/M and Ui , j , k approximates U(i/M,j/M, k/M).
Now 1.8.10 represents a system of N = (M - 1)3 linear equations for the

(M - 1)3 unknowns Ui,j,k, i, j , k = 1 , . . . , M - 1. The coefficient matrix has the
following form: In the row corresponding to equation (i, j , k) (which row this
is depends on the ordering that we assign to the equations) there will be a 6
in the diagonal position (corresponding to unknown (i, j , k)) and at most six
-1's scattered about. Most rows will have exactly six -1's but those adjacent
to the boundary will have fewer than six, since Ui , j , k can be replaced by 0
when i , j , or k is equal to 0 or M . Thus our coefficient matrix is almost, but
not quite, diagonal-dominant. It can be shown that the matrix is positive-
definite, however (see Problem 10); so, by Theorem 1.8.4, both Gauss-Seidel
and SOR (with 0 < w < 2) are guaranteed to converge.

Now explicitly forming this coefficient matrix is somewhat involved, and
we first would have to decide on how to order the (M - 1)3 equations and
unknowns. Fortunately, our three iterative methods can be programmed to
solve this problem without ever even forming the matrix. For the Jacobi
method 1.8.4, all we do is solve the ith equation for the ith unknown, then
input old values on the right-hand side and calculate new values on the left-
hand side. In our case we should say, solve the (i , j , k)th equation for the
(i, j , k)th unknown, since we never explicitly decided on an ordering for the
equations and unknowns, nor do we need to do this. The Jacobi method
applied to the system 1.8.10 is then

Now some of the "unknowns" on the right-hand side axe really known bound-
ary values. When i = 1, for example, Ui-l,j,k is known to be zero. This
causes us no confusion when we program the method, however, if we store
all values of Ui,j,k-unknowns and knowns-together in one M + 1 by M + 1
by M + 1 array. Figure 1.8.1 shows a FORTRAN program that solves the
system 1.8.10 using the Jacobi iteration, with an initial guess of 20 = 0. The
iteration halts when the relative residual llAzn - bll,/JJbJJ, (llbll, = h2 for
the system 1.8.10) is less than lo-''. Note that we only check for convergence
every ten iterations; calculating the residual every iteration would slow the
program down appreciably.

To use the Gauss-Seidel iteration 1.8.5 we also solve the i th equation
((i , j , k)th equation, in our case) for the ith ((2, j , k)th) unknown, and iterate
with this formula. However, while the Jacobi method requires that we use all
old (nth iteration) values on the right-hand side, the Gauss-Seidel formula
uses the latest available values for each unknown on the right-hand side. This
is even easier to program than the Jacobi method, as now we only need one

54 1. SYSTEMS OF LINEAR EQUATIONS

array to hold U . Figure 1.8.2 gives a FORTRAN program that solves the
linear system 1.8.10 using the Gauss-Seidel method.

This program is exceptionally simple; if we use only one array to store
U , the latest available value of each unknown on the right-hand side will
automatically be used, since the latest value is the only one that has been
saved. We do not even have to think about which of the unknowns on the
right-hand side are new and which are old.

Finally, the SOR iteration 1.8.6 can be programmed by making a trivial
modification to Figure 1.8.2. We simply replace statement 10 by

10 U(I,J,K) = W*GAUSS + (1-W)*U(I,J,K)

where W represents the parameter w.
Table 1.8.1 shows the number of iterations which were required by the

Jacobi, Gauss-Seidel, and SOR methods to solve 1.8.10. Several values of
w were tried for the SOR method. The same convergence criterion (relative
residual less than lO- 'O) was used in each test.

The results are typical for this type of problem. The Gauss-Seidel method
converged about twice as fast as the Jacobi method, and the SOR method
did even better, for w > 1. Typically the best value of w for the SOR method
is between 1 and 2.

Table 1.8.1
Performance of Jacobi, Gauss-Seidel, and SOR Iterative Methods

Number of Iterations

(729 unknowns) (6859 unknowns)
Method M = 10 M = 20

Jacobi 480 1920
SOR (w = 1.0) (G Gauss-Seidel)
SOR (w = 1.1)
SOR (w = 1.2)
SOR (w = 1.3)
SOR (w = 1.4)
SOR (w = 1.5)
SOR (w = 1.6)
SOR (w = 1.7)
SOR (w = 1.8)
SOR (w = 1.9)

240
200
160
130
100
70

60*
80
130
250

960
790
640
520
410
310
220
140
130*
260

*, Optimum value

If the system 1.8.10 is solved using Gaussian elimination, the amount of
work is O (N 3) , where N = (M-l)3 is the number of unknowns. If this system
is put into band form and a band solver is used, the amount of work will be

1.8. ITERATIVE METHODS 55

O (M 7) = O(N2.333) . From the results in Table 1.8.1 it would appear that the
Jacobi method converges in O (M 2) iterations, since the number of iterations
quadruples as M is doubled. In Problem 11 this experimental estimate is
confirmed theoretically. Now, since the amount of work per iteration is O (M 3)
(see Figure 1.8.1), this means that the total work required by the Jacobi
method is O(M5) = O(N1.667). The results in Table 1.8.1 also suggest that
the number of iterations required by the Gauss-Seidel and SOR methods (with
w chosen optimally) appear to be O (M 2) and O (M) , respectively, for this
problem. These estimates are, in fact, confirmed by theoretical calculations.
Thus the total work to solve this linear system is O(N'.667) for the Gauss-
Seidel method, and O(N1.333) for the SOR method, with w chosen optimally.
When N is very large, then, these iterative methods are much more efficient
than even the band solver. Note that the storage requirements for the iterative
methods are very low also, since the coefficient matrix is never actually stored,
even in band form.

Many other more sophisticated iterative methods have been developed for
special types of linear systems, but the SOR method, because it is extramdi-
narily simple to program and yet competitive in speed, is probably still the
most widely used iterative linear system solver.

C JACOBI METHOD
PARAMETER (M=10)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION UOLD(O:M,O:M.O:M).UNEW(O:M.O:M.O:M)
H = l.DO/M

C SET BOUNDARY KNOWNS TO ZERO PERMANENTLY
C AND INTERIOR UNKNOWNS TO ZERO TEMPORARILY

DO 5 I=O,M
DO 5 J=O,M
DO 5 K=O,M

5 UOLD(1,J.K) = 0.0
C BEGIN JACOBI ITERATION

C UPDATE UNKNOWNS ONLY
DO 25 ITER = 1,10000

DO 10 Iz1.M-1
DO 10 JZ1.M-1
DO 10 Kz1.M-1

10 UNEW(1,J.K) = H+*2/6.0 + (UOLD(I+l,J,K) + UOLD(1-1,J.X)
R + UOLD(I,J+l,K) + UOLD(1.J-1.K)
& + UOLD(I,J.K+l) + UOLD(I.J,K-1))/6.0

C COPY UNEW ONTO UOLD
DO 15 Iz1.M-1
DO 15 J=l.M-l
DO 15 KZ1.M-1

15 UOLD(1.J.K) = UNEW(1.J.K)
C EVERY 10 ITERATIONS CALCULATE MAXIMUM
C RESIDUAL AND CHECK FOR CONVERGENCE

56 1 . SYSTEMS OF LINEAR EQUATIONS

IF (MDD(ITER.~O).NE.O) GO TO 25
RMAX = 0.0
DO 20 I=l.M-l
DO 20 Jz1.M-1
DO 20 K=l.M-l

RESID = 6*UOLD(I,J,K) - UOLD(I+l,J,K) - UOLD(1-l.J.K)
- UOLD (I, J-1 .K) &

& - UOLD(I,J,K+l) - UOLD(1,J.K-1) - H**2
- UOLD (I, J+l ,K)

RMAX = MAX(RMAX,ABS(RESID))
20 CONTINUE

RMAX = RMAX/H**2
PRINT *, ITER, RMAX
IF (RMAX.LE.1.D-10) STOP

25 CONTINUE
STOP
END

Figure 1.8.1

C GAUSS-SEIDEL METHOD
PARAMETER (M=10)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION U(O:M,O:M.O:M)
H = l.DO/M

C SET BOUNDARY KNOWN’S TO ZERO PERMANENTLY
C AND INTERIOR UNKNOWNS TO ZERO TEMPORARILY

DO 5 I=O,M
DO 5 J=O,M
DO 5 K=O,M

5 U(1,J.K) = 0.0
C BEGIN GAUSS-SEIDEL ITERATION

DO 20 ITER = 1,10000
C UPDATE UNKNOWNS ONLY

DO 10 I=l.M-l
DO 10 Jz1.M-1
DO 10 K=l.M-l

GAUSS = H**2/6.0 + (U(I+l.J,K) + U(1-1.J.K)
& + U(I,J+l,K) + U(1.J-1.K)
R + U(I,J.K+l) + U(I.J,K-1))/6.0

10 U(1,J.K) = GAUSS
C EVERY 10 ITERATIONS CALCULATE MAXIMUM
C RESIDUAL AND CHECK FOR CONVERGENCE

IF (MOD(ITER,lO).NE.O) GO TO 20
RMAX = 0.0
DO 15 I=l.M-l
DO 15 J=l.M-l
DO 15 K=l,M-l

RESID = 6*U(I,J.K) - U(I+l,J.K) - U(1-1.J.K)

1.9. PROBLEMS 57

% - U(I,J+l,K) - U(1.J-1.K)
% - U(I,J,K+l) - U(1.J.K-1) - H**2

M A X = MAX(RMAX,ABS(RESID))
15 CONTINUE

M A X = MAX/H**2
PRINT *, ITER, W A X
IF (RMAX.LE.1.D-10) STOP

20 CONTINUE
STOP
END

Figure 1.8.2

1.9 Problems

1. The Gaussian elimination algorithm could be modified so that each pivot
aii is used to eliminate the elements below and above it, in column i
(Gauss-Jordan). Then at the end of the forward-elimination phase we
have reduced A to diagonal rather than triangular form. Calculate the
approximate number of multiplications that this algorithm requires to
solve Aa: = b and compare with the :N3 used by DLINEQ (Figure
1.2.1).

2. Write a routine to calculate the inverse of an arbitrary N by N matrix A .
Use the fact that the kth column of A-' is the solution to Aa:k = e k ,

where ek is the lcth column of the identity matrix. Call DLINEQ to
solve As1 = e l , and DRESLV (Figure 1.3.1) to solve Aa:k = e k for k =
2 , . . . , N . By carefully examining subroutines DLINEQ and DRESLV,
determine the (approximate) total number of multiplications used to
calculate A-' in this manner, and compare this with the number 5 N 3
required to calculate the LU decomposition of A . Test your routine
by solving the system below in the form a: = A - l b (exact solution is
a: = (1,1,1,1,1)):

3. Verify (for the case N = 3) that L = MG1 . . . M i I 1 , N has the form
shown in 1.4.8, where the matrices Mij are as shown in 1.4.1. Show by
an example, however, that L-l = M N - ~ J . . . M12 does not have the

58

4.

5.

6.

1 . SYSTEMS OF LINEAR EQUATIONS

(perhaps expected) form

a.

b.

Show that, if Gaussian elimination is done on a symmetric matrix
without pivoting, after the first m columns have been zeroed, the
N - m by N - m submatrix in the rower right-hand corner is still
symmetric. (Hint: When a multiple -ajl/aLl of row 1 is added to
row j , to zero ajl, element a j k is replaced by a j k - (u j ~ / a ~ l) u l k .
Show that the new ajk and the new a k j are equal, and use induction
to extend the argument.)

Show that, if A is symmetric, the LU decomposition of A computed
with no pivoting has U = DLT, where D is the diagonal part of U ,
and so A = LDLT. (Hint: When a j i (j > i) is eliminated, the neg-
ative of the multiplier used to zero it is saved as l j i = aji/aii, where
the elements of A mentioned here represent the values immediately
before aji is zeroed and not the original values. By Problem 4a,

- a... so 1 , . -
3 2 - a37 32 - a j aa - uij/uii-)

-

Modify subroutine DLINEQ so that it solves a symmetric system with-
out pivoting, taking full advantage of symmetry. According to Problem
4a, the subdiagonal element aj i (j > i) will remain equal to the super-
diagonal element aij until it is eliminated; so DLINEQ does not need
ever to modify or access the subdiagonal elements. The total work can
be cut in half if only the superdiagonal elements are manipulated. Test
your program on the system of Problem 2. The coefficient matrix is
positive-definite, so it is appropriate to solve this system without pivot-
ing.

As mentioned in the text, the condition number of C x = c (see 1.7.1)
is very large (about 1 O ' O) even though this system represents the in-
tersection of two nearly perpendicular lines, and Gaussian elimination
produces very little roundoff error when C x = c is solved. However,
show by an example that llAx11/11x11 can indeed be very large when
IlAcll/llcll is very small, so that Theorem 1.7.1 is not misleading, in this
respect. What is misleading is our measure IlAcll/llcll of the relative
error in c. You may be able to make IlAxll/llzll large without making
IlAcII/IIcII large, but not without making a large relative change in some
of the components of c.

2.9. PROBLEMS 59

7. Verify 1.7.2 and 1.7.3 for an arbitrary 2 by 2 matrix A. (Hint: For the
second formula, start with the cross-product formula

I b x 4 1 2 = l l ~ l l z l l ~ l l 2 I ~ ~ n (~) l ~

where u = (a ~ ~ , a ~ ~ , O) and w = (azl,a22,0).)

8. As mentioned in Section 1.7, it has been shown that, when A x = b is
solved using Gaussian elimination with partial pivoting, the resulting
approximate solution x1 satisfies (A + A A) x l = b exactly, for some
small matrix A A whose norm is of the same order of magnitude as E I ~ A ~ J
(E is the machine relative precision). Use this information to show that,
if the elements of A, b, and the exact solution x are all of moderate size
(norms are 0(1)) , the relative residual

llAx1 - bll
llbll

will be small, even if A is very ill-conditioned and x1 is a very poor ap-
proximation to x. For the case N = 2, give a geometric explanation for
why the residual may be very small even though the computed solution
is far from the true solution.

9. Verify the assertions made in the proof of Theorem 1.8.4 that, if A is a
positive-definite matrix and D is its diagonal part, then f T A x and ZTDx
are real and positive, for any nonzero (possibly complex) x . (Hint: Show
that D has positive elements, and use the fact that A = STES, where
E is a diagonal matrix containing the positive eigenvalues of A.)

10. Show that the coefficient matrix of the linear system 1.8.10 is positive-
definite. (Hint: Given that the eigenvectors are

mnj nnlc
U i , j , k =sin (g) sin (F) sin (M) , l ,m,n = 1 ,..., M - 1,

11.

find all the eigenvalues, and show that they axe positive. You will need
to use the trigonometric identity

sin(a + b) = sin(a) cos(b) + cos(a) sin@).)

For the Jacobi method, applied to the linear system 1.8.10, B = D = 61.
If the eigenvalues of the coefficient matrix A are what are the
eigenvalues of I - B-'A = I - A/6? Using the eigenvalues of A as
calculated in Problem 10, show that the largest eigenvalue, in absolute
value, of I - B - l A is 1 - O(l/M2). Since the factor by which the error
decreases each iteration is the absolute value of the largest eigenvalue
of I - B-'A, show that the number of iterations required to reduce the
error by a factor of c is O(M2).

60 1. SYSTEMS O F LINEAR EQUATIONS

12. Consider the 1D boundary value problem -Uzx + U = 2sin(x) with
boundary conditions U (0) = U(27r) = 0. This differential equation can
be approximated using the finite difference equation:

-ua+1 + 2u; - ui-1 + Ui = 2sin(xi)
h2

for i = 1, ..., N-1, where x; = ih, h = 27r/N, and Ui is an approximation
to U (z i) . The boundary conditions imply Uo = UN = 0.

a. The resulting linear system is tridiagond, so it could be solved
using DBAND, with NLD = NUD = 1, but write your own tridi-
agonal linear system solver to solve it. Your routine should hold
the three diagonals in three vectors, where a(i) = Ai,;-l,b(i) =
Ai,i,c(Z) = Ai,;+l. You may assume no pivoting is necessary; in
fact, this N - 1 by N - 1 system does not require pivoting. The for-
ward elimination and backward substitution may have 10 or fewer
lines of code! If N is large, your solution should be close to the
true solution of the differential equation Ui = sin(xi).

b. Now change the boundary conditions to “periodic” boundary con-
ditions, U (0) = U(27r),Ux(0) = Uz(27r). These conditions can be
approximated by UO = UN and (UN+1 - u N) / h = (UI - Uo)/h, or
U N + ~ = U1. Thus, in the finite difference equation corresponding
to i = 1, Uo can be replaced by U N , and in the equation corre-
sponding to i = N , uN+1 can be replaced by U1, and we then have
N equations for the N unknowns U1, ..., UN. Now the system is al-
most still tridiagonal, except that A ~ , N and AN,^ are also nonzero,
so the bandwidth is the maximum possible. Nevertheless, mod-
ify your program from part (a) to solve this linear system without
pivoting, using O (N) work and O (N) storage. (Hint: The only
fill-in is in the last column and last row.) The differential equation
solution is still U(x) = sin(z).

c. Show that the matrix A in part (b) is diagonal-dominant; thus
the Jacobi and Gauss-Seidel iterative methods will converge when
applied to these equations (A is also positive-definite, so SOR con-
verges as well). Write a program to solve the linear system of
part (b) using Gauss-Seidel. How does the computer time for this
method compare with the direct solver?

This example shows that direct (Gauss elimination-based) solvers can
sometimes be used to efficiently solve linear systems that are sparse but
not banded.

13. Prove the formulas given for J,’” in Section 1.8, for the 2 by 2 and 3 by
3 cases, by writing J,’” = (X i 1 + N)”, where N is the nilpotent matrix
with ones on the first superdiagonal and zeros elsewhere.

1.9. PROBLEMS 61

14. a. Using hand calculations, without pivoting, find the LU decompo-
sition of

-4 -4 4
B = [; -: :I.

b. Notice that the diagonal element was already the largest potential
pivot (in absolute value) in each case, so you actually used partial
pivoting in part (a). Now suppose the original matrix had been

A = [3 1 -2 0 I].
-4 -4

Find a permutation matrix P such that P A = B(= LU). Thus
if you had started with A and done partial pivoting, you would
have ended up computing the LU decomposition of P A . Note that
A = P-ILU, where P-l is also a permutation matrix. What is
P-’ for this example?

c. Now use the LU decomposition of P A to solve Ax = b, where
b = (5,1,20); that is, first find Pb, then solve L y = P b using
forward substitution, then solve U s = y using back substitution.

15. Prove that the Gauss-Seidel iteration 1.8.5 converges when A is diagonal-
dominant. (Hint: Show that

where ri = Cj<i laijl/laiil and si = Cj,i ~ u ~ j ~ / ~ a ~ i ~ . Then let i be the
index that maximizes I (ei),+ 1 I .)

16. Nick Trefethen of Oxford University published a “100-dollar, 100-digit
Challenge” set of problems in the SIAM News [Trefethen 20021, which
consisted of ten numerical analysis problems. The answer to each was
a single real number; the challenge was to compute it to ten significant
digits. One of the problems was as follows: “Let A be the 20,000 x
20,000 matrix whose entries are zero everywhere except for the primes
2, 3, 5, 7, ..., 224737 along the main diagonal and the number 1 in all the
positions aij with li - j l = 1,2,4,8, ..., 16384. What is the (1,l) entry of
A-l?”

Since there are only about 15 nonzeros in each row, this is a very sparse
matrix, so we don’t want to actually calculate the full matrix A-’, we
want to solve Ax = b for a certain b (what b?). Since A is not a band

62 1. SYSTEMS OF LINEAR EQUATIONS

matrix, we shouldn’t use a band solver. The matrix is not diagonal-
dominant, but it is heavy along the diagonal, so an iterative method (or
sparse direct method) seems indicated. Try solving this system using
the Gauss-Seidel iterative method.

2

Linear Least Squares
Problems

2.1 Introduction

The program DLINEQ in Figure 1.2.1 will only allow us to solve linear systems
Ax = b where A is square (and then only if A is nonsingular), and probably
most applications have the same number of equations as unknowns; however,
sometimes there are more equations than unknowns (A has more rows than
columns), in which case there usually is no solution, and sometimes there are
more unknowns than equations (A has more columns than rows), in which
case there are usually many solutions. Even if we have the same number of
equations as unknowns, A x = b may have many solutions or none. If there
are many solutions, we may be satisfied to find any one of them and, if there
are no solutions, we may be happy to find a vector x which nearly solves
the system A x = b, in some sense. A standard linear system solver such as
DLINEQ will be of no help in either case.

In this chapter we want to develop algorithms for solving the linear least
squares problem

minimize IIAx - bll2 (2.1.1)

Our algorithms will always return a solution, one of the (possibly many)
vectors x which solve A x = b with as little residual as possible, measured
in the &-norm. (Algorithms for minimizing the residual in the L,- and
L1-norms are described in Problems 3 and 4 of Chapter 4.)

As an example application, consider the problem of fitting a polynomial
p (z) = a1 f a z z +u3z2 + . . . + of degree N - 1 through A4 data points
(zi, yi), i = 1 , . . . , M . The coefficients a l , . . . , a ~ must satisfy the M linear

63

64 2. LINEAR LEAST SQUARES PROBLEMS

equations

If there are the same number of polynomial coefficients (N) as data points
(M) , this is a square system, and it can be shown that (provided that the
are all distinct) the matrix is nonsingular and so DLINEQ can be used to solve
it, although DLINEQ may experience numerical difficulties, since the linear
system is ill-conditioned. However, often we may want to pass a low-order
polynomial through many data points (M >> N) . This is usually impossible
to do, but we can determine the polynomial that fits the M data points as
closely as possible, in the least squares sense, by solving 2.1.1.

Another example application is the ranking of college football teams. If we
assign a point rating p k to each team, we might ideally like to have p k - p i = S k i

if the point spread was S k i when team k and team i played (S k i is positive
if team k won). Since the “transitive law of football scores” does not always
hold (often team 1 will beat team 2 and team 2 will beat team 3, but then
team 1 will lose to team 3), such an assignment is impossible. However, if we
can settle for a point assignment that comes as close as possible (in the least
squares sense) to satisfying the ideal equations p k -p i = S k i , we can calculate
ratings for each team by solving a linear least squares problem. (I actually
did this for a number of years, and the results were quite reasonable.) Note
that the solution to this least squares problem cannot be unique, as we can
add any constant to all ratings without changing their relative positions.

The following theorem suggests that 2.1.1 is very easy to solve. We shall
see subsequently that things are not quite as simple as this theorem might
seem to imply.

Theorem 2.1.1.

(a) x is a solution to the linear least squares problem

i f and only i f it satisfies ATAx = AT b.

(b) ATAx = ATb always has solutions, and it will have a unique solution
i f the columns of A are linearly independent.

2.1. INTRODUCTION 65

Proof:

(a) Suppose ATAz = ATb, where A is an A4 by N matrix. Then, if e is an
arbitrary N-vector,

IIA(z + e) - bll; = (A z - b + Ae)T(Az - b + Ae)
= (A z - b)T(Aa: - b) + 2(Ae)T(Az - b) + (Ae)T(Ae)
= IIAz - bll; + llAe11; + 2eT(ATAz - ATb)

= IJAz - bll; + IIAell; 2 IIAz - bllq.

Since e is arbitrary, this shows that z minimizes the 2-norm of A y - b
over all N-vectors y. The converse is established in Problem 1.

(b) First, note that ATA is a square N by N matrix. Now, if v is an arbi-
trary vector perpendicular to the range of ATA, then 0 = vT(ATAv) =
(A V) ~ (A V) = IIAvlli, and Av = 0. If the columns of A are linearly
independent, Av = 0 implies that v = 0 , and so the only vector per-
pendicular to the range space of ATA is the zero vector, which means
that the range is all of RN, and thus ATA is a nonsingular (square)
matrix. In this case, ATAz = ATb has a unique solution.

On the other hand, if the columns of A are not linearly independent, we
still have Av = 0 for any vector v perpendicular to the range space of
ATA, and thus 0 = (A v) ~ ~ = vT(ATb); however, this means that ATb
is perpendicular to every vector normal to the range space of ATA,
and thus ATb lies in the range of ATA. Therefore, even if ATA is a
singular matrix, ATAz = ATb still has solutions.

It appears from Theorem 2.1.1 that all one has to do to find the least
squares solution to A z = b is simply to multiply both sides by AT and to solve
the resulting square N by N system, called the “normal equations”. Indeed,
this approach is probably satisfactory in the majority of cases. However, there
are two potential problems.

First, if the columns of A are not linearly independent, the matrix ATA is
singular and, even though ATAz = ATb will still have solutions, a standard
linear equation solver such as DLINEQ will detect the singularity and stop
without returning any solution. Second, even if ATA is nonsingulax, the
normal equations will be more poorly conditioned than the original system
A z = b. To appreciate this, assume that A is square (A4 = N), and let us
compare the condition numbers of A and ATA. Recall from Section 1.7 that
the condition number is defined by c(B) = llBllllB-lll. If we use 2-norms in
this definition,

4 4 = 11~11211~-1112~

c(ATA) = IIATA11211(ATA)-1112.

66 2. LINEAR LEAST SQUARES PROBLEMS

Recall also from Section 0.3 that the 2-norm of a general square matrix A is
the square root of the maximum eigenvalue of the positive-semidefinite matrix
ATA, and the 2-norm of a square symmetric matrix is the absolute value of
its dominant eigenvalue. Thus

C(A) = [Am,, (AT A) A,, (A-TA-’)] 1’2 (2.1.2)

and, since A T A and its inverse are symmetric (with nonnegative eigenvalues),

(2.1.3)

Now A-TA-’ and A-lA-T have the same eigenvalues (they are similar:
A(A-’APT)A-’ = APTA-’)) ; so by comparing 2.1.2 and 2.1.3 we see that

C(AT A) 1 Xm,,(ATA)X,,,(A-’A-T).

c (ATA) = [c(A)I2. (2.1.4)

The condition number of a matrix is always greater than or equal to one, and
so 2.1.4 shows that the condition of A T A is always worse than that of A. If
c(A) = lom, c(ATA) = and according to the discussion in Section 1.7
we expect to lose about m significant decimal digits when A x = b is solved,
and around 2m digits when ATAx = ATb is solved.

Although 2.1.4 was derived assuming A to be square, if M # N , solving
the normal equations still amplifies roundoff error unnecessarily, compared
with the methods of the next two sections, which attack the problem A x x b
directly.

2.2 Orthogonal Reduct ion

The basic strategy behind nearly all the algorithms outlined in this book
is this: We find a transformation that preserves the property that we are
interested in, and then we transform the matrix or system into a form in
which that property is obvious. If we could transform A into “row echelon”
form, the linear least squares solution of Ax = b would then be obvious. Row
echelon form means the first nonzero entry in each row (called a “nonzero
pivot”) is farther to the right than the first nonzero entry in the previous row.
An example of a linear system whose matrix is in row echelon form is shown
in Figure 2.2.1.

Note the characteristic “stair-step” nonzero structure. The least squares
problem is to minimize T-; + . . . + TL, where T Aa: - b is the residual vector.
In the above example, the last eight components of the residual vector are

~i = 0x1 + . . . + 0x12 - bi (i = 7,. . . ,14).

Now these last components are going to be (- b 7 , . . . , - b 1 4) no matter how
we choose the unknowns; we have no control over these components. On
the other hand, we can choose 21, . . . , 2 1 2 so that the first six equations are

2.2. ORTHOGONAL REDUCTION 67

- - - 0 P x x x x x x x x x x bl

0 0 P x x x x x x x x x - b2 -
0 0 0 P x x x x x x x x z1 b3

0 0 0 0 0 P X X X X X X x2 b4

0 0 0 0 0 0 P X X X X X z3 b5

0 0 0 0 0 0 0 0 0 0 P x z4 b6

.. 25 ...
0 0 0 0 0 0 0 0 0 0 0 0 z6 = b7

0 0 0 0 0 0 0 0 0 0 0 0 x7 b8

0 0 0 0 0 0 0 0 0 0 0 0 z* b9

0 0 0 0 0 0 0 0 0 0 0 0 zg bl0

0 0 0 0 0 0 0 0 0 0 0 0 zlo bi 1

0 0 0 0 0 0 0 0 0 0 0 0 b12
0 0 0 0 0 0 0 0 0 0 0 0 b13

- 0 0 0 0 0 0 0 0 0 0 0 0 - - b14 -

Figure 2.2.1 Row Echelon Form
P , nonzero pivot; X , not necessarily zero.

satisfied exactly, and so r1 = _ _ _ = r6 = 0. Clearly, then, the residual is
minimized (in the 2-norm or in any other norm) by choosing the unknowns
so that the first six equations are satisfied exactly. In the present example,
there are many ways to do this; we can assign arbitrary values to the “non-
pivot” unknowns 21, z5,zg, zg, z10, and 212 and solve for the “pivot” variables
z 1 1 , x 7 , ~ 6 , ~ 4 , z 3 , ~ in reverse order. (A variable is a pivot variable if there
is a pivot in the corresponding column.) Thus the least squares solution is
not unique, for this example. A matrix in row echelon form is always upper
triangular; if the diagonal elements are all nonzero, then all the variables are
pivot variables and the least squares solution is unique. In this case, there are
no variables that need to be assigned arbitrary values, and the least squares
solution is found by ordinary back substitution.

Most introductory texts on matrix algebra explain how to reduce an arbi-
trary rectangular matrix to row echelon form using elementary row operations.
(Their objective is to determine whether there are solutions or not, and to
find the general solution if there are solutions.) We can therefore transform
an arbitrary linear system Ax = b to its row echelon form by premultiplying
both sides by the Mij matrices introduced in Section 1.4. The only problem is
that this type of transformation does not preserve the property we are inter-
ested in; there is no reason why the least squares solution of the row echelon
system (which is obvious) should be the same as the least squares solution of
the original system Ax = b.

However, if we can reduce Ax = b to row echelon form by multiplying
both sides by orthogonal matrices, the least squares solution of the reduced

68 2. LINEAR LEAST SQUARES PROBLEMS

- -

bil . . . bik . . . biN

b j l ... bjk ... b j N

- - . -

- -

problem will be the same as the least squares solution of the original problem.
This is because, if Q is orthogonal (QTQ = I) , then

IlQAa: - QbllZ =
=

(QAa: - Qb)T(QAa: - Qb) = (A z - b)TQTQ(Aa: - b)
(Aa: - b)T(Aa: - b) = IIAa: - bll;

- 1
-

- - 1
1

C s a i l ... aik ... a i N

-5 C ajl ._. a j k ... a j N

1
1

1
1 - -

1 -

and so a vector z that minimizes IlQAa: - Qbll2 also minimizes (IAz - bll2.

Qij , which have the form (j is always taken to be greater than i)
The simplest useful orthogonal matrices are the “Givens rotation” matrices

column
i

1
C

1

S

column
j

-S

1
C

1

(2.2.1)

for any k = 1,. . . , N .
Premultiplication by M i j has the effect of adding a multiple of row i to

row j; premultiplication by Q; has the effect of replacing row i by a linear
combination of the old rows i and j, and replacing row j by another linear

Since we shall always require that c2 + s2 = 1, c and s represent the cosine
and sine of some angle 0, but we shall not have any use for the angle 0 itself.
It is easy to verify that QsQij = I , and so Qij and Q; are both orthogonal.

Let us see what happens to the matrix A when it is premultiplied by a
(transposed) Givens matrix B = QZA:

2.2. ORTHOGONAL REDUCTION 69

combination of old rows i and j . If we choose (for any I)

(2.2.2)

we can make bjl equal to zero (note that 3 + s2 = 1, as required). Thus
we can use “pivots” (ail here) to knock out lower elements (ajl) in the pivot
column, in much the same way as before; only now the pivot element (and
entire pivot row) changes also. Note that, if the pivot ail is zero, that is not a
problem. The denominators in 2.2.2 will be zero only if both the pivot and the
element to be eliminated are zero but, if the element to be zeroed is already
zero, no transformation is needed. In fact, if the pivot ail is zero and the
element ajl to be eliminated is not, note that c will be 0 and s will be f l ; so
the effect of the Givens rotation will be essentially a row switch!

So we can reduce an arbitrary rectangular matrix to row echelon form using
orthogonal transformations, in much the same way as is commonly done using
elementary row operations (i-e., premultiplying with Mij matrices). First we
use all to knock out all elements below it. Then we check to see whether all

is zero (it will be zero only if all elements in the first column were zero to
start with-see Problem 6); if it is zero, we move on to the next entry (~ 1 2) in
the first row and use it to knock out everything below it. If a12 is zero after
the second column has been zeroed, we move on to ~ 1 3 , and so on, until we
find a nonzero pivot (identified by P in Figure 2.2.1) in the first row. Then
we move down to the second row and continue this process in that row. Note
that, since we eliminate elements column by column, starting with the first
column, by the time we use ail as a pivot, all elements in rows i to M of the
previous columns 1 to I - 1 are already zero. Thus, while we are using ail to
knock out lower elements ajl , we are just adding multiples of zero to zero in
columns 1 to 1 - 1 (we can skip these calculations, in fact); so the elements
in the previous columns which were zeroed earlier remain zero, just as in the
Gaussian elimination algorithm. Naturally, when we premultiply A by Q z ,
we also premultiply the right-hand side b by this matrix.

Continuing this process (which is familiar to anyone who has reduced a
matrix to row echelon form using Gaussian elimination), we eventually reach
a form like that shown in Figure 2.2.1, from which the least squares solution
can easily be extracted.

Figure 2.2.2 displays a FORTRAN program that solves the linear least
squares problem 2.1.1 using the algorithm described above. Using Givens
rotations (equations 2.2.1 and 2.2.2), it reduces an arbitrary M by N linear
system Ax = b to its row echelon form. Then it computes the least squares
solution to the reduced system, by ignoring the last equations, correspond-
ing to zero rows, and solving the other equations by back substitution, with
nonpivot variables arbitrarily assigned a value of zero. Thus, whether there

70 2. LINEAR LEAST SQUARES PROBLEMS

are more equations than unknowns, or more unknowns than equations, and
whether our linear system has no solution or many solutions (or a unique
solution), DLLSQR will return a solution that will be the best (in the least
squares sense), or one of the best.

C

C

SUBROUTINE DLLSQR(A,M,N,X,B)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

DOUBLE PRECISION A(M,N) .X(N) ,B(M)
INTEGER M,N

INTEGER PIVOT (MI

DECLARATIONS FOR ARGUMENTS

DECLARATIONS FOR LOCAL VARIABLES

SUBROUTINE DLLSQR SOLVES THE LINEAR LEAST SqUARES PROBLEM

MINIMIZE 2-NORM OF (A*X-B)

ARGUMENTS

ON INPUT ON OUTPUT

C
C A - THE M BY N MATRIX. DESTROYED.

C M - THE NUMBER OF ROWS IN A.
C
C N - THE "MBER OF COLUMNS IN A.
C
c x - AN N-VECTOR CONTAINING
C THE LEAST SQUARES
C SOLUTION.
C
C B - THE RIGHT HAND SIDE M-VECTOR. DESTROYED.
C
C---
C EPS = MACHINE FLOATING POINT RELATIVE
C PRECISION
c .

c .
C AMAX = MAXIMUM ELEMENT OF A

DATA EPS/2.D-16/

AMAX = 0.0
DO 5 I=l,M
DO 5 J=l,N

ERRLIM = 1000*EPS*AMAX
5 AMAX = MAX(AMAX.ABS(A(1.J)))

C REDUCTION TO ROW ECHELON FORM

2.2. ORTHOGONAL REDUCTION 71

CALL REDQ(A,M,N,B,PIVOT,NPIVOT.ERRLIM)

IF (NPIV0T.NE.N) THEN
C CAUTION USER IF SOLUTION NOT UNIQUE.

PRINT 10
10 FORMAT (’ NOTE: SOLUTION IS NOT UNIQUE ’1

ENDIF
C ASSIGN VALUE OF ZERO TO NON-PIVOT
C VARIABLES.

DO 15 K=l.N
X(K) = 0.0

15 CONTINUE
C SOLVE FOR PIVOT VARIABLES USING BACK
C SUBSTITUTION.

DO 25 I=NPIVOT,l,-l
L = PIVOT(1)
SUM = 0.0
DO 20 K=L+l,N

SUM = SUM + A(I,K)*X(K)
20 CONTINUE

25 CONTINUE
RETURN
END

X(L) = (B(I)-SUM)/A(I ,L)

C

SUBROUTINE REDQ(A.M.N,B,PIVOT,NPIVOT.ERRLIM)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

DOUBLE PRECISION A(M,N) ,B(M) ,ERRLIM
INTEGER PIVOT(M),M,N.NPIVOT

C DECLARATIONS FOR ARGUMENTS

C USE GIVENS ROTATIONS TO REDUCE A
C TO ROW ECHELON FORM

1 = 1
DO 15 L=l.N

C USE PIVOT A(1,L) TO KNOCK OUT ELEMENTS
C 1+1 TO M IN COLUMN L.

IF (A(J.L).EQ.O.O) GO TO 10
DEN = SQRT(A(1 ,L) **2+A(J ,L) **2)
C = A(I.L)/DEN
S = A(J.L)/DEN

DO 5 K=L,N

DO 10 J=I+l,M

PREMULTIPLY A BY Qij**T

BIK = C*A(I,K) + S*A(J,K)

A(1.K) = BIK
A(J,K) = BJK

BJK =-S*A(I.K) + C*A(J,K)

5 CONTINUE
C PREMULTIPLY B BY Qij**T

72 2. LINEAR LEAST SQUARES PROBLEMS

B I = C*B(I) + S*B(J)

B(1) = B I
B (J) = BJ

BJ =-S*B(I) + C*B(J)

10 CONTINUE
C PIVOT A(1.L) I S NONZERO AFTER PROCESSING
C COLUMN L--MOVE DOWN TO NEXT ROW, 1+1

I F (ABS(A(I,L)).LE.ERRLIM) A(1,L) = 0.0
I F (A(1.L) .NE.O.O) THEN

NPIVOT = I
PIVOT(NPIV0T) = L
I = 1 + 1
I F (1.GT.M) RETURN

ENDIF
15 CONTINUE

RETURN
END

Figure 2.2.2

In fact, the only advantage that DLINEQ has over DLLSQR for square
systems is that it is four times faster, because DLINEQ requires N - i multipli-
cations to knock out uji (loop 25 of DLINEQ in Figure 1.2.1), while DLLSQR
has to do 4 (N - i + 1) multiplications (loop 5 of subroutine REDQ in Figure
2.2.2) to knock out uji (for nonsingular square systems, i = I) . Since DLINEQ
does 5 N 3 multiplications, DLLSQR requires t N 3 multiplications, for a non-
singular square system. DLLSQR also has to compute O (N 2) square roots,
while DLINEQ has no square roots to calculate.

We have seen how to reduce A to its row echelon form, which we shall
call R (for “right” triangular, which is the same as upper triangular), by
premultiplying it by a series of orthogonal Givens matrices. In other words,

Q E Q E - , . . .

where each Qk represents one of the Givens Qij matrices. Once we have
done this, we have found what is called the Q R decomposition of A, since
A = QR, where Q = Q1Q2 . . .QL-~QL. Since the product of orthogonal
matrices is orthogonal ((Q1Q2)T(Q1Q2) = Q T Q T Q I Q ~ = I , if QTQI = I and
Q:Q2 = I) Q is orthogonal, and R is upper triangular (or right triangular).

The Q R decomposition plays a role similar to that played by the LU
decomposition. One does not need to form the LU decomposition explicitly
in order to solve a square nonsingular system Ax = b, but it is obtained at
no extra cost when one such linear system is solved and, if another system
Ax = c with the same coefficient matrix is encountered subsequently, it can
be solved quickly by solving the triangular systems L y = c and Ux = y . In a
similar manner, we do not need to form the Q R decomposition of a rectangular
matrix A explicitly in order to solve the problem (minimize llAx - b(l2) but,

2.3. REDUCTION USING HOUSEHOLDER TRANSFORMATIONS 73

once we have it, another problem (minimize llAx - cllz) can be solved quickly
by first solving Q y = c (y = QTc) and then finding the least squares solution
to Rx = y (found by back substitution, since R is in row echelon form).

The computer program DLLSQR does not explicitly form the QR decom-
position of A , but it could easily be modified to do so (Problem 7). We could
start with Q = I , and every time that A is multiplied by a Q;, postmultiply
Q by Q i j .

2.3 Reduction Using Householder
Transformat ions

A rectangular matrix can alternatively be reduced to row echelon form using
the orthogonal L ‘H~~~eho lde r ’7 matrices, which have the form H = I - 2wwT,
where w is a unit M-vector. First note that H is symmetric, since HT =
(I - ~ w w ~) ~ = I - 2wwT = H . Then, to verify that the M by M matrix H
is orthogonal, for any unit vector w , note that

H T H = H H = (I - 2wwT)(I - 2wwT) = I - 4wwT + 4w(wTw)wT
= I - 4wwT + 4w(l)wT = I .

The M-vector w will be chosen so that Hi E I - 2wwT will zero all elements
below a given pivot ail, when it is used to premultiply an M by N matrix A.
To this end, we first stipulate that the first i - 1 components of w must be
zero, so that Hi has the nonzero structure

column column
i M

1
1

Hi =
row i

row M 1

1 x x x x :::::::I x x x x

Clearly, premultiplication by Hi will change only rows i to M, no matter how
we choose components i to M of w. However, we want to choose w so that,
when A is premultiplied by Hi, components i + 1 to M of column 1 (i.e.,
everything below the pivot ail) all become zero. Now, if a1 denotes column I
of A, then

T Hial = (I - 2ww)a1 = a1 - 2aw,

where Q E wTal. This means that we must set components i + 1 to M of w
equal to 1/2a times the corresponding components of al. If the components

74 2. LINEAR LEAST SQUARES PROBLEMS

of w axe denoted by wj and the components of al by a j , we have from the
definition of Q (recall that the first i - 1 components of w are zero):

wiai + wi+lai+l + . . . + W M a M = a, (2.3.1)

but, since w must be a unit vector, we also have

w: + W K 1 + . . . + w R = 1.

Let us define s and ,B by the equations

2 s = a i + . . .+ a L ,
ai + P

2ff
WE =

Recall also that

w j = o , j = 1 , ”., i-1,

w j = - a j j = i + l , ..., M
2ff

(2.3.2)

(2.3.3a)

(2.3.3b)

Using 2.3.3a and 2.3.3b to replace the components of w in equations 2.3.1 and
2.3.2 gives

(2.3.4)

Now the two equations 2.3.4 can be solved for the two unknowns a and P,
and the result is

(2.3.5)

If ai+l to U M are almost zero already, s M a: and p will be nearly flail. We
shall take P to have the same sign as ail otherwise ai + @ M 0, Q M 0, and
all components of w will be approximately of the (numerically dangerous)
indeterminate form O/O. Notice that a = 0 only if s = 0, that is, if ai =
ai+l = _._ = a M = 0 , in which case no transformation is necessary.

Now we can use Hi = I - 2wwT to eliminate everything directly below
the pivot ail. Before premultiplying by Hi , A will look something like this

2.3. REDUCTION USING HOUSEHOLDER TRANSFORMATIONS 75

(cf. Figure 2.2.1):

row i

row M

column column
1 N

- 0 P a a a a a a a a a a
0 0 P a a a a a a a a a
0 0 O P a a a a a a a a
o o o o o x x x x x x x
o o o o o z x x x x x x
o o o o o z x x x x x x
o o o o o z x x x x x x
o o o o o z x x x x x x
o o o o o z x x x x x x
o o o o o z x x x x x x
o o o o o z x x x x x x
o o o o o z x x z x x x
o o o o o z x x x x x x

~ O O O O O Z X X X X X X

After premultiplication, the elements in column 2 marked Z will be zero, by
design, and those marked x may be changed. The previous columns a j , j =
1, . . . , 1 - 1, will be unchanged because wTaj = 0 (components 1 to i - 1 of w
are zero, while components i to M of aj are zero); so Hiaj = (I - 2wwT)aj =
aj. Thus the zeros introduced by the previous transformations will not be
destroyed by Hi.

To use Householder transformations in place of Givens rotations in the
computer program in Figure 2.2.2, replace subroutine REDQ by the subrou-
tines REDH and CALW in Figure 2.3.1.

C

C

C
C

C
C

SUBROUTINE REDH(A,M,N,B,PIVOT.NPIVOT,ERRLIM)
IMPLICIT DOUBLE PRECISION (A-H.0-2)

DOUBLE PRECISION A(M,N) .B(M) ,ERRLIM
INTEGER PIVOT(M),M,N,NPIVOT

DOUBLE PRECISION W(M)

DECLARATIONS FOR ARGUMENTS

DECLARATIONS FOR LOCAL VARIABLES

USE HOUSEHOLDER TRANSFORMATIONS TO
REDUCE A TO ROW ECHELON FORM

1 = 1
DO 30 L=l.N

USE PIVOT A(1,L) TO KNOCK OUT ELEMENTS
1+1 TO M IN COLUMN L.

IF (I+l.LE.M) THEN
CHOOSE UNIT M-VECTOR W (WHOSE FIRST
1-1 COMPONENTS ARE ZERO) SUCH THAT WHEN
COLUMN L IS PREMULTIPLIED BY

M ARE ZEROED.
H = I - 2W*W**T, COMPONENTS 1+1 THROUGH

CALL CALW(A(1.L) ,M,W,I)

2. LINEAR LEAST SQUARES PROBLEMS 76

C

5

10
15

C

20

25

C
C

PREMULTIPLY A BY H = I - 2W*W**T
DO 15 K=L,N

WTA = 0.0
DO 5 J-1.M

CONTINUE
TWOWTA = 2*WTA
DO 10 J=I,M

CONTINUE

WTA = WTA + W(J)*A(J,K)

A(J.K) = A(J.K) - TWOWTA*W(J)

CONTINUE

WTA = 0.0
DO 20 J=I,M

CONTINUE
TWOWTA = 2*WA
DO 25 J=I,M

CONTINUE

PREMULTIPLY B BY H = I - 2W*W**T

WTA = WTA + W(J)*B(J)

B(J) = B(J) - TWOWTA*W(J)

ENDIF
PIVOT A(1.L) IS NONZERO AFTER PROCESSING
COLUMN L--MOVE DOWN TO NEXT ROW, 1+1

IF (ABS(A(1.L)) .LE.ERRLIM) A(1.L) = 0.0
IF (A(1.L) .NE.O.O) THEN

NPIVOT = I
PIVOT(NPIV0T) = L
I = I+1
IF (1.GT.M) RETURN

ENDIF
30 CONTINUE

RETURN
END

SUBROUTINE CALW(A.M.W.1)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)
DOUBLE PRECISION A(M).W(M)

C SUBROUTINE CALW CALCULATES A UNIT
C M-VECTOR W (WHOSE FIRST 1-1 COMPONENTS
C ARE ZERO) SUCH THAT PREMULTIPLYING THE
C VECTOR A BY H = I - 2W*W**T ZEROES
C COMPONENTS 1+1 THROUGH M.

s = 0.0
DO 5 J=I.M

S = S + A(J)**2
W(J) = A(J)

5 CONTINUE
IF (A(1) .GE. 0.0) THEN

2.3. REDUCTION USING HOUSEHOLDER TRANSFORMATIONS 77

BETA = SQRT(S)
ELSE

ENDIF
W(1) = A(1) + BETA
TWOALP = SQRT(S*BETA*W(I))

BETA = -SQRT(S)

C TWOALP-0 ONLY IF A(I), ..., A(M) ARE ALL
C ZERO. IN THIS CASE, RETURN WITH W=O

C NORMALIZE W
IF (TWOALP .EQ .O .O) RETURN

DO 10 J=I,M
W(J) = W(J)/TWOALP

10 CONTINUE
RETURN
END

Figure 2.3.1

If we actually had to form the M by M matrix Hi, and to multiply it by the
M by N matrix A in the usual way, we would have to do O (M 2 N) work per
column, making this algorithm useless, but we do not; the premultiplication
by Hi is done in the following manner:

HiA = (I - 2wwT)A = A - 2w(wTA).

The formation of w (in subroutine CALW) requires only O (M) work. Then
only columns I to N of A are processed, since the previous columns have al-
ready been reduced and will not be altered by this premultiplication. Premul-
tiplication of each column ak(k = I , . . . , N) by Hi involves first calculating the
scalar product wta = W T a k (loop 5) and then subtracting 2wta times w from
a k (loop 10). Each of these calculations requires M - (i - 1) multiplications,
since the first i - 1 components of w are zero. So about 2(M - i) multipli-
cations per column are required and, since there are about N - I columns to
process (actually N - I + 2 columns counting b) , the total work to multiply
HiA is about 2(N - Z)(M - i) multiplications. Let us assume for simplicity
that the columns of A are linearly independent (hence the least squares solu-
tion is unique, and M 2 N) ; so no zero pivots will be encountered, and we can
take I = i. Then, since transformations involving H I , . . . , HN are required,
the total number of multiplications required to orthogonally reduce an M by
N matrix A to upper triangular form using Householder transformations is
about (see 0.1.1)

N N c [2(N - i) (M - i)] = c [2NM - 2(N + M) i + 2i2]
i=l i= 1

2 1
3 3

M 2N2M - (N + M) N 2 + - N 3 = N2(M - - N) .

78 2. LINEAR LEAST SQUARES PROBLEMS

The work done during back substitution is negligible, as it is for Gaussian
elimination.

While each Householder transformation processes an entire column, a
Givens rotation eliminates only one element at a time. In column 1 (1 =
1, . . . , N) , there are about M - i elements to zero, and it requires about
4 (N - I) multiplications to knock out each (see loop 5 of REDQ in Figure
2.2.2). Assuming as above that i = 1, the total number of multiplications re-
quired to reduce orthogonally a rectangular matrix to upper triangular form
using Givens transformations is about

N
1 c [4(N - i) (M - i)] M 2 N 2 (M - - N) .
3

i=l

So, while both methods require O (N 2 M) work, the Householder method is
twice as fast, for large problems. Note that the Householder method requires
only O (N) square roots while, if we use Givens rotations, we must compute
O (N 2) square roots. Also note that, for square nonsingular systems (M = N) ,
the Householder reduction is only twice as slow as Gaussian elimination.

As discussed in Section 2.1, we can also solve a linear least squares prob-
lem by forming and solving the normal equations ATAz = ATb. If A is M
by N , forming the matrix ATA requires N 2 M multiplications; then solving
the N by N linear system involves 5 N 3 multiplications, using Gaussian elim-
ination. However, if we take advantage of symmetry, both the formation and
the solution work (see Problem 5 of Chapter 1) can be cut in half, and the
total number of multiplications is $ N 2 (M + 5 N) . If M is large compared
with N , the normal equations approach is about twice as fast as Householder
reduction. Thus the main argument for orthogonal reduction is not speed,
but accuracy.

2.4 Least Squares Approximation with Cubic
Splines

In Section 1.6 we saw that a “natural” cubic spline is uniquely determined
by its values at the knots 21,. . . , XN. Thus, if we define @ j (~) to be the
natural cubic spline with @ j (z j) = 1 and @j(zk) = 0 for k # j , it is clear
that any natural cubic spline with the same knots can be expressed as a linear
combination of the functions @j(z) :

N

(2.4.1)

If we want to calculate a natural cubic spline S(X) that passes through the
M data points (xdi, ydi), i = 1 , . . . , M , we have to solve the M by N linear

2.4. LEAST SQUARES APPROXIMATION WITH CUBIC SPLINES 79

system

@ i (x d i) @ 2 (x d i) . . . @ ~ (x d i)
@ i (Z d z) @ 2 (~ d 2) . . .

@ ~ (x d 2) : [F] = [’!] . (2.4.2)

In Section 1.6 the knots xi were chosen to coincide with the data points xdi ;
in this case there is a unique solution to the linear system 2.4.2, and thus a
unique natural cubic spline interpolant. (In fact, the coefficient matrix reduces
to the identity, and yi = y d i -)

Now interpolation may be appropriate if the data points are known to be
accurate but, if it is known that there is some experimental scatter in the
data, forcing s(x) to pass exactly through each point will produce a curve
that fluctuates in an unreasonable manner. In this case, we should probably
choose N (the number of knots) to be smaller than M (the number of data
points). With fewer degrees of freedom, the spline cannot fluctuate as rapidly,
and it will generally not be possible to force it to pass exactly through all the
data points. In other words, 2.4.2 will generally have no solution. However, if
we solve 2.4.2 in the least squares sense, we shall get the natural cubic spline,
among all those with the given knots, which most nearly interpolates to the
data.

Figure 2.4.1 gives a FORTRAN program that calculates the natural cubic
spline with knots 2 1 , . . . , ZN, which is the least squares approximation to the
data points (x d i , y d i) , i = 1 , . . . , M . For each j , it calls the subroutine DSPLN
in Figure 1.6.2 to calculate the natural cubic spline @j(x), and to evaluate @ j

at the points z d l , . . . , x d M . Each call to DSPLN thus gives us one column
of the coefficient matrix of the linear system 2.4.2. Then DLLSQR (Figure
2.2.2) is called to solve 2.4.2 in the least squares sense, computing values for
the coefficients yj of the @j(x). Now it is easy to see from 2.4.1 that yj is just
the value of the spline s(x) at xj, so DSPLN is called again to compute the
coefficients of the natural cubic spline that takes the values yj at the knots,
and to evaluate this spline at the user-supplied output points.

DLSQSP (Figure 2.4.1) was used to calculate the least squares natural
cubic spline approximation, with N equally spaced knots, to a set of M = 20
data points. The splines produced by DLSQSP with N = 5 and N = 15 axe
shown in Figures 2.4.2 and 2.4.3. As N increases, the number of degrees of
freedom increases, and the spline becomes more wiggly and approximates the
data points more closely. Which approximation is more reasonable depends
on how much accuracy can be assumed for our data.

When N is larger than M , the system 2.4.2 has many solutions, and
DLLSQR returns one of these many solutions. So the spline calculated by
DLSQSP interpolates the data points exactly; however, it oscillates wildly
between data points. No doubt there are other solutions (cf. Problem 8) that
interpolate the data with less oscillation.

I : @ l (x d M) @ 2 (x d M) . . . @ N (x d M) Y N PdM

80 2. LINEAR LEAST SQUARES PROBLEMS

SUBROUTINE DLSQSP(X,N,XD,YD.M,XOUT.YOUT.NOUT)
IMPLICIT DOUBLE PRECISION (A-H.0-2)

DOUBLE PRECISION X(N) .XD(M) ,YD(M) ,XOUT(NOUT) ,YOUT(NOUT)
INTEGER N ,M , NOUT

DOUBLE PRECISION Y(N) .A(M,N)

C DECLARATIONS FOR ARGUMENTS

C DECLARATIONS FOR LOCAL VARIABLES

n
L

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE DLSQSP CALCULATES A NATURAL CUBIC SPLINE WITH KNOTS AT
X(l), ..., X(N) WHICH IS THE LEAST SQUARES FIT TO THE DATA POINTS
(XD(I),YD(I)), I=1, ..., M, AND EVALUATES THIS SPLINE AT THE OUTPUT
POINTS XDUT(l), . . . ,XOUT(NOUT) .

ARGUMENTS

X - A VECTOR OF LENGTH N CONTAINING
THE SPLINE KNOTS.

N - THE NUMBER OF KNOTS.
(N.GE.3).

XD - A VECTOR OF LENGTH M CONTAINING
THE X-COORDINATES OF THE DATA
POINTS.

YD - A VECTOR OF LENGTH M CONTAINING DESTROYED.
THE Y-COORDINATES OF THE DATA
POINTS.

M - THE NUMBER OF DATA POINTS.

XOUT - A VECTOR OF LENGTH N O W CONTAINING
THE X-COORDINATES AT WHICH THE
CUBIC SPLINE IS EVALUATED. THE
ELEMENTS OF XOUT MUST BE IN
ASCENDING ORDER.

YOUT -

C NOUT - THE NUMBER OF OUTPUT POINTS.
C

A VECTOR OF LENGTH NOUT.
YOUT(1) CONTAINS THE
VALUE OF THE SPLINE
AT XOUT(1).

2.5. PROBLEMS 81

ZERO = O.ODO
DO 5 J=l,N

Y(J) = 0.0
5 CONTINUE
DO 10 J=l,N

Y(J) = 1.0
C CALCULATE PHI(J,X), NATURAL CUBIC SPLINE
C WHICH IS EQUAL TO ONE AT KNOT X(J) AND
C ZERO AT OTHER KNOTS. THEN SET
C A(1.J) = PHI(J,XD(I)), I=l, ..., PI

CALL DSPLN(X,Y.N,ZERO.ZERO,XD,A(~,J),M)
Y(J) = 0.0

10 CONTINUE
C CALL DLLSQR TO MINIMIZE NORM OF A*Y-YD

C LEAST SQUARES SPLINE IS
C Y(l)*PHI(l,X) + . . . + Y(N)*PHI(N,X).
C

CALL DLLSQR(A.M.N,Y ,YD)

EVALUATE SPLINE AT XOUT(l),XOUT(NOUT)
CALL DSPLN(X .Y ,N .ZERO, ZERO .XOUT, YOUT ,NOW
RETURN
END

Figure 2.4.1

2.5 Problems

1. The least squares problem

minimize IIAx - b))2

can be written in component form as

Using the fact that the partial derivatives of f must all be zero at a
minimum, show that any solution x to the least squares problem satisfies
A*Ax = ATb.

2. If N > M , will the least squares problem ever have a unique solution?
Why or why not?

3. Use DLLSQR (Figure 2.2.2) to solve all seven linear equations 1.1.1 and
1.1.2 for the five unknown currents.

82

0

0 -
a!

0 :.

2 .
>

0

0

0 -
N

0
9
0 ,

2. LINEAR LEAST SQUARES PROBLEMS

X

1

0
9 - _

X

X

Figure 2.4.2
Least Squares Spline Approximation, with Five Knots

4. Here are the scores from games between Texas A&M, Oklahoma, Texas,
and UTEP:

Texas A&M 14, Oklahoma 7
Texas A&M 35, Texas 3
UTEP 7, Texas A&M 7
Texas 10, Oklahoma 7
UTEP 19, Oklahoma 6
UTEP 7, Texas 0.

Calculate ratings for Texas A&M, Oklahoma, Texas, and UTEP based
on the discussion in Section 2.1. Use DLLSQR to solve the linear least
squares system that results. The solution is not unique: How does

2.5. PROBLEMS 83

8 OJJi .oo 8 OJJi .oo

Figure 2.4.3
Least Squares Spline Approximation, with 15 Knots.

DLLSQR pick a particular solution? (In my original football poll I
added the constraint that the average rating must be 25, to get a unique
solution. In this way, one could compare the best teams from different
years.)

5. Use DLLSQR to compute the polynomial of degree n which most closely
fits the data points (1, l) , (2,3), (3,2), (4,3), and (5,4), for n = 1,3, and
5. Plot your least squares straight line (n = 1) and compare it with the
best L , straight line, drawn in Figure 4.5.2. Note that, for n = 5, there
are many polynomials that pass through the given five points; DLLSQR
will return one of them.

6. Show that the L2-norm of each column of A does not change when A is

84 2. LINEAR LEAST SQUARES PROBLEMS

premultiplied by an orthogonal matrix Q. Thus, during an orthogonal
reduction process, when a pivot element is used to “knock out” the
elements directly below it, since the elements above the pivot do not
change, the pivot element grows in magnitude at the expense of the
eliminated elements. Therefore a pivot can be zero after it has been
used to knock out the elements below it only if the pivot and all elements
below were zero to begin with.

7. a. Modify DLLSQR to return the QR factorization of A, by initial-
izing Q = I and postmultiplying by the Qij matrices. Test your
QR factorization on the system in Problem 5, with n = 3. Verify
that Q is orthogonal, and that Q times R (final A) does restore the
original matrix.

b. Your program for part (a) will do O (M 2 N) arithmetic operations;
if M >> N this is unacceptable. It is possible to get the QR de-
composition essentially for free while solving the first least squares
problem, if you don’t insist on actually forming the M by M matrix
Q , but just save enough information to be able to compute QTc
(so that Rx = QTc can then be solved in the least squares sense)
when you need to solve a second least squares problem, min IIAa: -
cII2. Following the pattern used by DLINEQ/DRESLV, modify
DLLSQR (in REDQ) to save the rotation angle (ATAN2(S,C)) in
A(J,L), although it is understood that A(J,L) is really zero. Then
create another routine, DLLSQ2, which takes A as output by DLL-
SQR and solves another least squares problem efficiently. DLLSQ2
should be identical to DLLSQR, except the loop that premulti-
plies A by QG should be removed, and set S=SIN(A(J,L)), C=
COS(A(J,L)) (also, set ERRLIM=O). With this approach, you
can compute QTc in O (M N) operations, rather than O (M 2) , also
an important improvement when M >> N . Test your programs
by calling your modified DLLSQR to solve the system in Problem
5 with n = 3, then call DLLSQ2 to solve it again.

8. A linear system Ax = b that has no solution is called an overdetermined
system, while one that has many solutions is called underdetermined.
The “underdetermined least squares problem” is to find, of all solutions
to an underdetermined system Aa: = b, the one that minimizes IIxIlz.
Show that, if z is any solution to the square system AATz = b (there
will always be at least one solution), and x = AT%, then 2 is the solution
to the underdetermined least squares problem. (Hint: Obviously a: is
a solution to Aa: = b. To show that it is the minimum norm solution,
let y be any other solution to A y = b and let e y - 2. Then show
that llx + el12 = 11x11; + 11e11; following the pattern given in the proof of
Theorem 2.1.1a.)

2.5. PROBLEMS 85

9. Using the approach outlined in Problem 8, find the polynomial of degree
n = 5 that passes through the five points given in Problem 5, which
minimizes the sum of squares of the coefficients. While this polynomial
may be better in some sense than the polynomial of degree 5 found by
DLLSQR, neither is the polynomial interpolant of minimum curvature.

10. Consider the least squares problem min I1Az - blJ2, where

A = [-!:I, b = [-21.
a. Use a single Givens rotation, with hand calculations, to solve this

b. Solve the problem using the normal equations.

problem, and also display the QR decomposition of A.

3

The Eigenvalue Problem

3.1 Introduction

The eigenvalues of a square N by N matrix A are those scalar values X for
which

AX = AX (3.1.1)

has one or more nonzero solutions 5. The corresponding solutions are called
the eigenvectors. (We reject z = 0 as an eigenvector because otherwise all
scalars X could claim to be eigenvalues.) Since 3.1.1 is equivalent to (A -
XI)z = 0, we see that the eigenvalues are those scalars for which det(A-XI) =
0.

In theory, we can use det(A - X I) = 0 to calculate the eigenvalues of A.
When the determinant is expanded, det(A - X I) becomes a polynomial of
degree N in A; so calculation of the eigenvalues of A is reduced to finding the
roots of a polynomial of degree N . Although this is of theoretical interest,
because now we see that A will always have exactly N eigenvalues (count-
ing multiple roots multiply) and that the eigenvalues (and therefore also the
eigenvectors) of a real matrix may be complex, it is not practical to calculate
the eigenvalues in this way, unless N is very small.

It has been proved that it is not possible to calculate the roots of an
arbitrary Nth-degree polynomial exactly in a finite number of steps, for N >
4. Now for any given polynomial ~ N (X) = A N + alXN-' + . . . + CYN-~X + O N ,

we can construct a matrix A such that det(A - X I) = f p ~ (X) . In fact, such

86

3.1. INTRODUCTION

-
‘ Q N

0
0

0 -

87

a matrix is given by

-a1 -a2 ... -
1 0 ...

1

Therefore we cannot hope to devise an algorithm that finds the eigenvalues of
an arbitrary matrix A exactly in a finite number of steps; otherwise we could
use this algorithm as a means to find the roots of a general polynomial, in
violation of the known theory for polynomials.

This result sets the eigenvalue problem apart from the other problems in a
text on computational linear algebra. Problems that are really “linear”, such
as linear systems, linear least squares problems, and linear programming (LP)
problems, should be solvable exactly in a finite number of calculations, but the
“linear” eigenvalue problem is not really linear; all methods for finding matrix
eigenvalues are iterative. However, this distinction has little computational
significance because, whether a computation is iterative or terminating in
theory, on a computer the end result is the same: After a finite number of
operations we have an answer that is correct to a finite number of digits.

Most methods for finding all the eigenvalues and/or eigenvectors of a ma-
trix are based on the fact that the transformation A + Q-lAQ does not alter
the eigenvalues of A. Since Q-’AQz = X z implies A (Q z) = X(Qz), we see
that, if X is an eigenvalue of Q-lAQ, with eigenvector z, then X is also an
eigenvalue of A , with eigenvector Q z . Thus “transformation” methods at-
tempt to find matrices Q such that Q-’AQ has a form that makes eigenvalue
extraction trivial (the eigenvalues can be read off the diagonals of triangular
and diagonal matrices) or at least easier (the eigenvalues of tridiagonal and
Hessenberg matrices require a little extra work to calculate).

Many matrix eigenvalue problems arise from the discretization of ordinary
or partial differential equation eigenvalue problems. For example, calculating
the allowable energy states of an electron in an atom requires solving the
Schrodinger partial differential equation, in which the energy levels are the
eigenvalues and the corresponding electron probability distributions are the
eigenfunctions. The approximate solution of this problem always requires the
solution of a related matrix eigenvalue problem.

Let us consider another example. The vibrational frequencies of an elastic
membrane (e.g., a drumhead) stretched over a square frame are the eigenvalues
X of the partial differential equation

-Uxx - U,, = XU in (0,l) x (0, l),
u=o on the boundary.

(3.1.2)

88 3. THE EIGENVALUE PROBLEM

0
0

- 25
0
0
0
0
0
0
0
0
0
0

- 0

We can approximate the differential equation and boundary condition using
finite differences as follows:

- Ui+l,j - 2 u i , j -I- u i - 1 , j - ui,j+l - 2 u i , j -I- ui,j-l = Xui,i,

ui,O = U i , M = U0,j = u M , j = 0,
h2 h2

where h = 1/M, and Ui,j approximates U(ih, jh) . This is a matrix eigenvalue
problem, and when M = 5 it c m be written in the form Au = Xu, where u =

A is shown in Figure 3.1.1.
Many, perhaps most, eigenvalue problems that occur in applications in-

volve symmetric matrices, like the one in Figure 3.1.1. As shown in Section
0 . 2 , all the eigenvalues (and thus all eigenvectors) of a symmetric matrix are
real. Symmetric matrix eigenvalue problems are so much easier to solve-in
part because we can avoid complex arithmetic, but also for other reasons-
and they arise so often in applications that they are generally solved using
algorithms especially designed for symmetric matrices, such as the method
presented in the next section.

[UIl , u 1 2 , u13 7 u 1 4 7 u21, u 2 2 , U23, U24, u31, u 3 2 , u 3 3 , u34 , u 4 1 , U 4 2 , u437 u441 and

100-25 0 0 - 2 5 0 0 0 0 0 0 0 0 0 0 0
2 5 1 0 0 - 2 5 0 0 -25 0 0 0 0 0 0 0 0 0 0

-25 100 -25 0 0 -25 0 0 0 0 0 0 0 0 0
0 - 2 5 1 0 0 0 0 0 - 2 5 0 0 0 0 0 0 0 0
0 0 0 100-25 0 0 - 2 5 0 0 0 0 0 0 0

-25 0 0 -25 100 -25 0 0 -25 0 0 0 0 0 0
0 -25 0 0 -25 100 -25 0 0 -25 0 0 0 0 0
0 0 -25 0 0 -25 100 0 0 0 -25 0 0 0 0
0 0 0 -25 0 0 0 100 -25 0 0 -25 0 0 0
0 0 0 0 -25 0 0 -25 100 -25 0 0 -25 0 0
0 0 0 0 0 -25 0 0 -25 100 -25 0 0 -25 0
0 0 0 0 0 0 -25 0 0 -25 100 0 0 0 -25
0 0 0 0 0 0 0 - 2 5 0 0 0 100-25 0 0
0 0 0 0 0 0 0 0 -25 0 0 -25 100 -25 0
0 0 0 0 0 0 0 0 0 -25 0 0 -25 100 -25
0 0 0 0 0 0 0 0 0 0 - 2 5 0 0 - 2 5 1 0 0

Figure 3.1.1

The Jacobi Method for Symmetric
Matrices

The Jacobi method [Forsythe and Henrici 19601 for the symmetric eigenvalue
problem is no longer considered state-of-the-art; there are other methods that
are somewhat faster. However, it has the advantage that it is simple to pro-
gram and to analyze, and it is no less stable or robust than the more sophis-
ticated methods; it is guaranteed to find all the eigenvalues and eigenvectors
of a symmetric matrix in a reasonable amount of time.

3.2. THE JACOBI METHOD FOR SYMMETRIC MATRICES 89

row i

row j
Q . .

-
23 -

The Jacobi method constructs a sequence of similarity transformations
An+l = Q;lAnQn(Ao = A) , where the Q-matrices are Givens rotation ma-
trices (see Section 2.2), of the form

- 1
1

-

column
i

1
C

1

S

column
i

-S

1
C

1

(3.2 ~ 1)
(c2 + 52 = 1)

As verified earlier, Qij is orthogonal; that is, Q,i' = QZ, so the Jacobi iter-
ation can be written An+' = Q$A,Qij. Thus this transformation preserves
symmetry since, if AT = A,, we have

AT+' = (Q:AnQij)T = Q:A:Qij = Q:A,Qij = A,+1.

Premultiplying a matrix A by QZ has the effect of replacing rows i and j by
linear combinations of the original rows i and j, and we saw in Section 2.2
that c and s can be chosen so that a zero will be introduced into the (j, i)th
position of A. However, to preserve the eigenvalues of A, we are forced to
postmultiply by Q,j, which has the effect of changing columns i and j , and the
postmultiplication will normally cause the element just zeroed (aj i) to become
nonzero. This is not a problem if we plan ahead; we simply have to choose
c and s so that the zero is not created until the end-after premultiplication
and postmultiplication.

One Jacobi transformation can be represented by

(3.2.2)

...

90 3. THE EIGENVAL UE PROBLEM

Although all elements in rows i and j and columns i and j may be modified by
the transformation, we shall primarily be interested in the new values bii , b j j ,

and (especially) bji = bi j :

bii = c2aii + s2ajj + Pscaji,

bjj = s2aii + c2ajj - 2scaji,

bji = bij = cs(ajj - aii) + (c2 - s2)a" 3%'

If we want bji = bij = 0, we need to choose c and s so that

c2 - s2 aii - aj j - = 2 p -- -
cs a j i

(3.2.3)

(3.2.4)

(we can assume that aji # 0; otherwise no transformation is necessary). Sub-
stituting c = (1 - s2)l i2 into 3.2.4 gives

or, using the quadratic equation,

s 2 = - - * 1 $
2 (1 + p 2) 1 / 2 '

Thus the following values for s and c will satisfy 3.2.4 and s2 + c2 = 1:

(3 .2 .5)

Thus by proper choice of s and c we can introduce a zero into any specified
off-diagonal position, while preserving the eigenvalues (and the symmetry) of
A. Now it would be nice if we could zero all the off-diagonal elements of A
in succession, and after N (N - 1)/2 transformations have a diagonal matrix
that is similar to A; then we could read the eigenvalues off the diagonal.

But there must be a catch because, as mentioned in the last section, it is
not possible to devise an algorithm that finds the eigenvalues of an arbitrary
matrix (even an arbitrary symmetric matrix) exactly, in a finite number of
steps. The catch is that, when we zero a new element of A , a previously zeroed
element may become nonzero. Every time we knock out one off-diagonal
element, others pop back up; so it might seem that our algorithm is useless.
Fortunately, as we shall now show, although our transformed matrices never
become quite diagonal, they do make steady progress toward that goal.

Note that proving that the Jacobi method will always converge is essen-
tially a constructive proof of a fundamental theorem of linear algebra, that
any symmetric matrix is orthogonally similar to a diagonal matrix.

3.2. THE JACOB1 METHOD FOR SYMMETRIC MATRICES 91

Theorem 3.2.1. W h e n the symmetric matrix A is transformed into B =
QzAQij, with Qij chosen so that bji = 0 , the s u m of the squares of the diag-
onal elements increases by 2a3i, while the s u m of squares of the off-diagonal
elements decreases by the same amount.

Proof: Using equations 3.2.3 and the fact that c2 + s2 = 1, it is a straight-
forward but messy exercise in algebra (Problem 1) to show that

2bii + b:i + b;j = 2a2. 3% + a?. 2% + a?. 33 .

Since bji = 0 by design,

b?. + b? . = 2a?. + a?. + a? . .
33 3% 2% 33

Now, only rows i and j and columns i and j of A change during a Jacobi
transformation; so aii and ajj are the only diagonal elements to change. Thus

N N

k=l k=l

which proves the first part of the theorem.
Next we shall show that the transformation Q;AQij does not change the

sum of squares of all the elements of A. That will complete the proof since,
if the sum of squares along the diagonal increases by 2aii and the total sum
of squares is constant, the sum of squares of the off-diagonal elements must
decrease by 2aii.

If we denote the kth row of A by a: and the kth row of P E QZA by p:,
it is easy to see from 3.2.2 that only the ith and j t h rows of A and P differ,
and that

T T pT = cai + s a i ,
T T p3' = -sai + c a j (3.2.6)

but then

T T 2 T T 2 T p i p i + p j p j = c ai ai + 2csai aj + s a j aj

+s ai ai - 2csai aj + c a j aj
2 T T 2 T

T T = ai ai + a j a j

and, since the other rows of A and P are identical, we see that the premultipli-
cation by QZ does not change the total sum of squares. In a similar fashion,
the columns of P and B = PQij = Q$AQij are the same except for

(3.2.7)

92 3. THE EIGENVALUE PROBLEM

where now the subscript indicates the column number. It can likewise be
verified that this postmultiplication does not change the total sum of squares.
8

Now, to perform one Jacobi iteration, we first pick out a nonzero off-
diagonal element aji (j > i) to knock out, then we use 3.2.4 and 3.2.5 to
determine the proper values for c and s; finally we actually perform the trans-
formation Qz AQij using equations 3.2.6 and 3.2.7. The only thing missing is
a strategy for determining which elements aji to zero, and in what order.

One obvious possibility is to zero all off-diagonal elements in a systematic
order, for example, { (a j i , j = i + 1 , . . . , N) , i = 1 , . . . , N - 1 } , and then to
repeat this cycle until all off-diagonal elements are small. The only problem
with this strategy is that we may be wasting time zeroing some elements
that are already very small. Since the progress made toward diagonal form
depends on the size of the element knocked out (see Theorem 3.2.1), our time
is better spent zeroing the larger elements. Alternatively, we could search
for the largest (in absolute value) off-diagonal element each time and zero it;
however, just searching for the largest element requires O (N 2) work (unless
we are very clever), while the entire transformation QzAQij only requires
O (N) work!

We have chosen a third approach in our implementation: We check all the
off-diagonal elements in a systematic order, zeroing only those whose squares
exceed i e k / [N (N - l)], where e k is given by

after lc iterations. In other words, we cyclically check all off-diagonal elements
but s h p over those whose squares are less than half the current average for
all off-diagonal elements. (Note that there will always be elements greater
than this threshold, because they cannot all have below-average squares.) To
determine the rate of convergence of this algorithm, we need the following
theorem.

Theorem 3.2.2. If at each step of the Jacobi method the element t o be zeroed
satisfies aii 2 ! jek/[N(N - l)], then the convergence criterion

will be satisfied after at mos t L = N 2 In(l / e) iterations.

Proof: According to Theorem 3.2.1, ek+l = ek-2ai i , where aji is the element

3.2. THE JACOB1 METHOD FOR SYMMETRIC MATRICES 93

zeroed on the (k + 1)st iteration. Thus

The last inequality follows from the fact that 1 - h 5 exp(-h) for all positive
h (see Problem 2). Then, after L iterations,

N N N N

According to Theorem 3.2.2, the number of iterations for convergence of
the Jacobi method is O (N 2) but, since the work per iteration is O (N) , the
total work to find the eigenvalues using the Jacobi method is 0 (N 3) .

Our algorithm would not be practical if we had to calculate ek , the sum
of squares of the off-diagonal elements, directly each iteration, as it requires
O (N 2) work to sum the squares of the off-diagonal elements. Fortunately, we
can calculate eo from the definition, and then use Theorem 3.2.1 to keep up
with how ek decreases each iteration (but see Problem 3 for a discussion of
the risks involved in not calculating ek directly). Now the Jacobi method can
be summarized as follows:

A0 = A ,

An+1 = QTAnQn,

where each Q n has the form 3.2.1 for some i , j . Once the iteration has con-
verged, so that AL = D, where D is nearly diagonal, we have

T T D = QzQE-l. . . Q 2 Q 1 A Q l Q 2 . . . Q L - I Q L .

If we define

Q Q i Q 2 . . . Q L - I Q L ,

then

D = QTAQ,

and, since Q is still orthogonal,

AQ = Q D . (3.2.8)

From 3.2.8, we see that not only are the eigenvalues of A contained in the
diagonal of D, but also the columns of Q contain the corresponding eigenvec-
tors. This is clear when we notice that 3.2.8 says that A times the kth column

94 3. THE EIGENVALUE PROBLEM

of Q is equal to d k k times the lcth column of &. Hence, if we start with X , = I
and calculate Xn+l = X,Qn each Jacobi iteration, the last X L will be Q and
will contain the orthogonal eigenvectors of A , already normalized.

Figure 3.2.1 displays a FORTRAN program that solves a symmetric eigen-
value problem using the Jacobi method described above. Although, as stated
at the beginning of this section, it is no longer considered state-of-the-art, it
is very easy to program and it is only marginally slower than the best codes
for general symmetric eigenproblems (which also require 0 (N 3) work). Since
simplicity and not speed is DEGSYM’s strongest point, we opted to sacrifice
some further gains in speed to keep the program simple and did not even take
advantage of symmetry in the calculations of loops 25 and 30.

DEGSYM was used to find the eigenvalues of the symmetric matrix dis-
played in Figure 3.1.1. The Jacobi method converged after 380 transforma-
tions, with diagonal elements as shown in Table 3.2.1. The exact eigenvalues
of this matrix are known to be [Sewell 2005, Section 4.71

X = 100 [sin2 ($) + sin2 (z)] , k, I = 1,2,3,4,

in agreement with the results of Table 3.2.1 to the number of digits printed.

Table 3.2.1
Eigenvalues Calculated by DEGSYM

19.0983 75.0000 100.0000 130.9017
44.0983 75.0000 100.0000 155.9017
44.0983 100.0000 125.0000 155.9017
69.0983 100.0000 125.0000 180.9017

SUBROUTINE DEGSYM(A.N.X)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

DOUBLE PRECISION A(N,N) ,X(N.N)
INTEGER N

C DECLARATIONS FOR ARGUMENTS

C
C SUBROUTINE DEGSYM SOLVES THE EIGENVALUE PROBLEM
n
L

C A*X = LAMBDA*X
C
C WHERE A IS A SYMMETRIC MATRIX.
C
C
C ARGUMENTS
C
C ON INPUT ON OUTPUT

3.2. THE JACOBI METHOD FOR SYMMETRIC MATRICES 95

- - -- - - - - - - - - - - - - - C
C
C A - THE N BY N SYMMETRIC MATRIX.
C WITH THE EIGENVALUES
C OF A ON THE DIAGONAL.
C
C N - THE SIZE OF MATRIX A.
C
c x
C CONTAINS THE EIGEN-
C VECTORS OF A IN ITS
C COLUMNS, IN THE SAME
C ORDER AS THE EIGENVALUES
C APPEAR ON THE DIAGONAL.
C
C---
C EPS = MACHINE FLOATING POINT RELATIE
C PRECISION
c .

c .

A DIAGONAL MATRIX,

- AN N BY N MATRIX WHICH

DATA EPS/2.D-16/

C
C

5

10

C

15

20

C
C

C
C

ANORM = SUM OF ALL SQUARES
X INITIALIZED TO IDENTITY

ANORM = 0.0
DO 10 I=l,N

DO 5 J=l,N
ANORM = ANORM + A(I,J)**2
X(1.J) = 0.0

CONTINUE
X(I,I) = 1.0

CONTINUE
ERRLIM = 1000*EPS*ANORM

EK = 0.0
DO 15 I=l.N
DO 15 J=l,N

CONTINUE
IF (EK .LE. ERRLIM) RETURN
THRESH = 0.5*EK/N/ (N-1)
CONTINUE

EK = SUM OF OFF-DIAGONAL SQUARES

IF (I .NE. J) EK = EK + A(I,J)**2

DO 40 I=l,N-1
DO 35 J=I+l,N

IF A(J,I)**2 LESS THAN HALF THE
AVERAGE FOR OFF-DIAGONALS, SKIP IT.

KNOCKING OUT A(J,I) WILL DECREASE OFF-
DIAGONAL SUM OF SQUARES BY 2*A(J,I)**2.

IF (A(J,I)**2 .LE. THRESH) GO TO 35

96 3. THE EIGENVALUE PROBLEM

C

C

C

EK = EK - 2*A(J,I)**2

THRESH = 0.5*EK/N/ (N-1)
CALCULATE NEW THRESHOLD.

CALCULATE C,S
BETA = (A(1 ,I) -A(J, J)) /(2. *A(J,I)
FRACT = 0.5*BETA/SQRT(l.O+BETA**2)
S = SQRT (MAX (0.5-FRACT , O f DO)
C = SQRT (MAX (0.5+FRACT, 0. DO)

DO 25 K=l,N
PREMULTIPLY A BY Qij**T

PIK = C*A(I,K)+S*A(J.K)

A(1.K) = PIK
A(J,K) = PJK

PJK = -S*A(I,K)+C*A(J,K)

25 CONTINUE
C POSTMULTIPLY A AND X BY Qij

DO 30 K=l,N
BKI = C*A(K.I)+S*A(K,J)

A(K.1) = BKI
A(K.J) = BKJ
XKI = C*X(K,I)+S*X(K,J)

X(K,I) = XKI
X(K,J) = XKJ

BKJ = -S*A(K,I)+C*A(K,J)

XKJ = -S*X(K.I)+C*X(K.J)

30 CONTINUE
C CHECK FOR CONVERGENCE

IF (EK .LE. ERRLIM) RETURN
35 CONTINUE
40 CONTINUE

GO TO 20
END

C RETURN TO BEGINNING OF CYCLE

Figure 3.2.1

3.3 The QR Method for General Real Matrices

In Section 3.2, we used the Givens rotation matrices Qij (see 3.2.1) to intro-
duce zeros into positions uji. Unfortunately, the zeros introduced in this way
pop back up on later iterations, although A , does approach diagonal form in
the limit. Thus, even when A is symmetric, the Jacobi method cannot pro-
duce a diagonal matrix in a finite number of steps. The Jacobi method can
be modified to knock out uji even when aij # uji, and by iteratively knocking
out subdiagonal elements it may transform a nonsymmetric matrix into upper
triangular form (from which the eigenvalues can also be read off the diagonal),

3.3. THE QR METHOD FOR GENERAL REAL MATRICES 97

-

S

1
1
C

1
1-

but certainly not in a finite number of steps, and usually not even in the limit.
Indeed, if the nonsymmetric matrix has any complex eigenvalues, there is no
hope of convergence to triangular form, for real matrix multiplications cannot
produce a triangular matrix with complex diagonal entries.

If we are willing to be less ambitious, however, and instead of trying to
achieve upper triangular form we aim for “upper Hessenberg” form, which
has one extra diagonal below the upper triangle of nonzero elements, this we
can achieve in a finite number of steps. Since we shall still use orthogonal
matrices, which preserve symmetry, if the original matrix is symmetric, the
final Hessenberg matrix will be also, which means it will be tridiagonal.

The eigenvalues of Hessenberg and tridiagonal matrices are not as easily
extracted as those of upper triangular and diagonal matrices; so, once we re-
duce A to a similar Hessenberg (or tridiagonal, in the symmetric case) matrix,
we still have work to do, but we shall see that these forms are much easier to
deal with than the original full matrix.

We shall again use Givens rotation matrices to accomplish the reduction,
but this time we shall use Qij, not to zero aji, but aj,i-1. Since premultipli-
cation by QT. modifies the ith and j t h rows, and postmultiplication by Qij

modifies the zth and j t h columns, if we choose c and s so that the element in
row j , column i - 1 is zeroed by the premultiplication, it will not be modified
by the postmultiplication. Note, however, that, since j > i , only the elements
uj, i- l(j = i + 1 , . . . , N) of column i - 1 can be eliminated in this manner, and
the elements ai,,-l on the first subdiagonal cannot be zeroed, but this is the
price we have to pay to protect the zeros created now from destruction later.

a?

To determine c and s, let us form the product QzAQij:

-1
1

C
1

-S

= B = QGAQij (3.3.1)

. . . ai,i-1 Ui; . . . Uij . . .

. . . aj+1 Uji . . . U j j . . .

Since the postmultiplication does not alter the element in row j, column i - 1,
we have

3. THE EIGENVALUE PROBLEM

i

j

and setting this to zero gives (using also c2 + s2 = 1)

- a x a x a a a

O x a x a a a
Z x x x x x x
a x a x a a a
a x a x a a a
a x a x a a a

x x x x x x x

(3.3.2)

Since we shall only perform the transformation when aj,+1 is not already
zero, the danger of a zero denominator is avoided.

Now, if we want the zeroed elements to remain zero, it is essential to knock
them out in the proper order. When we reduced A to row echelon form in
Section 2.2 by premultiplying with Qij matrices, it was important to zero
the subdiagonal elements column by column, beginning with the first column.
(The same is true of ordinary Gaussian elimination, where we premultiply A
by Mij matrices.) This ensures that, while we are knocking out subdiagonal
elements in column i, we are only adding multiples of 0 to 0 back in columns
1 to i - 1. In a similar manner, to make sure that later premultiplications
do not destroy zeros created earlier, we shall zero subdiagonal elements of
A column by column, beginning with the first column. That is, we shall
eliminate elements in the order { (aj,i-l,j = i + 1 , . . . , N) , i = 2 , . . . , N - 1).
Furthermore, because we use QZ to knock out elements in the (i-1)st column,
when we postmultiply by Qij, only columns i and j (j > i) are altered, and
the zeros in columns 1 to i - 1 will not be destroyed. Thus neither the
premultiplication nor postmultiplication will destroy any of the zeros created
earlier (Figure 3.3.1).

In Section 3.2 we knocked out elements in the ith column using Qij , and
that made it possible for us to eliminate any target subdiagonal element,
whereas using Qij to knock out elements in the (i - 1)st column means we
have to leave the first diagonal below the main diagonal untouched. But in
Section 3.2 we paid a price-the zeroed elements did not stay zero.

i j
a x x a a a a

z x x x x x x
a x x a a a a
a x x a a a a
a x x a a a a
a x x a a a a

x x x x x x x

i j
a a a a a x x
a a a a a x x
O a a a a x x
O O a a a x x
O O O a a x x
o o o o x x x

- 0 0 0 0 zx x
first iteration second iteration last iteration

Figure 3.3.1
Reduction to Upper Hessenberg Form

2, zeroed by premultiplication (and not changed by postmultiplication)
x, may change during this iteration.

3.3. THE QR METHOD FOR GENERAL REAL MATRICES 99

For a given i and j, and once we have chosen c and s (using 3.3.2), the
transformation B = Q;AQij, or P = QZA, B = PQij, is done exactly
as before, using equations 3.2.6 and 3.2.7. Each transformation, as before,
requires O (N) operations and, as there are (N - 1)(N - 2)/2 elements to
zero, the total work done reducing A to Hessenberg form is O(N3).

Now we have reduced our arbitrary real matrix to an upper Hessenberg
(possibly tridiagonal) matrix with the same eigenvalues. There are various
methods available to find the eigenvalues of this Hessenberg matrix, including
the inverse power method discussed in Section 3.5. Most of these methods
could be applied to the original full matrix but can be applied much more
efficiently to a Hessenberg matrix. For example, the inverse power method
requires solving a linear system each iteration, and this is much less expensive
if the coefficient matrix is upper Hessenberg.

A popular and powerful method for finding the eigenvalues of a general
real matrix (preferably after it has been reduced to upper Hessenberg form)
is the QR method [Francis 19611. To do one iteration of the QR method,
we first reduce A to upper triangular form using orthogonal reduction; that
is, we premultiply A by an orthogonal matrix, QT(= Q-') , designed so that
Q-lA = R is upper triangular. Then we postmultiply by the inverse matrix,
Q. Although the postmultiplication destroys the upper triangular structure
created by the premultiplication, under certain conditions the QR method
nevertheless makes gradual progress toward triangular form, as the following
theorem states.

Theorem 3.3.1. If the real N by N matrix A has N eigenvalues satisfying

1x11 > 1x21 > . . . > IAN1 > 0,

and the QR iteration is defined by

A0 = A,

An = Qz!lAn-lQn-I,

where R,-1 5 Qi!lAn-l is upper triangular, then, for large n, A, approaches
upper triangular form.

Proof: First note that

A, = Q ~ ~ l A n - l Q n - l = . . . = Q;!l. ..Qo'AQo. . .Qn-l , (3.3.3)

(3.3.4)

and so A, is similar to A. Also note that

Qo . . . Qn-lAn = AQo . . . &,-I.

Then using A, = Q,R, and 3.3.4 repeatedly, we get

Q o . . .Qn-lRn-l.. .& Qo. ..Qn-2An-1Rn-2.. .&
= AQo ...Qn-2 R,-2 ...&
= AQo.. .Qn-3An-2Rn-3.. . & (3.3.5)
= A2Qo ...Qn-3 Rn-3. ..% = . _ . = A".

100 3. THE EIGENVALUE PROBLEM

Meanwhile, since A has N distinct eigenvalues, by a well-known theorem of
linear algebra, A is diagonalizable, A = ZDZ-' , where we have arranged the
eigenvalues X i = dii in descending order in the diagonal matrix D and have
packed the eigenvectors into the columns of 2 in the corresponding order.

Now let us form the LU decomposition of 2-' = LU, where L has ones
along the diagonal (see Section 1.4). We have assumed that no pivoting is
required during the formation of this LU decomposition (so P = I in 1.4.7)
and, since 2-1 is nonsingular, an exactly zero pivot is unlikely to arise. In
any case, J.H. Wilkinson [1965], in his classic text The Algebraic Eigenvalue
Problem, shows how to continue the proof even if pivoting is required.

Now from 3.3.5 we have

Qo . . . &,-I R,-1 . . . & = A" = ZD"2-l = 2D"LU.

Since X = 0 was assumed not to be an eigenvalue of A , A" is nonsingular, and
therefore so are all the Ri. So,

Z-'Qo.. . Qn-l = D"LUR,'. . . Ri:l _= H,, (3.3.6)

where 3.3.6 defines the matrix H,,.
€+om 3.3.3 then,

A, = (ZHn)- 'A(ZHn) = H;'(Z-'AZ)Hn = HL'DH,. (3.3.7)

Now let us look more closely at the matrix H,. From 3.3.6,

H, = (D"LD-")D"UR~ ' . . . R;:'. (3.3.8)

If the lower triangular matrix L has elements 2i j (2ii = l), the matrix in
parentheses is

DnLD-,, =

1 0 0 0 ...

Since the eigenvalues Ai = dii are numbered in order of descending absolute
value, the subdiagonal terms all tend to zero, and D"LD-" converges to the
identity matrix, as n 4 DO. Thus for large n, from 3.3.8,

H , M DnU%-l. . . R;!l.

Since the inverse of an upper triangular matrix is upper triangular, and the
product of upper triangular matrices is upper triangular (Theorem 0.1.2), we
see that H, is upper triangular, for large n. Then, going back to 3.3.7, we

3.3. THE QR METHOD FOR GENERAL REAL MATRICES 101

see that A, is the product of upper triangular matrices too and is thus also
upper triangular, for large n. H

Since A is real, complex eigenvalues will appear in conjugate pairs, with
equal absolute values. Thus the assumptions in Theorem 3.3.1 are violated
whenever A has complex eigenvalues, but then we should never have expected
that using only real matrix multiplications we could converge to a triangular
matrix if some of the eigenvalues are complex. Fortunately, however, the
usefulness of the QR iteration is not limited to problems with real or distinct
eigenvalues, as the following theorem shows.

Theorem 3.3.2. If A is real, diagonalizable, and nonsingular, and i f its
eigenvalues occur in groups of at most two with equal absolute values, the Q R
iterate A, approaches "quasitriangular" form, for large n. A quasitriangular
matrix is upper Hessenberg with no two consecutive nonzero elements on the
first subdiagonal.

Proof: Under the assumptions on the eigenvalues dii of A, we can see from its
expansion above that D"LD-" is quasitriangular for large n, since the only
subdiagonal elements that do not converge to zero are on the first subdiago-
nal, and they are isolated from each other. Note that we are not saying that
D"LD-" (or A,) converges to anything; in fact the nonconvergent subdiago-
nal elements may well oscillate forever, but the other subdiagonal elements do
converge to zero. It is left as a problem (Problem 5) to show that the nonzero
structure of a quasitriangular matrix is preserved when it is multiplied by
an upper triangular matrix or by another quasitriangular matrix of the same
nonzero structure, and when it is inverted. Once these intuitively reasonable
results are established, it follows from 3.3.8 that H , is quasitriangular, and
from 3.3.7 that A, is quasitriangular, for large n.

Although the QR method convergence proofs given above are rather com-
plex, it is possible to give an "intuitive explanation" for why this method
works. Each transformation A,, = Qz:lAn-lQn-l is designed so that the
premultiplication produces an upper triangular matrix (&-I). The ensu-
ing postmultiplication destroys this triangular structure; however, while the
premultiplication is systematically, purposefully shoveling nonzero "material"
over into the upper triangle, the postmultiplication is scattering material
about aimlessly. It is not hard to believe that the directed efforts of the
premultiplication gradually win out over the undirected efforts of the post-
multiplication, and the matrix gradually moves, as far as it can, toward upper
triangular form.

An example of a quasitriangular matrix is given in Figure 3.3.2. We shall
see that the real and complex eigenvalues can be calculated trivially once we

102 3. THE EIGENVALUE PROBLEM

reduce A to quasitriangular form.

- x x x x x x x x
o x x x x x x x
o s x x x x x x
0 0 o x x x x x
0 0 o s x x x x
o o o o o x x x
o o o o o o x x
o o o o o o o x

Figure 3.3.2
A Quasitriangular Matrix

S, nonzeros on first subdiagonal; X , other nonzero elements.

Our implementation of the Q R method will use more Givens rotations, but
now our strategy has changed. Previously, every time that we premultiplied
our matrix by Q,j' = QT. we immediately followed this with a postmultipli-
cation by the corresponding inverse matrix Qij. Indeed, if we are to preserve
the eigenvalues of A we must postmultiply by the inverse. However, with the
Q R method, we temporarily forget about the postmultiplications and simply
premultiply by orthogonal QZ matrices until we have an upper triangular ma-
trix. Only after we have reduced A to upper triangular form R do we go back
and postmultiply by the corresponding Qij matrices. What difference does
it make whether we do all the premultiplications first, or alternate between
premultiplications and postmultiplications (as done for the Jacobi method or
the reduction to Hessenberg form)? The only difference is that our choices
for c and s will depend on the order in which we multiply these matrices.

The reduction to upper triangular form follows the pattern of the orthog-
onal reduction in Section 2.2, except that we begin with a Hessenberg matrix,
which is already nearly triangular. In fact, we could apply the Q R method
directly to the original full matrix, but each reduction would require O (N 3)
operations. Since an upper Hessenberg matrix has st most N - 1 nonzero
subdiagonal elements, only N - 1 premultiplications are required to reach
triangular form, each of which requires O (N) work to perform. There are an
equal number of postmultiplications to be done afterward, and so the total
work for one Q R iteration is O (N 2) , if we start with a Hessenberg matrix.
It is easy to verify (Figure 3.3.3) that a Q R iteration does not destroy the
Hessenberg structure. That is, although the N - 1 postmultiplications destroy
the upper triangular structure created by the premultiplications, the nonzeros

%?

3.3. THE Q R METHOD FOR GENERAL REAL MATRICES 103

= det

do not spread beyond the first subdiagonal.

i i + l i i + l

-
a l l - X X X X X X X X -

0 a22-Xa23 X X X X X
0 a 3 2 a 3 3 - X X X X X X
0 0 0 a44 - X a45 X X X
0 0 0 a54 a55 - X X X X

0 0 0 0 0 0 a77-X X
- 0 0 0 0 0 0 0 a88 - X

0 0 0 0 O a 6 6 - X X x

i
i + l

a a a a a a

a a a a a

i

i + l

p a x x a a a

ith premultiplication step ith postmultiplication step

Figure 3.3.3
QR Iteration on a Hessenberg Matrix

2, becomes zero; N , becomes nonzero; z, may change.

In the symmetric case, where we start with a tridiagonal matrix, the pre-
multiplications eliminate the one subdiagonal of nonzeros but add one extra
superdiagonal on top of the original structure. The postmultiplications return
this triangular matrix to a symmetric tridiagonal form; this is as expected,
since the Q R iteration A,, = QT-lAn-~Qn--l preserves symmetry and each
iterate is Hessenberg, and therefore tridiagonal. In the symmetric case, then,
a Q R iteration can be performed in only O (N) operations.

Now, once we have a quasitriangular matrix, such as that shown in Figure
3.3.2, we can calculate the eigenvalues directly from the determinant equation

It can be shown (Problem 8) that the above determinant can be expanded as

104 3. THE EIGENVALUE PROBLEM

follows:

1 a 2 2 - a 2 3

a 3 2 a 3 3 -
det(A - X I) = (all - X)det

(a66 - A)(a77 - X)(aW - A). 1 a44 - X a45

a54 a55 - X
x det [(3.3.10)

Thus we see that all, a66, a77, and a88 are real eigenvdues of A, and the four
eigenvalues of the two 2 by 2 blocks complete the list of eigenvalues.

Figure 3.3.4 displays a FORTRAN program that finds the eigenvalues of a
general real matrix, using the algorithms described above. First the matrix is
reduced to upper Hessenberg form (in subroutine HESSQ), and then the QR
method is iterated to convergence (in subroutine QR), that is, until the first
subdiagonal contains only zeros and isolated nonzeros. Then the eigenvalues
are computed directly from the quasitriangular matrix and returned in a com-
plex vector. The eigenvectors are not calculated by DEGNON but, once we
have an eigenvalue A, the corresponding eigenvector(s) are easily calculated,
by solving (A - XI)z = 0. In Section 3.5 a subroutine (DPOWER in Figure
3.5.2) will be given which can be used to find these eigenvectors, even when
X is complex.

SUBROUTINE DEGNON(A,N,EIG)
IMPLICIT DOUBLE PRECISION (A-H.0-2)

COMPLEX*16 EIG(N)
DOUBLE PRECISION A(N.N)
INTEGER N

C DECLARATIONS FOR ARGUMENTS

C SUBROUTINE DEGNON SOLVES THE EIGENVALUE PROBLEM
C
C A*X = LAMBDA*X
C
C WHERE A IS A GENERAL REAL MATRIX.
C
C
C ARGUMENTS

C ON INPUT
C
C
C A - THE N BY N MATRIX.
C
C N - THE SIZE OF MATRIX A.
C
C EIG -
C

- - - - - - - -

DESTROYED.

A COMPLEX N-VECTOR
CONTAINING THE EIGEN-

3.3. THE QR METHOD FOR GENERAL REAL MATRICES 105

C VALUES OF A.
C
C---

C EPS = MACHINE FLOATING POINT RELATIVE
C PRECIS ION
c .

c .
C AMAX = MAXIMUM ELEMENT OF A

DATA EPS/2.D-16/

AMAX = 0.0
DO 5 1-l.N
DO 5 J=I,N

ERRLIM = SQRT(EPS) *AMAX

CALL HESSQ(A,N)

CALL QR(A.N,ERRLIM)

5 AMAX = MAX(AMAX.ABS(A(I,J)))

C REDUCTION TO HESSENBERG FORM

C REDUCTION TO QUASI-TRIANGULAR FORM

C EXTRACT EIGENVALUES OF QUASI-TRIANGULAR
C MATRIX

1 = 1
DO WHILE (1.LE.N-1)

IF (A(I+l,I) .EQ.O.O) THEN
C 1 BY 1 BLOCK ON DIAGONAL

EIG(1) = A(1,I)
I = I+1

ELSE
C 2 BY 2 BLOCK ON DIAGONAL

DISC (A(I.1) -A(I+1 .I+1) **2 + 4 .O*A(I ,I+i) *A(I+I .I)
TERM = 0.5*(A(I ,I)+A(I+l .I+I))
IF (DISC.GE.0.0) THEN

EIC(1) = TERM + 0.5*SQRT(DISC)
EIG(I+l)= TERM - 0.5*SQRT(DISC)

EIG(1) = TERM + 0.5*SQRT(-DISC)*CMPLX(O.0.1.0)
EIG(I+I)= TERM - 0.5*SQRT(-DISC)*CMPLX(O.0,1.0)

ELSE

ENDIF
I = I+2

ENDIF
END DO
IF (1.EQ.N) EIG(N) = A(N,N)
RETURN
END

SUBROUTINE HESSQ(A.N)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

C DECLARATIONS FOR ARGUMENTS

106 3. THE EIGENVALUE PROBLEM

C
C

C

C

C

C

C
C

C
C
C

DOUBLE PRECISION A(N,N)
INTEGER N
IF (N.LE.2) RETURN

USE GIVENS ROTATIONS TO REDUCE A
TO UPPER HESSENBERG FORM

DO 20 Iz2.N-1
DO 15 J=I+I,N

IF (A(J.I-l).EQ.O.O) GO TO 15
DEN = SQRT(A(I.I-l)**2+A(J,I-l) **2)
C = A(I,I-l)/DEN
S = A(J,I-l)/DEN

DO 5 K=I-l,N
PREMLJL.TIPLY BY Qij**T

PIK = C*A(I,K) + S*A(J,K)
PJK =-S*A(I,K) + C*A(J,K)
A(1.K) = PIK
A(J,K) = PJK

5 CONTINUE
POSTMULTIPLY BY Qi j

DO 10 K=l.N
BKI = C*A(K.I) + S*A(K.J)
BKJ =-S*A(K,I) + C*A(K.J)
A(K,I) = BKI
A(K,J) = BKJ

10 CONTINUE
15 CONTINUE
20 CONTINUE

RETURN
END

SUBROUTINE QR(A.N,ERRLIM)
IMPLICIT DOUBLE PRECISION (A-H.0-2)

DOUBLE PRECISION A(N,N) ,ERRLIM
INTEGER N

DOUBLE PRECISION SAVE(2.N)
IF (N.LE.2) RETURN

DECLARATIONS FOR ARGUMENTS

DECLARATIONS FOR LOCAL VARIABLES

USE QR ITERATION TO REDUCE HESSENBERG
MATRIX A TO QUASI-TRIANGULAR FORM

NITER = 1000*N
DO 35 ITER=l,NITER

REDUCE A TO UPPER TRIANGULAR FORM USING
ORTHOGONAL REDUCTION (PREMULTIPLY BY
Qij**T MATRICES)

DO 10 I=l,N-l
IF (A(I+l.I).EQ.O.O) THEN

3.3. THE QR METHOD FOR GENERAL REAL MATRICES

C
C

C
C

C
C

c = 1.0
s = 0.0

DEN = SQRT(A(I,I)**2 + A(I+1,1)**2)
C = A(I.I)/DEN
S = A(I+l,I)/DEN

ELSE

ENDIF
USE SAVE TO SAVE C.S FOR POST-
MULTIPLICATION PHASE

SAVE(1.1) = C
SAVE(2.I) = S
IF (S.EQ.O.0) GO TO 10

IF MATRIX SYMMETRIC, LIMITS ON K
CAN BE: K = I , MIN(I+S,N)

DO 5 K=I.N
PIK = C*A(I.K) + S*A(I+l.K)
PJK =-S*A(I.K) + C*A(I+l.K)
A(1.K) = PIK
A(I+l.K) = PJK

5 CONTINUE
10 CONTINUE

C NOW POSTMULTIPLY BY Q i j MATRICES
DO 20 I=l.N-l

C = SAVE(1.I)
S = SAvE(2,I)
IF (S.EQ.O.0) GO TO 20

IF MATRIX SYMMETRIC, LIMITS ON K
CAN BE: K = MAX(1,I-1) , I+1

DO 15 K=l,I+l
BKI = C*A(K,I) + S*A(K,I+l)

A(K,I) = BKI
A(K.I+l) = BKJ

BKJ =-S*A(K,I) + C*A(K,I+l)

15 CONTINUE
20 CONTINUE

C SET NEARLY ZERO SUBDIAGONALS TO ZERO,
C TO AVOID UNDERFLOW.

DO 25 I=l.N-l
IF (ABS(A(I+l.I)) .LT.ERRLIM) A(I+l,I) = 0.0

25 CONTINUE
C CHECK FOR CONVERGENCE TO "QUASI-
C TRIANGULAR" FORM.

ICONV = 1
DO 30 I=2,N-1

IF (A(I.1-ll.NE.O.0 .AND. A(I+l,I).NE.O.O) ICONV = 0
30 CONTINUE

35 CONTINUE
IF (ICONV.EQ.1) RETURN

107

108 3. THE EIGENVALUE PROBLEM

C HAS NOT CONVERGED IN NITER ITERATIONS
PRINT 40

RETURN
END

40 FORMAT (I ***** QR ITERATION DOES NOT CONVERGE *****'I

Figure 3.3.4

Unless there are more than two eigenvalues of the same modulus, the Q R
iteration will (eventually) reduce the Hessenberg matrix to quasitriangular
form, and DEGNON is able to extract automatically the eigenvalues of the 1
by 1 and 2 by 2 irreducible diagonal blocks in the final matrix. If there are
groups of k > 2 eigenvalues with the same modulus, the final matrix may (or
may not!) contain irreducible k by k diagonal blocks, which do not reveal
their eigenvalues as easily as the 1 by 1 and 2 by 2 blocks of a quasitriangular
matrix. Nevertheless, the QR iteration will almost always introduce some new
zeros into the first subdiagonal of the Hessenberg matrix, and DEGNON will
still calculate the eigenvalues of the 1 by 1 and 2 by 2 blocks automatically;
the eigenvalues of the larger blocks can be calculated "by hand", if they are
not too large.

Although DEGNON will nearly always eventually find all the eigenvalues
of A, convergence can sometimes be quite slow. The rate of convergence to
zero of the subdiagonal element ai+l,i depends on the magnitude of the ratio
lAi+1l / lAi l . Note, however, that DEGNON stops when A reaches quasitrian-
gular form; so, if there are two eigenvalues of nearly equal (or equal) absolute
values, this will not hurt anything. Only if there are three clustered closely
together will we have slow convergence, since only then will two consecutive
subdiagonal elements converge to zero slowly.

More sophisticated codes employ a "shifted QR" method, which may speed
convergence substantially. The shifted QR method is based on the transfor-
mation

(3.3.11)

where Rn-l = Q;Al(An-l - ~ ~ - 1 1) is upper triangular.
The philosophy behind the shifts is easily seen by looking at the expansion

for D"LD-" given earlier and noting that, when we do several iterations of
the shifted QR method with a constant shift n, we are really just applying the
ordinary QR method to the matrix B = A - nI (and restoring the 01 at the
end). This shifts the eigenvalues from dii to dii -0, and, by choosing o close to
an eigenvalue d k k , we can cause the subdiagonal elements of D"LD-" which
contain d k k - (T in the numerator to converge rapidly to zero. By cleverly
varying on, then, we can speed selected subdiagonal elements on their way to
zero (see Problem 9).

3.4. ALTERNATIVE METHODS FOR GENERAL MATRICES 109

The QR method with shifts is considered by many to be the best method
for the calculation of all the eigenvalues of a general real matrix. It is im-
plemented by the most popular eigenvalue codes, such as those in the IMSL
Library and EISPACK [Smith et al. 19761.

DEGNON was used to find the eigenvalues of the symmetric matrix in
Figure 3.1.1, 101 QR iterations were required, and the eigenvalues returned
agreed with those calculated by DEGSYM, shown in Table 3.2.1, to the num-
ber of digits shown there. Note that the QR iteration converged despite the
fact that this matrix has four double eigenvalues, and one real eigenvalue of
multiplicity 4.

We also used DEGNON to find the eigenvalues of the nonsymmetric matrix
shown below:

-5 7 3 4 -8
5 8 3 6 8 [-; -; : -: _1- 4 5

(3.3.12)

The eigenvalues output by DEGNON were

13.1406621 + 4.9368807 i
13.1406621 - 4.9368807 i
-4.5805667 + 6.9420509 i
-4.5805667 - 6.9420509 i
4.8 798093

In Section 3.5 we shall see how eigenvectors of this matrix can be calculated,
using inverse iteration.

3.4 Alternative Methods for General Matrices
The transformation of a general real matrix to Hessenberg form can also be
accomplished using the symmetric orthogonal “Householder matrices” that
were introduced in Section 2.3. Recall that the Householder matrix Hi (=
I - 2wwT) has the form

column column
i N

Hi =
row i

row N

1
1

1
1
x x x x
x x x x x x x x
x x x X J

110 3. THE EIGENVALUE PROBLEM

rowi

rowN

Since H,:' = HF (because Hi is orthogonal) and H,' = Hi (because it is
symmetric), a Householder transformation has the form A,+I = HiA,Hi.
Note that premultiplication by Hi has the effect of changing only rows i to
N, while postmultiplication by Hi changes columns i to N . In Section 2.3
the nonzero portion of Hi was chosen so that premultiplication by Hi would
zero the elements in rows i + 1 to M of the pivot column i (we assume that
the columns of A are independent, so that 1 = i) . However, to preserve the
eigenvalues of A, we now have to postmultiply by Hi, and the postmultipli-
cation, since it changes columns i to N, will destroy the zeros in column i
created by the premultiplication. Recall that we faced a similar problem us-
ing the Givens Qij matrices and, to ensure that the postmultiplication did
not destroy the zeros created by the premultiplication, we used Qij to create
(during premultiplication) zeros back in the (i - 1)st column, where they are
safe from the postmultiplication, which changes only columns i and j (j > i) .
In a similar manner, we shall have to use Hi to zero the elements in rows i + 1
to N, not of column i but of the previous column i - 1, where they will be
safe during the postmultiplication phase, when columns i to N are altered.
This means, again, that the elements ai,i-1 on the first subdiagonal cannot
be zeroed (Figure 3.4.1).

- a a a a a x x
a a a a a x x
O a a a a x x
O O a a a x x
O O O a a x x
0 0 0 0 x x x
o o o o z x x
o o o o z x x

- 0 0 0 0 Z 3: x

- x x
x x
x x
x x
x x
x x
x x
x x
x x -

Figure 3.4.1
One Householder Iteration, Using H,

2, zeroed by premultiplication (and not changed by postmultiplication)
x, may change during this iteration.

Since the Hi matrices are orthogonal, symmetry is preserved and, if we
start with a symmetric matrix, we shall end up with a tridiagonal matrix, as
before.

To use Householder transformations in place of Givens rotations in DEG-
NON, we replace subroutine HESSQ in Figure 3.3.4 by the subroutine HESSH
shown in Figure 3.4.2. Subroutine CALW in Figure 2.3.1 must also be loaded;
we use this subroutine to determine the unit vector w such that premultipli-
cation by Hi = I - 2wwT will zero components i + 1 to N of column i - 1.

3.4. ALTERNATIVE METHODS FOR GENERAL MATRICES 111

The premultiplication is done (as in Section 2.3) in the following manner:

HiA = (I - 2wwT)A = A - 2w(wTA).

The formation of w (in subroutine CALW) requires only O (N) work. Then
only columns i - 1 to N of A are processed, since the previous columns have
already been reduced to their Hessenberg form and will not be altered by
the premultiplication (see Figure 3.4 .1) . Premultiplication of each column
a k (k = i - 1 , . . . , N) by Hi involves first calculating the scalar product
wta = W T a k (loop 5) and then subtracting 2wta times w from a k (loop 10).
Each of these calculations requires N - (i - 1) multiplications, since the first
i-1 components of o are zero. Thus about 2 (N - i) multiplications per column
are required and, since there are about N - i columns to process, the total
work during the premultiplication stage is about 2(N - i) 2 multiplications.

C

C

C
C

C
C
C
C
C

C

C

5

10
15

SUBROUTINE HESSH(A .N)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

DECLARATIONS FOR ARGUMENTS
DOUBLE PRECISION A(N,N)
INTEGER N

DOUBLE PRECISION W(N)
IF (N.LE.2) RETURN

DECLARATIONS FOR LOCAL VARIABLES

USE HOUSEHOLDER TRANSFORMATIONS TO
REDUCE A TO UPPER HESSENBERG FORM

CHOOSE UNIT N-VECTOR W (WHOSE FIRST
1-1 COMPONENTS ARE ZERO) SUCH THAT WHEN
COLUMN 1-1 IS PREMULTIPLIED BY
H I - 2W*W**T, COMPONENTS I+1 THROUGH
N ARE ZEROED.

PREMULTIPLY A BY H = I - 2W*W**T

DO 35 1-2.N-1

CALL CALW (A(1,I-1) ,N,W,I)

DO 15 K=I-l,N
WTA = 0.0
DO 5 J=I,N

CONTINUE
TWOUTA = 2*WTA
DO 10 J=I,N

CONTINUE

WTA = WTA + W(J)*A(J,K)

A(J,K) = A(J,K) - TWOWTA*W(J)

CONTINUE

DO 30 K=l,N
POSTMULTIPLY A BY H = I - 2W*W**T

WTA = 0.0
DO 20 J=I,N

WTA = WTA + W(J)*A(K,J)

112 3. THE ElGENVALUE PROBLEM

20 CONTINUE
TWOWTA = 2*WTA
DO 25 J=I,N

A(K,J) = A(K,J) - TWOWTA*w(J)
25 CONTINUE
30 CONTINUE
35 CONTINUE

RETURN
END

Figure 3.4.2

The postmultiplication is done similarly:

AH* = A (I - 2wwT) = A - 2(Aw)wT.

Now all N rows have to be processed. Postmultiplication of each row uz (I c =
1,. . . , N) by Hi involves first calculating the scalar product wta = aTw (loop
20), and subtracting 2wta times wT from a: (loop 25). Each of these calcula-
tions requires N-(i-1) multiplications and, since there are N rows to process,
the total work during the postmultiplication by Hi is about 2 N (N - i). Since
transformations involving H2,. . . , H N - ~ have to be performed, the total num-
ber of multiplications done in the reduction to Hessenberg form is about (see
0.1.1)

5
3

N-1 N - 1 c [2(N - i)’ + 2 N (N - i)] = c (4N2 - 6Ni + 2i2) x - N 3 .

While each Householder transformation reduces an entire column to its Hes-
senberg form, a Givens rotation eliminates only one element at a time. For
each i (i = 2,. . . , N - l) , there are N - i elements to zero, and it requires
4[(N - (i - 2)] + 4 N multiplications to knock out each (see loops 5 and 10
of subroutine HESSQ in Figure 3.3.4). Thus the total number of multiplica-
tions required to reduce a general matrix to Hessenberg form using Givens
transformations is about

i=2 i=2

10
3

N-1

(N - i) [4(N - i) + 4N] x -N3
i=2

So, while both methods require O (N 3) work, the Householder method is twice
as fast, for large problems. However, for most problems, the time spent finding
the eigenvalues of the Hessenberg matrix (using, e.g., the QR method) will
be substantially greater than the computer time spent reducing the original
matrix to Hessenberg form; so replacing HESSQ by HESSH will speed up
DEGNON by a factor of much less than 2. There is nothing to be gained
by using Householder transformations to QR factor the upper Hessenberg
matrix, since only one element per column is zeroed.

3.4. ALTERNATIVE METHODS FOR GENERAL MATRICES 113

-

1
1

1
1 -

The elementary matrices Mij of Section 1.4 can also be used to transform
a general real matrix to Hessenberg form. Recall that Mij and Mail have the
forms

7

row i
M . . - 23 -

row j

- 1
1

1
1

T

-

1
1

1

-T 1
1

1
-

column
j

-

1
1

1
1

1
1 -

-

...

...

row i
M I ‘ = v

row j

Each transformation has the form A,+1 = MijlA,Mij . Note that premul-
tiplication by Mi$’ has the effect of subtracting T times row i from row j ,
while postmultiplication by Mij has the effect of adding T times column j to
column i . In Section 1.4 we were able to reduce A to upper triangular form
by premultiplying with Mij matrices, but now the postmultiplication threat
forces us to follow the tactics outlined in Section 3.3, and to use Mij to zero
aj+l rather than aji. If we choose T = uj,i-l/uj,+1, we shall introduce a
zero into row j , column i - 1 during the premultiplication stage and, since
the postmultiplication alters only column i , the zero introduced into column
i - 1 will survive the postmultiplication (Figure 3.4.3).

1

-T

ai,i-l aii . ail ..

. ajj ..

Figure 3.4.3

We can now proceed to reduce A to upper Hessenberg form, eliminating
subdiagonal elements column by column, beginning with the first column,
just as we did using Givens transformations. However, when we calculated
the elements c and s of Q i j using equations 3.3.2, there was no danger of a
zero denominator (unless the element to be eliminated was already zero, in
which case we simply skip the transformation); now we have a problem if
ai,i-1 is zero.

During Gaussian elimination we use the diagonal elements aii as pivots,
to “knock out” the elements below and, if one of the pivots is zero, we have
to switch rows to move a nonzero element to the pivot position. Here we are
essentially using the elements ai,+.1 on the first subdiagonal as pivots, to knock
out the elements below the first subdiagonal. Now, if ai,i-l = 0, then T = 00,

114 3. THE EIGENVALUE PROBLEM

and we must switch row i with a row 1 > i, to bring a nonzero element into the
pivot position. However, switching rows i and 1 is equivalent to premultiplying
A by a permutation matrix Pil (Pil is just the identity matrix with rows i and
1 switched), and so we must also postmultiply by 4;’ = Pil, which has the
effect of switching columns i and 1 . Fortunately, switching columns i and 1
(1 > i) does not change any elements in columns 1 to i - 1.

As we learned in our study of Gaussian elimination, it is a good idea
not to wait until a pivot becomes exactly zero to switch rows. It is bet-
ter to always bring the potential pivot (in this case the potential pivots are
ai,i-l, . . . , aN,i-l) that has the largest absolute value up to the pivot position
before knocking out the elements below the pivot. If all the potential pivots
are zero, this is not a problem; go on to the next column!

In summary, the reduction of a general full matrix to upper Hessenberg
form using Mij and Pi1 matrices is very much similar to Gaussian elimination
(which reduces A to upper triangular form) with partial pivoting, except for
two things. First, we use the elements on the first subdiagonal, rather than
those on the main diagonal, to knock out the lower elements. Second, every
time that we take a multiple -T of row i and add it to row j, we must then
add T times column j to column i and, every time that we switch rows i and
1 , we must also switch columns a and 1.

If subroutine HESSQ in Figure 3.3.4 is replaced by subroutine HESSM
in Figure 3.4.4, the reduction to Hessenberg form will be done by Mij and
Pi1 matrices. By comparing loops 5 and 10 of subroutine HESSQ with loops
20 and 25 of HESSM, we see that the transformation An+l = M:’AnMij
requires only a quarter as many multiplications as a Givens transformation,
and the same number of transformations are required. Thus this approach
is four times as fast as using Givens rotations, and twice as fast as using
Householder transformations. On the other hand, the Mij transformations
do not preserve symmetry; so, even if we begin with a symmetric matrix, the
result will not be a tridiagonal matrix.

There are also alternatives to the Q R method for extracting the eigenvalues
of an upper Hessenberg (or tridiagonal) matrix. The L R method [Rutishauser
19581 is closely related to the Q R method, but it is based not on the Q R de-
composition, but on the LU (or “LR”) decomposition (see 1.4.7). Recall
that one iteration of the Q R method involves premultiplication by several
elementary orthogonal matrices (usually Givens Qij matrices) to reduce A to
upper triangular form, followed by several postmultiplications by the inverses
(transposes) of the same elementary orthogonal matrices. Similarly, to do
one iteration of the L R method, we reduce A to upper triangular form using
Gaussian elimination, that is, we premultiply A by several elementary Mij
matrices, and then we postmultiply by the inverses of these same matrices.
Although the postmultiplications destroy the upper triangular structure cre-
ated by the premultiplications, the L R iteration, like the Q R iteration, usually
makes gradual progress toward triangular, or quasitriangular, form.

$3

3.4. ALTERNATIVE METHODS FOR GENERAL MATRICES 115

SUBROUTINE HESSM(A,N)
IMPLICIT DOUBLE PRECISION (A-H.0-2)

C DECLARATIONS FOR ARGUMENTS
DOUBLE PRECISION A(N,N)
INTEGER N
IF (N.LE.2) RETURN

C
C TO UPPER HESSENBERG FORM

USE Mij TRANSFORMATIONS TO REDUCE A

DO 35 1=2,N-1
C
C

5
C
C

C
C

10
C
C

15

C
C

20
C
C

SEARCH F R O M A(I.1-1) ON DOWN FOR
LARGEST POTENTIAL PIVOT, A(L,I-1)

BIG = ABS(A(I.1-1))
L = I
DO 5 J=I+l.N

IF (ABS(A(J,I-l)) .GT.BIG) THEN
BIG = ABS(A(J;I-I))
L = J

ENDIF
CONTINUE

IF ALL SUBDIAGONAL ELEMENTS IN COLUMN
1-1 ALREADY ZERO, GO ON TO NEXT COLUMN

IF (BIG.EQ.O.0) GO TO 35
PREMULTIPLY BY Pi1
(SWITCH ROWS I AND L)

DO 10 K=I-l,N
TEMP = A(L,K)
A(L.K) = A(1.K)
A(1.K) = TEMP

CONTINUE
POSTMULTIPLY BY Pil**(-l) = Pi1
(SWITCH COLUMNS I AND L)

DO 15 K=l.N
TEMP = A(K,L)
A(K,L) = A(K.1)
A(K.1) = TEMP

CONTINUE
DO 30 J=I+l,N

R = A(J,I-l)/A(I,I-i)
IF (R.EQ.O.0) GO TO 30

PREMULTIPLY BY Mij**(-l)
(SUBTRACT R TIMES ROW I FROM ROW J)

DO 20 K=I-l.N

CONTINUE
A(J,K) = A(J,K) - R*A(I,K)

POSTMULTIPLY BY Mi j
(ADD R TIMES COLUMN J TO COLUMN 1)

DO 25 K=l,N
A(K.1) = A(K.1) + R*A(K.J)

116

25 CONTINUE
30 CONTINUE
35 CONTINUE

RETURN
END

3. THE EIGENVALUE PROBLEM

Figure 3.4.4

In fact, the convergence Theorems 3.3.1 and 3.3.2 apply equally well to the
Q R or LR methods. Although the notation of Theorem 3.3.1 might suggest
that Qn-l is orthogonal, nowhere in the statement or proof of the theorem
is that assumed; so Qn-l could be a lower triangular matrix or any other
nonsingular matrix such that QLilAn-l is upper triangular.

If A is upper Hessenberg before the premultiplications reduce it to upper
triangular form, the postmultiplications will return A to its Hessenberg form
(cf. Figure 3.3.3). In fact, if A is tridiagonal, it is easy to see that it will remain
tridiagonal throughout the L R iteration; the Q R iteration, by contrast, only
preserves symmetric tridiagonal structures.

Figure 3.4.5 shows a subroutine LR that can be used to replace subroutine
QR in Figure 3.3.4. This subroutine uses the L R iteration to reduce an upper
Hessenberg matrix to triangular, or quasitriangular, form. Note that if, during
the premultiplication phase, a (nearly) zero pivot is encountered, we simply
give up. It is not really necessary to give up; we could interchange rows i and
i + 1, and then interchange columns i and i + 1 later, during the postmulti-
plication phase. However, the tridiagonal structure of a matrix is destroyed
by pivoting and, more importantly, we have observed that (surprisingly) the
L R iteration is more stable numerically if pivoting is not done.

Thus the calculation of the eigenvalues of a general real matrix can be
done in two phases: First the matrix is reduced to upper Hessenberg form,
in a finite number (O (N 3)) of computations, and then an iterative method is
used to compute the eigenvalues of the Hessenberg matrix. We see now that
for each phase there are available methods based on orthogonal reduction,
and methods based on Gaussian elimination. The Gaussian elimination-based
methods are faster; nevertheless, the orthogonal reduction methods are much
more widely used, even for nonsymmetric problems, where preservation of
symmetry cannot be cited as a reason for preferring orthogonal transforma-
tions.

The reason for this is that orthogonal transformations are more stable with
respect to roundoff error. We spent some time in Chapter 1 worrying about
roundoff error, because that is the only error that we have when A x = b is
solved using direct methods. In this chapter we have ignored the problem of
roundoff error because we have other errors to worry about when eigenvalue
problems are solved. The reader is referred to the book by Wilkinson [1965]
for a thorough treatment of this topic, and for a rigorous demonstration of
the superiority of orthogonal transformations. The heart of the matter is that

3.4. ALTERNATXVE METHODS FOR GENERAL MATRICES 117

an orthogonal transformation does not change the Euclidean norm (2-norm)
of a matrix, for, if B = QTAQ, where QTQ = I, then BTB = QTATAQ and
by Theorem 0.3.1, since BTB and ATA are similar, A and B have the same
2-norm. On the other hand, multiplication by nonorthogonal matrices can
cause large elements to arise (see Problem 11).

There a,re other alternatives as well, for finding the eigenvalues of an upper
Hessenberg matrix. One is the inverse power method (Section 3.5), which finds
only one eigenvalue at a time. Another obvious alternative is to use a good
nonlinear equation solver to find the roots of f(X) = det(A - XI) and, for
each given X, to evaluate this determinant directly. If we are prepared to
do complex arithmetic, there is no reason why we cannot find the complex
eigenvalues of A in this manner.

The fastest way to evaluate a determinant is to reduce the matrix to upper
triangular form, using ordinary Gaussian elimination. As long as we only add
multiples of one row to another, the determinant does not change and, since
the determinant of an upper triangular matrix is the product of its diagonal
entries, this product gives the determinant of the original matrix. (If we
have to switch rows, each row switch reverses the sign of the determinant.)
Now O (N 3) operations are required to reduce a full matrix to upper triangular
form, and thus to calculate its determinant, but it takes only O (N 2) operations
to reduce an upper Hessenberg matrix to triangular form, and O (N) to reduce
a tridiagonal matrix. Thus, once a matrix has been reduced to Hessenberg
(or tridiagonal) form, the function f (A) = det(A - X I) can be evaluated much
more economically, and this approach may be feasible if an efficient and robust
root finder is available.

SUBROUTINE LR(A .N ,ERRLIM)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

DOUBLE PRECISION A(N,N) .ERRLIM
INTEGER N

DOUBLE PRECISION SAVE(N)
IF (N.LE.2) RETURN

C DECLARATIONS FOR ARGUMENTS

C DECLARATIONS FOR LOCAL VARIABLES

C USE LR ITERATION TO REDUCE HESSENBERG
C MATRIX A TO QUASI-TRIANGULAR FORM

NITER = 1000*N
DO 35 ITER=l.NITER

C REDUCE A TO UPPER TRIANGULAR FORM USING
C GAUSSIAN ELIMINATION (PREMULTIPLY BY
C Mij**(-1) MATRICES)

IF (A(I+l.I) .EQ.O.O) THEN
DO 10 I=l,N-1

3. THE EIGENVALUE PROBLEM 118

C

C
C

C
C

5
10

C

C
C

15
20

C
C

25
C
C

30

R = 0.0
ELSE

IF PIVOTING NECESSARY, GIVE UP
IF (ABS(A(I,I)).LT.ERRLIM) GO TO 40
R = A(I+l,I)/A(I,I)

ENDIF
USE SAVE TO SAVE R FOR POST-
MULTIPLICATION PHASE

SAVE(1) = R
IF (R.EQ.O.0) GO TO 10

IF MATRIX TRIDIAGONAL, LIMITS ON K
CAN BE: K = I , 1+1

DO 5 K=I,N

CONTINUE
A(I+l,K) = A(I+l.K) - R*A(I,K)

CONTINUE

DO 20 I31,N-1
NOW POSTMULTIPLY BY M i j MATRICES

R = SAVE(1)
IF (R.EQ.O.0) GO TO 20

IF MATRIX TRIDIAGONAL, LIMITS ON K
CAN BE: K = I , 1+1

DO 15 K=l,I+l

CONTINUE
A(K.1) = A(K,I) + R*A(K.I+l)

CONTINUE
SET NEARLY ZERO SUBDIAGONALS TO ZERO,
TO AVOID UNDERFLOW.

DO 25 Iz1.N-1

CONTINUE
IF (ABS(A(I+l.I)).LT.ERRLIM) A(I+l,I) = 0.0

CHECK FOR CONVERGENCE TO "QUASI-
TRIANGULAR" FORM.

ICONV = 1
DO 30 Iz2.N-1

CONTINUE
IF (ICONV.EQ.1) REl"

IF (A(I.I-l).NE.O.O .AND. A(I+l,I).NE.O.O) ICONV = 0

35 CONTINUE

40 PRINT 45

RETURN
END

C HAS NOT CONVERGED IN NITER ITERATIONS

45 FORMAT (' ***** LR ITERATION DOES NOT CONVERGE *****I)

Figure 3.4.5

3.5. THE POWER AND INVERSE POWER METHODS 119

3.5 The Power and Inverse Power Methods

Often in applications we are only interested in one or a few of the eigenval-
ues of A-usually the largest or smallest. For example, only the smallest few
eigenvalues of the matrix displayed in Figure 3.1.1 are reasonable approxi-
mations to the eigenvalues of the partial differential equation eigenproblem
3.1.2; so only the first few eigenvalues hold any interest for us. (This is not
surprising, since the PDE eigenproblem has an infinite number of eigenvalues
X k l = (k2 + 1 2) 7 r 2 , k, 1 = 1,2, . . ., while the matrix eigenvalue problem has only
16.) In such cases, the power or inverse power methods, which quickly find
one eigenvalue at a time, may be more appropriate than the transformation
methods in Sections 3.2-3.4.

The power method is marvelously simple: We just pick a starting vector
vo and start multiplying it by the matrix A. The following theorem states
that, unless we are very unlucky in our choice of starting vector, the power
method will find the eigenvalue of A of largest modulus, provided only that
there is an eigenvalue of largest modulus.

Theorem 3.5.1. Suppose the matrix A has one eigenvalue XI, which is
greater in absolute value than all other eigenvalues, and let v,+1 = Av,.
Then, if the nonzero vectors vo and u are chosen randomly, uTvn+l/uTvn
will converge to XI, with probability one.

Proof: Let us first suppose A is diagonalizable, which will be true, for exam-
ple, if A is symmetric or has distinct eigenvalues. The proof for this special
case is much easier and more instructive, and it will motivate the proof for
the general case.

We assume, then, that A = SDS-', where D is a diagonal matrix con-
taining the eigenvalues of A in order of descending modulus, and so A" =
SD"S-'. If the first L diagonal elements of D are equal to XI (note that
the assumptions of Theorem 3.5.1 do not prevent A1 from being a multiple
eigenvalue; what must be avoided are unequal eigenvalues of equal absolute
values), then the fastest-growing components of D" are equal to A?. So we
divide D" by A;, take the limit as n -+ 00, and get

120 3. THE EIGENVALUE PROBLEM

Then, since A" = SD"S-', we have

Now G is not the zero matrix, because otherwise E = S-'GS would be zero
also, and it is not. Therefore the null space of G is a subspace of dimension
at most N - 1, and hence, if vo is chosen at random, the probability is one
that Gvo # 0. Then, if u is chosen randomly, the probability is one that it is
not perpendicular to Gvo; so uTGvo # 0. Then

uTGvo
uTGvo

A1 = A'. - - -

Now we have shown that uTvn+l /uTvn will (almost always) converge to the
eigenvalue XI, provided that A is diagonalizable.

If A is not diagonalizable, the proof follows the same pattern, but it is
more involved, and begins with A = SJS-I , where J is the Jordan canonical
form of A. It is known that any square matrix is similar to a matrix J of the

3.5. THE POWER AND INVERSE POWER METHODS

- x i 1
-

xi 1

(3.5.1 b)
xi 1

- xi -

121

form

(3.5. la)

and if Ji is 3 by 3, JP has the form

xi 1 0 A: nX1-l !p(n - I > X ~ - ~
nXT-l

A?

The structure for larger blocks is essentially clear from these two examples. If
Ji is cyi by a i , the fastest-growing component of JP, of order 0(nai-'A:), will
be in its upper right-hand corner. If we designate by J1,. . . , J L the largest
blocks (of size a by a) containing XI on the diagonal, then the fastest-growing
elements in all of J n are in the upper right-hand corners of J?, . . . , JF, and
they are of order O(na-'X;). So we divide J" by na-'A? and get

(3.5.2)

The diagonal elements of Ji (which are eigenvalues of the upper triangular
matrix J , and thus also of A) are all equal. The X i corresponding to different
blocks may or may not be equal. Now we form (cf. Theorem 0.1.4)

and look at an individual block J:. If Ji is 2 by 2, JF has the form (see
Problem 13 of Chapter 1)

122 3. THE EIGENVALUE PROBLEM

where E has the same block structure as J (3.5.la), and every Ei is a zero
matrix except E l , . . . , EL, which are nonzero only in their upper right-hand
corners. Then, from 3.5.2, since A" = SJ"S-', we have

Now, since E is a nonzero matrix, so is G, and therefore uTGvo is nonzero
with probability one again. So, even if A is not diagonalizable,

Now we have shown that uTvn+l/uTvn will (almost always) converge to the
eigenvalue X I , even if A is not diagonalizable.

We shall normally choose u = v, (there is nothing in the proof of Theorem
3.5.1 that prevents us from letting u vary with n). In Problem 12 it is shown
that, if A is symmetric, this is a particularly good choice for u.

Since, for large n, uTAvn = uTv,+l M X1uTv,, for (essentially) arbitrary
u, we conclude that Av, M X~V,. Thus, for large n,v, is an approximate
eigenvector corresponding to the eigenvalue XI.

It is clear from the proof of Theorem 3.5.1 that, if A1 occurs only in blocks
of size one (e.g., if it is a simple root or if A is symmetric), the convergence
of the inverse power method is exponential. In fact, the most slowly decaying
component in the limit equation 3.5.2 goes to zero as I X 2 / X l l n , where A2 is
the eigenvalue of second-largest modulus. Since the power method may not
converge at all when there are two eigenvalues of equal modulus, it seems
reasonable that convergence would be slowed by another eigenvalue of nearly
equal magnitude.

However, if, in the Jordan canonical form 3.5.1, A1 occurs in blocks of size
(Y > 1, the most stubborn elements go to zero much more slowly, like l /n .

Since the complex eigenvalues of a real matrix occur in conjugate pairs,
with equal absolute values, the assumptions of Theorem 3.5.1 are violated if
A is real and its largest eigenvalues are complex but, if 00 is real, it is hardly
surprising that the power iteration vn+l = Av, is unable to find complex
roots. However, Theorem 3.5.2 suggests a way to use the power method not
only to find complex roots but also to locate any eigenvalue of A.

Theorem 3.5.2. Suppose the matr ix A has one eigenvalue A, that is closer to
p than all other eigenvalues, and let (A -pI)v,+l = vn. Then, if the nonzero

3.5. THE POWER AND INVERSE POWER METHODS 123

vectors vo and u are chosen randomly, uTvn/uTvn+l + p will converge t o
A,, with probability one.

Proof: Since v,+1 = (A - p I) - l v n , by Theorem 3.5.1, uTv,+l/uTvn con-
verges to the eigenvalue of (A - p I) - l of largest modulus. Now the eigenvalues
of (A -PI)-’ are l / (A i - p) , where the X i are eigenvalues of A, and so the
largest eigenvalue of (A -PI)-’ is l/(Ap - p) . Thus uTv,+l/uTv, converges

If we again choose u = vn, we get the “shifted” inverse power iteration,

to l / (A , - p) , and uT~,/uTvn+~ + p converges to A,.

with its estimate A of A,:

n = 0 ,1 ,2 , . . . (3.5.3)

L
Note that we renormalize v,+1 each step, to avoid underflow or overflow.

If we take p = 0, the inverse power method Av,+l = v n allows us to
find the eigenvalue of A which is smallest in modulus (closest to 0) and,
if we choose p to be complex, we can even converge to complex eigenvalues,
provided that we are willing to do some complex arithmetic. Using the shifted
inverse power method we can find any eigenvalue of A, by choosing p to be
closer to the desired eigenvalue than any other. Since we do not usually know
exactly where the eigenvalues are, this process is somewhat like going fishing:
We throw out a p and catch whatever “fish” is nearest to p .

In fact, it is clear that the closer we choose p to the eigenvalue we are
fishing for, the faster the convergence. The largest eigenvalue (in modulus)
of (A -PI)-’ is l / (A , - p) , while the second largest is l / (A , - p) , where A,
is the next-closest eigenvalue (of A) to p. The ratio of the second-largest to
largest eigenvalue (of the iteration matrix (A - p I) - ’) , which governs the rate
of convergence, is then]A, -pl/lA, -p i , and moving p closer to A, will clearly
decrease this ratio and speed convergence.

In fact, this suggests that the following iteration, which updates p and sets
it equal to the current best approximation of A,, might locate A, even faster:

(3.5.4)

Indeed it does converge more rapidly, once p , is close to A,. However, the
constant-p algorithm 3.5.3 has two advantages that may offset this faster
convergence, at least in part. First, we can LU factor A - P I once, and then

124 3. THE EIGENVALUE PROBLEM

use it to solve each (A -pl)~,+~ = w, so that each iteration after the first,
we only do O (N 2) work. If we vary p, we have to refactor each iteration, and
refactoring requires O (N 3) operations, if A is a full matrix. Second, 3.5.3 has
the advantage that it is guaranteed to converge to the eigenvalue closest to p,
whereas 3.5.4 may converge to another (possibly unwanted) eigenvalue. Both
of these considerations suggest that the best strategy might be to fix p, for
several iterations between each update.

Naturally, 3.5.4 can be applied more efficiently after the original matrix
has been reduced through similarity transformations (Sections 3.3 and 3.4)
to upper Hessenberg or tridiagonal form, as then only O (N 2) or O (N) work,
respectively, is required to solve (A - p,l)w,+l = w,.

In Figure 3.5.2 a subroutine DPOWER is given which implements the
shifted inverse power method, with p , updated every IUPDAT iterations,
where IUPDAT is a user-supplied parameter. DPOWER allows p, and w, to
be complex, so that complex eigenvalue-eigenvector pairs can be found. The
system (A -p,l)w,+l = w, is solved using versions of DLINEQ and DRESLV
(CLINEQ and CRESLV) which have been modified to solve complex linear
systems. As shown in Figure 3.5.2, only the type statements of DLINEQ
and DRESLV had to be modified. The user supplies po (EIG) and wo (V)
although, if wo = 0 on input, it will be replaced by a starting vector of random
components. The iteration stops when ~w,+l M w,, where T w,v,/v,v,+1.
If we premultiply both sides of ~w,+1 % TY, by A - p,l, we see that this
stopping criterion is equivalent to Av, M (p, + T)w,, so that X = p, + T and
w, are an (approximate) eigenvalue-eigenvector pair.

Let us experiment with DPOWER, by applying it to the 5 by 5 non-
symmetric matrix 3.3.12. We tried various values for PO, with and without
updating p , and the results are reported in Table 3.5.1. In every case, we
input wo = 0, so that a random starting vector would be used. The location
of the eigenvalues of this matrix are shown in Figure 3.5.1, along with the
starting approximations po used.

These results confirm our expectations: Without updating, the shifted
inverse power method always converges to the eigenvalue nearest p and, the
closer p is chosen to an eigenvalue, the faster it converges. With updating,
convergence is generally more rapid, but not always to the eigenvalue nearest
po. With no updating, when we set p = 13, which is equally close to the two
eigenvalues (13.14 f4.942), v, oscillated indefinitely, and our estimate did not
converge to either eigenvalue.

When p is very close to an eigenvalue, A -PI is nearly singular; so it
might seem that the inverse power method would be plagued by roundoff er-
ror then, but such is not the case. w,+1 may be calculated inaccurately, but
it is sure to be large; so T E w~w,/w~w,+1 will be small, and X = p + T
will be close to the true eigenvalue. Note in Table 3.5.1 that when we set
p = 4.8798093, which is one of the eigenvalues as calculated by DEGNON
earlier (Section 3.3), DPOWER converges in a single iteration. The rou-

T T

3.5. THE POWER AND INVERSE POWER METHODS 125

Table 3.5.1
Shifted Inverse Power Method Example

Po Updating Converged to Iterations to
Frequency Convergence

10 + 10 i Never 13.14 + 4.94 i 25
1 3 + 5 i Never 13.14 + 4.94 i 5

7 i Never -4.58 + 6.94 i 30

4.8798093 Never 4.8798093 1

13 Never t did not converge +
10+ 10 i Each step 13.14 + 4.94 i 7
13 + 5 i Each step 13.14 + 4.94 i 4

7i Each step 13.14 + 4.94 i 12

tine also returns a good estimate of the corresponding eigenvector, namely,
(-0.29464, -0.63515, -0.26891,0.66035,0.03745). This illustrates the useful-
ness of DPOWER in calculating eigenvectors, once the eigenvalues are known.

With p = 13 + 5i, and with no updating (3.5.3), when our starting vector
vo was chosen exactly equal to this eigenvector of 4.8798093, we obtained the
sequence of eigenvalue approximations shown in Table 3.5.2.

Table 3.5.2
Iteration Eigenvalue Estimate

0 4.87980 + 0.00000 i
1 4.88013 + 0.00024 i
2 4.88091 + 0.02503 i
3 3.65013 + 1.08108 i
4 12.31745 + 5.11298 i
5 13.14311 + 4.93595 i
6 13.14065 + 4.93692 i
7 13.14066 + 4.93688 i
8 13.14066 + 4.93688 i
9 13.14066 + 4.93688 i

Since vo is an eigenvector of A corresponding to X = 4.8798093, it is not
surprising that the first few eigenvalue estimates are close to 4.8798093, even
though this is not the eigenvalue closest t o p = 13+5i. We can show that this is
one of the unlucky choices of vo which have Gvo = 0 (Problem 14). However,
note that after a few iterations the closest eigenvalue 13.14066 + 4.93688 i
takes over, and the iteration eventually converges to this eigenvalue, despite

126 3. THE EIGENVALUE PROBLEM

4.58+6.94*i

@7*i

~ 4 . 8 8

4.58-6.94*i

@I 0 + 1O*i

13 + 5*i a1 3.14+4.94*i

@l 3

13.14-4.94*i

mj
I

-5.00 -1.00 3.00 7.00 11.00 15.00
X

Figure 3.5.1
Locations of Eigenvalues (X) and Starting Points (a)

the unlucky choice of VO. Gv, will not remain exactly zero, owing to roundoff
errors, and eventually the dominant eigenvalue triumphs, as i t always will
when inexact arithmetic is done. Here is a case where the unstable growth of
small errors works to our advantage!

SUBROUTINE DPOWER(A,N,EIG,V,IWDAT)
IMPLICIT DOUBLE PRECISION (A-H.0-2)

COMPLEX*16 EIG .V(N)
DOUBLE PRECISION A(N,N)
INTEGER N, IWDAT

COMPLEX*16 VN(N) .VNPl(N) ,B(N.N) ,PN,R,RNUM,RDEN
INTEGER IPERM(N)

C DECLARATIONS FOR ARGUMENTS

C DECLARATIONS FOR LOCAL VARIABLES

C
C SUBROUTINE DPOWER FINDS ONE EIGENVALUE OF A, AND A CORRESPONDING
C EIGENVECTOR, USING THE SHIFTED INVERSE POWER METHOD.

3.5. THE POWER AND INVERSE POWER METHODS 127

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

ARGUMENTS

A

N

EIG -

-

-

V -

IUPDAT -

ON INPUT

THE N BY N MATRIX.

THE SIZE OF MATRIX A.

A (COMPLEX) INITIAL GUESS AT AN EIGENVALUE OF A,
AN EIGENVALUE. NORMALLY THE ONE CLOSEST

TO THE INITIAL GUESS.

A (COMPLEX) STARTING VECTOR AN EIGENVECTOR OF A,
FOR THE SHIFTED INVERSE POWER CORRESPONDING TO THE
METHOD. IF ALL COMPONENTS OF COMPUTED EIGENVALUE.
V ARE ZERO ON INPUT. A RANDOM
STARTING VECTOR WILL BE USED.

THE NUMBER OF SHIFTED INVERSE
POWER ITERATIONS TO BE DONE
BETWEEN UPDATES OF P. IF
IUPDAT=I. P WILL BE UPDATED EVERY
ITERATION. IF IUPDAT > 1000,
P WILL NEVER BE UPDATED.

5
C
C

10
15

C

DO 5 I=I,N

CONTINUE
IF (V(I).NE.O.O) GO TO 15

IF V = 0, GENERATE A RANDOM STARTING
VECTOR

SEED = N+10000

DO 10 I=l.N
DEN = 2.0**31-1.0

SEED = MOD(7**5*SEED,DEN)
V(1) = SEED/(DEN+l.O)

CONTINUE
CONTINUE

VNORM = 0.0
DO 20 I=l,N

NORMALIZE V, AND SET VN=V

128 3. THE EIGENVALUE PROBLEM

VNORM = VNORM + ABS(V(I))**2
20 CONTINUE

VNORM = SPRT(VN0RM)
DO 25 I=l.N

V(1) = V(I)/VNORM
VN(1) = V(1)

25 CONTINUE
C BEGIN SHIFTED INVERSE POWER ITERATION

NITER = 1000
DO 60 ITER=O.NITER

C
C

30

C
C
C

C
C

35

C

40

45

IF (MOD(ITER.IUPDAT) .EQ.O) THEN
EVERY IUPDAT ITERATIONS, UPDATE PN
AND SOLVE (A-PN*I)*VNPl = VN

PN = EIG
DO 30 I=l,N
DO 30 J=l,N

IF (1.EQ.J) THEN

ELSE

ENDIF
CONTINUE
CALL CLINEQ(B,N.VNPl,V,IPERM)

B(1.J) = A(1.J) - PN

B(1.J) = A(1.J)

ELSE
BETWEEN UPDATES, WE CAN USE THE LU
DECOMPOSITION OF B=A-PN*I CALCULATED
EARLIER, TO SOLVE B*VNPl=VN FASTER

CALL CRESLV(B,N.VNPl,V.IPERM)
ENDIF

CALCULATE NEW EIGENVALUE ESTIMATE,
PN + (VN*VN) / (VN*VNPl)

RNUM = 0.0
RDEN = 0.0
DO 35 I=l,N

RNUM = RNUM + VN(I)*VN(I)
RDEN = RDEN + VN(I)*VNPl(I)

CONTINUE
R = RNUM/RDEN
EIG = PN + R

VNORM = 0.0
DO 40 I=l,N

CONTINUE
VNORM = SQRT(VN0RM)
DO 45 I=l,N

CONTINUE

SET V = NORMALIZED VNPl

VNORM = VNORM + ABS(VNPl(I))**2

V(1) = Wl(I)/VNORM

3.5. THE POWER AND INVERSE POWER METHODS 129

C
C

50

C

55
60

65

C

C

IF R*VNP1 = VN (R = (VN*VN)/(VN*VNPl) 1,
ITERATION HAS CONVERGED.

ERRMAX = 0.0
DO 50 I=1,N

CONTINUE
IF (ERRMAX.LE.lO*SQRT(EPS)) RETURN

DO 55 1-l.N

CONTINUE

ERRMAX = MAX(ERRMAX,ABS (R*VNPl (I) -VN(I)) 1

SET VN = V = NORMALIZED VNP1

VN(1) = V(1)

CONTINUE
PRINT 65
FORMAT (' ***** INVERSE POWER METHOD DOES NOT CONVERGE *****'I
RETURN
END

SUBROUTINE CLINEQ(A,N,X,B.IPERM)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMPLEX*16 A(N.N) .X(N) ,B(N)
INTEGER N , IPERM (N)

COMPLEX*16 LJI,TEMP.SUM

DECLARATIONS FOR ARGUMENTS

DECLARATIONS FOR LOCAL VARIABLES

(rest of CLINEQ identical to DLINEQ, Figure 1.2.1)

SUBROUTINE CRESLV (A, N , X , C , IPERM)
IMPLICIT DOUBLE PRECISION (A-H,O-2)

COMPLEX*16 A(N,N) ,X(N) ,C(N)
INTEGER N , IPERM (N)

COMPLEX*16 LJ1,SUM

C DECLARATIONS FOR ARGUMENTS

C DECLARATIONS FOR LOCAL VARIABLES

(rest of CRESLV identical t o DRESLV. Figure 1.3.1)

Figure 3.5.2

130 3. THE EIGENVALUE PROBLEM

3.6 The Generalized Eigenvalue Problem

The matrix eigenvalue problem corresponding to Figure 3.1.1 was derived
using finite differences to approximate the partial differential equation eigen-
problem 3.1.2. An alternative method for reducing a PDE eigenproblem to a
matrix eigenvalue problem is the finite element method. To solve 3.1.2 using
the finite element method, we start by assuming that the eigenfunction U can
be written as a linear combination U M Cj zj@j(x,y) of M given linearly
independent basis functions @j . The @ j are almost always piecewise polyno-
mial functions of some sort, and they all satisfy @ j = 0 on the boundary, so
that U will satisfy the boundary condition regardless of how the coefficients
zj are chosen. Then (in the Galerkin version of the finite element method)
instead of requiring that U,, + U,, + XU be equal to zero identically, we only
ask that it be "orthogonal" to each basis function @i, in the sense that

I' @i(Uxz + U,, + XU) dx dy = 0 for i = 1,. . . , M ,

or

This can be written as

Az = XBz, (3.6.1)

where z = (~1,. . . , ZM), and the components of matrices A and B are

(3.6.2a)

Bij = lll@i@j dxdy. (3.6.2b)

The second formula for Aij was obtained from the first by integration by parts,
and using the fact that each @i is zero on the boundaries x = 0,x = 1, y = 0,
and y = 1.

Problem 3.6.1 is called a generalized eigenvalue problem. If B-' exists,
3.6.1 is obviously equivalent to B-'Az = Xz and could be solved by applying
the techniques discussed earlier to the matrix B-'A. On the other hand, if
B-' does not exist, 3.6.1 may not be equivalent to any matrix eigenvalue
problem. Consider, for example, the eigenvalue problem

[: :] [;] = A [: :] [; I .

3.6. THE GENERALIZED EIGENVALUE PROBLEM 131

This is equivalent to

= (1 - - (1 - E 0. I 1 - X 1 - X
1 - x 1 - X

0 = det

Since this equation is satisfied for any A, all complex numbers are eigenvalues
of A z = XBz, for this choice of A and B! This shows that the generalized
eigenvalue problem is fundamentally different from the usual matrix eigen-
value problem, when B-l does not exist. We shall not further discuss the
case where B is singular.

It might be thought that, if A and B are both symmetric, the eigenvalues
of the generalized problem have to be real, but this is not true. For example,
the reader can easily verify that the problem

[: :] [;] = A [: :I[;]
has complex eigenvalues, even though A and B are symmetric (B-IA is not
symmetric, however). However, if, in addition to requiring that A and B be
symmetric, we require that B also be positive-definite, then the eigenvalues
of the generalized problem are guaranteed to be real. For, if B is positive-
definite, we can find a nonsingular lower triangular matrix L such that B =
LLT (see 1.4.10), and then the problem A z = XBz = ALLT% is equivalent to

L - ’ A L - ~ (L ~ z) = X (L ~ Z)

or

L - ~ A L - ~ Y = XY, (3.6.3)

where y 5 LTz . Since A = AT, (L-lAL-T) = L-’AL-T, and so the matrix
in 3.6.3 is symmetric, and its eigenvalues X must be real.

In our example, A and B given by 3.6.2 axe clearly symmetric, and B is
also positive-definite (Problem 16) and therefore nonsingular. Thus we can
solve A z = XBa either as the matrix eigenvalue problem B-’Az = Xz or
in the form 3.6.3. Since L-lAL-T is symmetric and B-’A is generally non-
symmetric, 3.6.3 is the preferred form, because methods designed for general
nonsymmetric problems are less efficient and must assume the eigenvalues and
eigenvectors axe complex, even though in this case they are not.

Thus we could, for example, use DEGSYM (Figure 3.2.1) to solve 3.6.3.
Then the eigenvalues returned by DEGSYM are the eigenvalues of the original
problem Az = XBz, but the eigenvectors gi returned must be multiplied by
L-T (“back transformed”) to give the eigenvectors z i of the original problem.

A better choice for our problem might be the shifted inverse power method
(3.5.3 or 3.5.4), because (for reasons discussed in the last section) only the
first few eigenvalues are of interest and, in addition, A and B will generally
be band matrices, if the basis functions @i(z,y) axe chosen cleverly [Sewell

132 3. THE EIGENVALUE PROBLEM

2005, Section 5.111. According to Theorem 3.5.2, applied to the equivalent
problem I3-IA.z = Xz, if

(B - l A - pI)v,+l = V,

or

then

will converge to the eigenvalue X p of the generalized problem closest to p. It
can be shown that, when A and B are symmetric, the best choice for u is
u = Bv, [Sewell 2005, Section 4.111.

The fact that A and B, and thus A - pB, are band matrices obviously
makes it possible to calculate v,+l more efficiently.

3.7 Problems

1. Verify the assertion made in the proof of Theorem 3.2.1 that

where b.+, bii , and b j j are given by 3.2.3.

2. Verify the assertion made in the proof of Theorem 3.2.2 that 1 - h 5
exp(-h) for any positive h. (Hint: The two functions 1 - h and exp(-h)
are equal a t h = 0; compare their slopes for h 2 0.)

3. DEGSYM (Figure 3.2.1) uses the formula e k + l = e k - 2 ~ ; ~ to keep
up with the sum of squares of the off-diagonal elements. Explain why
this idea is somewhat dangerous from a numerical point of view. It
is not feasible to recalculate e k directly (by summing the squares) after
each individual transformation, but it might be reasonable to recalculate
e k directly after each complete cycle of transformations. DEGSYM
(FORTRAN version) has been written so that this can be accomplished
by moving a single statement. Which one and where should it be moved?

4. Because of the way DEGSYM chooses c and s, s may be close to one
even when the matrix has almost reached diagonal form, which means
that eigenvalues on the diagonal may be permuted each iteration up to
the very end. Modify DEGSYM so that this cannot happen, and test
your new routine on the matrix of Figure 3.1.1.

5. Verify the assertions made in the proof of Theorem 3.3.2, namely, that

3.7. PROBLEMS 133

a. the nonzero structure of a quasitriangular matrix is preserved when
it is multiplied by another quasitriangular matrix of the same struc-
ture (once you have established this, it follows that its structure is
preserved when multiplied by an upper triangular matrix-why?);

b. the nonzero structure of a quasitriangular matrix is preserved when
it is inverted (assuming that the inverse exists).

6. The assumptions that A is nonsingular and diagonalizable were useful
to simplify the proofs of Theorems 3.3.1 and 3.3.2. However, if

- 1 0 0 1 1 1 0 0

A = [-2 ;; 0 -i H I , . = [; ; ; 1 2 0 0 : I ,
0 0 0 0

J = [; ; ; 0 1 0 0 ;I.
verify that P-'AP = J, and explain why this shows that A is nei-
ther nonsingular nor diagonalizable. Nevertheless, verify that the Q R
method (use DEGNON in Figure 3.3.4) and the LR method (DEGNON
+ LR in Figure 3.4.5) both converge when applied to this matrix.

7. Modify DEGNON so that the Q R transformations take advantage of
the fact that A is symmetric (the required modifications are already
suggested in the comments). Then apply this modified version to the
matrix of Figure 3.1.1, which is symmetric. Compare the total computer
time with that used by the unmodified version.

8. Expand the determinant 3.3.9 of the example quasitriangular matrix,
and show that this determinant reduces to the factors shown in 3.3.10.
(Hint: Expand along the first column.)

9. Modify DEGNON to implement the shifted Q R iteration 3.3.11, with
u,, = an,,,, where m = N - mod(n/3, N) . In this way, the shift pa-
rameter is set cyclically to each diagonal element. Count the number of
QR iterations required when this modified version of DEGNON is ap-
plied to the matrix in Figure 3.1.1, and compare this with the number
of iterations used by the unshifted Q R version.

10. a. Reduce the following matrix to a similar upper Hessenberg matrix,

134 3. THE EIGENVALUE PROBLEM

using elementary matrices Mij (do calculations by hand):

1 -2 4 [;-; : i] .
-6 -1 -16 -6

b. Transpose this Hessenberg matrix (transposing does not change
the eigenvalues) and reduce this matrix to upper Hessenberg form,
using more elementary matrix transformations. As long as you do
not have to do any row switches, the zeros in the upper right-hand
corner will be preserved (if orthogonal transformations are used,
they will not). Thus the final result is a tridiagonal matrix with
the same eigenvalues as the original matrix. (Although for this
example row interchanges are not required for numerical stability,
normally they will be, and this approach will not work, in general.
In fact, it has been shown that it is impossible to reduce a general
nonsymmetric matrix to a similar tridiagonal matrix in a stable
manner.)

c. Use DEGNON to calculate the eigenvalues of the original matrix A,
the Hessenberg matrix, and the final tridiagonal matrix, to verify
that the eigenvalues have not changed.

11. Use a random number generator to generate the coefficients of a 50 by 50
nonsymmetric matrix. Find the eigenvalues using DEGNON, first with
HESSQ and QR called by DEGNON, and then with HESSM and LR.
Compare the execution times, and print out the final (quasitriangular)
matrix in each case. Note that the matrix produced by HESSM and LR
contains some elements that are very large compared with the diagonal
and subdiagonal elements, while the other matrix does not. Explain
why this is dangerous from a numerical point of view.

12. The nth power method iterate v, is equal to Anv0. I f A is symmetric,
then A = QDQT, where D is diagonal and Q is orthogonal, and so
v , = QDnQTvo. Use this formula to express

in a form that makes it apparent why this gives a more accurate ap-
proximation to XI than

uTvn+l
UTV,

does for arbitrary u.

3.7. PROBLEMS 135

13. If A is the 2 by 2 matrix

do several iterations (by hand) of the shifted inverse power method 3.5.3,
to find the eigenvalue of A nearest to p = 1. Verify that the error is
reduced each step by a factor of about IA, - pl/lA, - p i , where A, and
A, are the eigenvalues of A closest and next closest, respectively, to p .

14. Show that if v g is an eigenvector of A corresponding to an eigenvalue
other than A1, then Gvo = 0 , where G is defined in Section 3.5. (Hint:
Show that SJS-lvO = A i v o (i > 1) implies that the first La compo-
nents of S-lvO are zero, and thus E(S-’vo) = 0.)

Construct a counterexample that shows that Gvo = 0 does not neces-
sarily mean that v~g is an eigenvector of A.

15. Use DPOWER (Figure 3.5.2) to find an eigenvalue of the matrix A in
Problem 6, with

(a) po = 0.9 and no updating of p (EIG = 0.9, IUPDAT > 1000);

(b) po = 1.9 and no updating of p (EIG = 1.9, IUPDAT > 1000);

(c) po = 1.9 and updating of p every step (EIG =1.9, IUPDAT = 1).

In each case let DPOWER choose a random starting vector vo, and
print out the eigenvalue estimate each iteration. Why does the iteration
converge so slowly in test (b)? (Hint: Look at the Jordan canonical
form of A given in Problem 6.)

16. Verify that the matrix B defined by 3.6.2b is positive-definite. (Hint:
Show that

17. The “singular value decomposition” of an arbitrary M by N matrix is
A = UDVT, where U is an M by M orthogonal matrix, V is an N by N
orthogonal matrix, and D is an A4 by N diagonal matrix. The diagonal
elements of D are called the singular values of A.

a. First, let’s suppose A is a nonsingular square (N by N) matrix.
Even though A may be nonsymmetric, ATA is symmetric and
positive-definite, so there exists an orthogonal matrix V such that
VTATAV = D 2 , where D2 is diagonal with the (real and positive)

136

- - 5 7 3 4 - 8 -
5 8 3 6 8
3 -7 -3 -4 5 .

- 3 0 4 5 3
7 4 5 9 5

3. THE EIGENVALUE PROBLEM

c. If A is not square, or square and singular, ATA is still symmetric
and square, so there still exists an orthogonal matrix V such that
VTATAV = D2. But now the N by N diagonal matrix D will
not be the right size (if M # N) or will not have an inverse (if
A is square and singular), so the above approach will no longer
work. If D has only K nonzero (positive) elements, which we take
to be the first K for convenience, then let us define an M by N
diagonal matrix E that has all zero elements except that Eii = Dii
for i = 1, ..., K . Note that K cannot be larger than the minimum
of M and N (why?). Then the idea is still to find an orthogonal
matrix U such that U E = A V , so that UEVT = A. We can take
the first K columns of U to be equal to the corresponding columns
of A V , divided by Eii. Show that the first K columns of U then
form an orthonormal set.

d. Show that the last N - K columns of AV are all zero, and thus
whatever we put in the last M - K columns of U , U E = AV will
still hold. Thus it is just a question of extending the orthonormal
vectors in the first K columns of U to an orthonormal basis for all
of RM. Why is this always possible to do?

e. If A = U E V T , and ui is the ith column of U , TJT is the ith row of
V T , and Eii is the ith element of the diagonal matrix E , show that
A = xEl Eiiuiv:. If A is a large matrix with many zero or nearly
zero singular values Eii, we can throw away the corresponding small
terms in this series, leaving us with a more compact approximate
representation of A. If there are only L terms left after we discard
the smaller terms, then we have an approximation of the M by N

136 3. THE EIGENVALUE PROBLEM

eigenvalues of ATA. Show that U = AVD-l is orthogonal, and
that UDVT = A , so we have found a singular value decomposition
of A. Notice that the singular values are just the square roots of
the eigenvalues of ATA, which are positive if A is nonsingular, and
nonnegative for any A.

b. Find the singular value decomposition for the 5 by 5 nonsymmetric
matrix given below, by forming ATA and using DEGSYM (Figure
3.2.1) to find D2 and V , and thus U = AVD-'. Note that the
largest singular value is the 2-norm of A (see Section 0.3), and
show that the ratio of the largest to the smallest singular value
gives the condition number of A , for this norm.

3.7. PROBLEMS 137

matrix A which requires only L (M + N) words of memory, which
may be small compared to M N . If U and V were arbitrary, non-
orthogonal, matrices, this series truncation procedure might not
work. Why? This technique for data compression can be used to
store pictures compactly; for example, the use of SVD to compress
fingerprints is illustrated in Kahaner et al. [1989, p. 2241.

f. One of the singular values for the matrix in part (b) is close to
zero. Replace this small value in D by 0, recompute UDVT, and
compare with A.

18. Use hand calculations on the upper Hessenberg matrix

a. Do one Jacobi iteration, to zero Az,l .

b. Do one complete Q R iteration (i.e., reduce to upper triangular form
and then postmultiply).

c. Do one complete LR iteration.

Linear Programming

4.1 Linear Programming Applications

Linear programming applications often represent problems in economics, rather
than science or engineering. The following are illustrative of LP applications.

4.1.1 The Resource Allocation Problem

A factory produces two products: chairs and tables. They make a profit of $40
on each chair produced and $50 on each table. A chair requires the following
resources to produce: 2 man-hours, 3 hours of machine time, and 1 unit of
wood. The table requires 2 man-hours, 1 hour of machine time, and 4 units
of wood. The factory has 60 man-hours, 75 machine hours, and 84 units of
wood available each day for producing these two products. How should the
resources (man-hours, machine-hours, and wood) be allocated between the
two products in order to maximize the factory’s profit?

If we let c be the number of chairs produced per day and t the number of
tables produced per day, then this problem can be stated mathematically as

(4.1.1) maximize P = 40c + 50t

with the constraints that

2c-t 2t 5 60,

3 c + t 5 75,
c + 4 t 5 84,

and the bounds

138

4.1. LINEAR PROGRAMMING APPLICATIONS 139

The function to be maximized, 40c + 50t, represents the profit, and the con-
straints state that the total man-hours, machine-hours, and wood used cannot
exceed the amounts available. The bounds state the obvious facts that the
factory cannot produce a negative number of chairs or tables.

4.1.2 The Blending Problem

A feed company wants each feed bag that they produce to contain a minimum
of 120 units of protein and 80 units of calcium. Corn contains 10 units of
protein and 5 units of calcium per pound, and bonemeal contains 2 units of
protein and 5 units of calcium per pound. If corn costs 8 cents per pound and
bonemeal costs 4 cents per pound, how much of each should they put in each
bag, in order to minimize costs?

If we let c be the number of pounds of corn used per bag and b the num-
ber of pounds of bonemeal used per bag, then the problem can be stated
mathematically as

minimize P = 8c + 4b (4.1.2)

with the constraints that

10c+2b 2 120,

5c+5b 2 80,

and the bounds

The function to be minimized, 8c + 4 4 represents the cost per bag, and the
two constraints ensure that the total protein and calcium per bag equal or
exceed the stated minimum requirements.

4.1.3 The Transportation Problem

A bulldozer company has two warehouses and three stores. The first ware-
house has 40 bulldozers in stock and the second has 20. The three stores
have 25, 10, and 22 bulldozers, respectively, on order. If Cij is used to repre-
sent the cost to transport a bulldozer from warehouse i to store j , we know
that C11 = $550,C12 = $300,C13 = $400,C21 = $350,C22 = $300, and
c 2 3 = $100. Determine the routing that will satisfy the needs of the stores,
at minimum cost.

If we let Xij be the number of bulldozers transported from warehouse i to
store j , then the problem can be stated mathematically as

minimize 550x11 + 300x12 + 400x13 + 350x21 + 300x22 + 100x23 (4.1.3)

140 4. LINEAR PROGRAMMING

with the constraints that

and the bounds

The function to be minimized represents the total transportation cost. The
first two constraints state that the number of bulldozers leaving each ware-
house cannot exceed the warehouse capacity, and the last three constraints
state that the number of bulldozers arriving at each of the three stores must
be equal to the number ordered. (Actually, the number arriving at each store
must be at least as many as ordered. However, the minimum cost solution will
clearly not specify that we deliver more bulldozers than ordered to any store
so we can write the last three constraints as equalities rather than inequalities,
if we like.)

4.1.4 Curve Fitting

We want to find the straight line y = mx + b that best fits the data points
(l , l) , (2,3), (3,2), (4,3), and (5,4), in the &,-norm. That is, we want to
find m and b such that the maximum error

is minimized, where (x i , yi) represent the data points.
In other words, we want to find m, b, and E such that (mzi + b - yil 5 E for

all i, with c as small as possible. This problem can be posed mathematically
as

minimize E

with the constraints that

r n z i + b - y , < c (i = l , ..., 5),

(i = l , . . . ,5) . mxi + b - yi 2 - E

The constraints are equivalent to)mzi + b - yi) 5 E .

For (zi ,yi> as given above, the problem can be rewritten as

minimize Om + Ob + E (4.1.4)

4.2. T H E SIMPLEX METHOD, W I T H ARTIFICIAL VARIABLES 141

with the constraints that

- 1 m - b + e > -1,

- 2 m - b + ~ > -3,

- 3 m - b + ~ > - 2 ,

- 4 m - b + e 2 - 3 ,

- 5 m - b + 6 > - 4 ,

l m + b + c > l ,

2 m + b + E 2 3 ,

3 m + b + E > 2,

4 m + b + E 2 3 ,

5 m + b + E > 4.

Each of the above problems will be solved later in this chapter.

4.2 The Simplex Method, with Artificial
Variables

The linear programming problem that we shall solve is

maximize P c1x1 + . . . + C N X N (4.2.1)

with constraints

and bounds

X N 2 0.

Note that the constraint right-hand sides must be nonnegative; however, if bi
is negative, this is easily corrected by multiplying the constraint through by
-1.

The linear expression to be maximized, P = c1x1 + . . . + C N X N , is called
the objective function and points (X I , . . . , X N) that satisfy both constraints
and bounds are called feasible points. We want to find the feasible point or
points that maximize P.

142 4. LINEAR PROGRAMMING

The problem 4.2.1 is more general than it appears at first. If we want
to minimize a linear function P , we can simply maximize -P. Furthermore,
“less than or equal to’’ constraints, of the form

can be converted to LLequation” constraints, by introducing additional non-
negative ‘‘slack variables,” defined by

XN+i bi - (ai,lX1 f . . . + ai,NxN)

(so called because they “take up the slack” between ai,1x1+ . . . + a j , N x N and
its upper limit bi). The i th constraint then becomes

ai,lxl + . . . + U ~ , N X N + X N + ~ = bi.

Similarly, constraints of the form

ai,lxl + . . . + U ~ , N X N 2 bi (i = 1 , . . .)

can be converted to equation constraints by introducing slack variables

X N + ~ (ai,lx1 + . . . + U ~ , N X N) - bi.

In this case, the new equation constraints have the form

ai,lxl + . . . + U ~ , N X N - X N + ~ = bi.

In either case, the slack variables, like the other variables, are bounded below
by zero.

What the LP problem 4.2.1 reduces to is this: Of all the solutions (and
normally there are an infinite number of them) to Aa: = b which have non-
negative coefficients, find the one(s) that maximize cTz.

The simplex method [Dantzig 1951,19631 solves this problem by iteratively
moving from one feasible point to a better feasible point (“better” means the
objective function is larger there). However, finding a feasible point from
which to start the iteration is not easy, in general. Finding any solution to
Aa: = b with all coefficients nonnegative is not a trivial task-indeed, there
may not be any such solutions.

We shall use the method of artificial variables to find a starting feasi-
ble point. We introduce M additional “artificial” variables xN+1, . . . , X N + M ,

defined by

X N + ~ = bi - (ai,lxl + . . . + U ~ , N Z N) (i = 1 , . . . , M) .

Although they are defined in a way that reminds us of the slack variables,
their purpose is quite different. We shall now solve the related problem

maximize P = clxl + . - . + C N X N - (YXN+1 - ~. . - (YXN+M (4.2.2)

4.2. THE SIMPLEX METHOD, WITH ARTIFICIAL VARIABLES 143

with constraints

and bounds

where a is a very large positive number. Now there is no problem getting
started with the simplex method; we can use (01,. . . , O N , bl, . . . , b ~) as a
beginning feasible point, since bi >_ 0. But how does solving 4.2.2 help us
with 4.2.1, the problem that we really want to solve?

If the optimal solution to 4.2.2 has xN+1 = . . . = XN+M = 0, then this
solution is clearly also the solution to 4.2.1. (If there wyre a better solution
to 4.2.1, by appending X N + ~ = . . . = XN+M = 0 to that point we could get
a better solution to 4.2.2.) On the other hand, if the best solution to 4.2.2
has one or more nonzero artificial variables, we conclude that 4.2.1 allows no
feasible points. This conclusion follows from the fact that a will be taken to be
such a large number (in fact we shall computationally treat a as if it were the
symbol +m) that all feasible points of 4.2.2 with XN+l = . . . = XN+M = 0
give a better (higher) objective function value than any with nonzero (i.e.,
positive) artificial variables. Therefore, if the best feasible point of 4.2.2 has
some nonzero artificial variables, there must not exist any feasible points of
4.2.1. In other words, the coefficients of the artificial variables in the objective
function P are so large and negative that the penalty for retaining any nonzero
artificial variables will be such that they will be retained only if there is no
alternative.

Thus solving 4.2.2 will either give us the solution to 4.2.1, or else tell us
that 4.2.1 allows no feasible points.

Now we outline the simplex method, applied to 4.2.2. We combine the
equation P 5 clxl + . . . + C N X N - mN+1 - . . . - ~ X N + M and the constraint

144 4. LINEAR PROGRAMMING

equations into one linear system as follows:

I .
bl

bM

0

X N

xN+1

XN+M
P

(all bi 2 0). (4.2.3)

The M + 1 by N + M + 1 matrix, together with the right-hand side vector,
is called the “simplex tableau.”

Our job now is to find the solution(s) of the linear system 4.2.3 (normally
there will be many solutions, since there are N more unknowns than equa-
tions), with x1 2 0,. . . , ZN+M 2 0, which maximizes P. Because this makes
the explanation simpler, we shall assume that a is a specific large positive
number, such as lo2’. This works fine as long as all arithmetic is done ex-
actly, but, when we actually implement this algorithm on a computer, we shall
have to be more clever to avoid numerical problems.

The first step is to clear the a’s from the last row of 4.2.3. This can be
done by adding -a times the first equation to the last, then -a times the
second equation to the last, and so on. The resulting linear system, which is
equivalent to 4.2.3, is

r al, l ... a l , N 1 ... o 0 1
X N

xN+1

where PO = -a(bl + . . . + b M) and dj = -cj - a(a1,j + . . . + U M , ~) .

Now a solution to 4.2.4 is immediately obvious: (01, . . . , O N , b l , . . . , bn.r, PO).
This solution also satisfies the bounds x i 2 0 (i = 1 , . . . , N + M) , and so
(01,. . . , O N , b l , ~. . , b M) is a feasible point of 4.2.2. Feasible points with at
most M nonzero x-components are called extreme feasible points; therefore
this solution is also an extreme feasible point.

This particular solution, of the many that exist, was found by setting
2 1 , . . . , X N equal to zero and solving for Z N + ~ , . . . , X N + M , P. The variables
that are easy to solve for-because the corresponding columns of A form an

4.2. THE SIMPLEX METHOD, WITH ARTIFICIAL VARIABLES 145

identity matrix-are called the basis variables (P is normally not considered
part of the basis, however), and those that are set to zero are called the
nonbasis variables.

Currently, the basis variables are all artificial variables, but in each step of
the simplex algorithm we shall add one new variable to the basis and delete
one old variable. Then using the basic row operations described in Section
1.2 (multiply a row through by a nonzero constant, and add a multiple of one
row to another) we manipulate the linear system 4.2.4 into a new equivalent
form, in which a new solution can easily be extracted, by setting the nonbasis
variables equal to zero and solving for the new basis variables. The variables
to be added and deleted from the basis will be chosen in a manner that will
ensure that the new solution will satisfy the bounds z 2 0 , so that it is still
an (extreme) feasible point, and that the value of the objective function at
the new point is at least as good as at the previous point.

Concretely, the iteration proceeds as follows. The last equation in 4.2.4
can be rewritten

At the current point, the nonbasis variables 21,. . . , XN are all zero, so that
P = PO. If the dj are all positive or zero, we cannot improve on this value,
because 51,. . . , X N are only allowed to increase from their current values of
0, and so P can only be decreased from its current value of PO. Since we
cannot remain within the feasible region and increase P by moving in any
direction from the current point, this means that we have found a point ZL

that represents a local maximum of the objective function.
Does the objective function also attain its global maximum at z ~ ? The

answer is yes, for suppose there were another feasible point X G at which the
objective function is larger. Since both ZL and ZG are in the feasible region
(i.e., satisfy the constraints A z = b and bounds z 2 0) , it is easy to verify
that any point z = (1 - S)ZL + SZG (0 5 s 5 1) on the straight line connecting
ZL and X G also satisfies the constraints and bounds and is thus also feasible.
However, since the objective function is linear, it must increase linearly along
this straight line as we move from ZL t o 20; thus z~ cannot represent a local
maximum. For a general constrained optimization problem we may find local
maxima that do not represent global maxima but, when the constraints and
objective function are linear, this cannot happen. Thus, when all the d j are
nonnegative, we have found the global maximum (of 4.2.2).

On the other hand, if at least one dj is negative, we can improve on our
current solution. If there is more than one negative d j , we shall choose the
most negative one, d jp , but we could use any one of them (see Problem 10).
We can now increase P by increasing (from zero) the value of xjp while holding
the other nonbasis variables equal to zero. Of course, we want to remain in
the feasible region as we increase xjp; so the linear system 4.2.4, rewritten

146 4. LINEAR PROGRAMMING

below in more detail, must still be enforced:

... a l , j P ... a l , ~ 1 ... 0 ... 0 0
. . . . 1 .

.
. . . ai,jp . . . a i , ~ 0 ... 1 .._ 0 0

.
... a M , j p ... a M , N 0 ... 0 ... 1 0
_. . djp . . . d N 0 . . . 0 . . . 0 1

(4.2.5)

If the other nonbasis variables are all held equal to zero, we can see how the
basis variables vary with x j p by rewriting equations 4.2.5:

x N + i = bi - a i , j p x j p

x N + i = bi - a i j p x j p

X N + M = b~ - a M , j p x j p .

To remain in the feasible region, we must also make sure that none of these
basis variables goes negative as x j p is increased. Now, if all the elements
a l , j p , . . . , a M , j p in column j p of A are negative or zero, we can increase x j p

indefinitely, and none of the basis variables will ever become negative. Since
P + 00 as x j p + 00, this means we can stay within the feasible region and
increase the objective function to infinity. In this case we are finished and
must conclude that P has an unbounded maximum. (This is only possible, of
course, if the feasible region is unbounded.) Thus the original problem 4.2.1
also has an unbounded maximum, because the presence of artificial variables
can only decrease the maximum.

On the other hand, if at least one of a l , j p , . . . , U M , ~ ~ is positive, there is a
limit on how far we can increase x j p without permitting any basis variables to
go negative. If ai,jp is positive, we must stop increasing x j p when X N + ~ = 0,
that is, when x j p = b i / a i , j p . Since we cannot allow any variables to become
negative, we must stop increasing x j p when the first basis variable reaches
zero, that is, when

4.2. THE SIMPLEX METHOD, WITH ARTIFICIAL VARIABLES 147

where ip is the value of i that minimizes (b i /a i , j , such that ai,jP > 0) . (In
case of a tie, set ip equal to any one of these i.) In other words, x ~ + i , is the
first basis variable to reach zero as xjp increases, and it will be replaced in the
next basis by x j , (Figure 4.2.1). Note that, if bi, is zero, unfortunately, the
value of P will not actually increase this simplex iteration, since xj, cannot
increase past 0, but at least it will not decrease.

t i i i t
t 0 +-*-*-*-*

X1 ’ip ‘ N ’ xN+I xN+ip x N t M
I- Nonbasis variables --I I- Basis variables - I

Figure 4.2.1
xjp Stops Increasing When the First Basis Variable Reaches Zero

To calculate the new solution obtained by allowing xj, to become positive
(and thus to enter the basis) and forcing X N + ~ ~ to zero (and thus to exit the
basis), we shall perform some basic row operations on the simplex tableau
4.2.5. uip,jp is by assumption positive. Therefore we can take multiples of
the “pivot row” ip and add them to each of the other rows, to zero all other
elements in the “pivot column” j p . Then, after we divide row ip by uip,jp, the
system 4.2.5 has the equivalent form

u;,l . . . 0 ... 1 ... Y ... 0 0
.

. . . 1 . . . 0 ... Y ... 0 0
.

 ah,^ ... 0 ... aL,N 0 ... Y ... 1 0
d’, ... 0 ... dh 0 ... Y ... 0 1

(4.2.6)

Note that the ipth column of the identity has moved from column N + ip
to column jp, making it now easy to solve for x j p and not for X N + ~ , . Now
we could switch columns j p and N + ip, and switch the two corresponding

148 4. LINEAR PROGRAMMING

... Y ... 1 . . . o ... o 0 -
.

a&l ... Y ... a&N 0 ... 1 ... 0 0
.

. ._ Y _ _ . ah,N 0 ... 0 ... 1 0
d: ... Y ... d h 0 ... 0 ... 0 1 _

unknowns in the “unknowns” vector, producing

21
-

- b: - x N + i ~

X N
b’P . (4.2.7) xN+1 =

b‘M
- Pl - XcjP

This linear system is identical in form with the linear system 4.2.5 that we
started from on this step, but the names of the variables in the basis have
changed. As before, we can easily extract a solution to the linear system, by
setting the (new) nonbasis variables equal to zero and solving for the (new)
basis variables. In fact, the values of the new basis variables (and P = Pl)
can be read directly from the right-hand side vector, since the corresponding
columns of the tableau form an identity matrix.

However, it is not necessary to switch columns physically, to keep the
identity matrix in columns N + 1 to N + M. If the columns of the identity
matrix are scattered throughout the tableau, that is not a problem as long
as we keep up with where those columns are. We shall do this using a vector
BASIS, defined so that BASIS(i) gives the tableau column number that holds
the ith column of the identity. In other words. BASIS(l), -.., BASIS(M)
identify the variables in the current basis. Since the initial basis consists
entirely of artificial variables, we initialize BASIS(i) to N + i; then, when a
pivot aip,jp is used to knock out the other elements in column j p , column j p
will take on the form of the ipth column of the identity (and another column
will lose this form), so we set BASIS(ip) = j p .

We know that the bi are all still nonnegative, since they are equal to
the basis variables, and we took measures to ensure that no variables would
become negative. We also know from our previous analysis that PI is at least
as large as the previous objective function value Po. We have now completed
one iteration of the simplex algorithm, and the next step begins with the
tableau 4.2.6.

Let us summarize (without the complicating explanations) the simplex al-
gorithm as outlined above, starting with a tableau such as 4.2.5, with BASIS(i)
initialized to N + i, for i = 1,. . . , M .

(I) Find the most negative element in the last row, d jp . The column j p is

4.3. THE DUAL SOLUTION 149

called the pivot column. If there are no negative elements, we cannot
improve on the current solution; so go to step (IV).

(11) Move up the pivot column and for each positive element aidp, calculate
bi/ai,jp. The row on which the smallest such ratio occurs is called the
pivot row, ip, and aip,jp is the “pivot.” If there are no positive elements
in the pivot column, we conclude that the objective function (of 4.2.1)
has an infinite maximum, and we are finished.

(111) By elementary row operations, use the pivot row to knock out all other
elements in the pivot column, and reduce the pivot itself to 1. This
transforms column j p into the zpth column of the identity matrix and
destroys the zpth column that previously existed in another column; so
set BASIS(zp) = j p . Go to step (I) and start a new iteration.

(IV) If the basis variables still include any artificial variables, that is, if
BASIS(i) > N for any z, we conclude that the problem 4.2.1 has no
feasible solution. Otherwise, the optimal solution of 4.2.1 is obtained by
setting all nonbasis variables to zero and solving (trivially) for the basis
variables: if BASIS(i) = k, Xk = bi.

4.3 The Dual Solution

Consider again the LP problem 4.2.1, rewritten below in matrix-vector form:

maximize P = cTx (4.3.1)

with constraints

AX = b

and bounds

x 2 0.

The following problem is called the “dual” of this problem (4.3.1 is then called
the “primal” problem):

minimize D = bTy (4.3.2)

with constraints

ATy 2 c.

Note that there are no bounds in this dual problem.
We shall prove that the optimal objective function values for the primal

problem P,, and the dual problem Dmin are equal. First we prove the
following theorem.

150 4. LINEAR PROGRAMMING

Theorem 4.3.1. For any primal-feasible x and any dual-feasible y, bTy 2

Proof: b y = AX)^^ = xTATy 2 xTc. For the last step, we have used
both ATg 2 c and x 2 0.

If the dual has any feasible solution y, bTy will be an upper bound for
the primal objective function and, similarly, if the primal problem has any
feasible solution z, cTx will be a lower bound for the dual objective function.
Hence we have the following corollary.

If the primal problem has an unbounded maximum (+m),
then the dual problem has no feasible solution and, if the dual problem has an
unbounded minimum (-m), the primal problem is infeasible.

Before proving the main theorem connecting the primal and dual problems,
let us look at the simplex tableau in more detail. Let us reorder the columns of
the simplex tableau 4.2.3 and the corresponding unknowns so that the initial
tableau has the form

CTX.

T

W

Corollary

(4.3.3)

where xb,xa, and xn are vectors containing the final basis variables, the
artificial variables, and the other variables not in the final basis, and 1 =
(11,. . . , 1 ~) . We assume there are no artificial variables in the final basis
(even though the initial basis consists entirely of artificial variables); otherwise
the original problem 4.2.1 is infeasible. Of course, we do not know which
variables will be in the final basis until we have finished the simplex algorithm
(determining which variables are in the basis is the main task of the simplex
method) but, for our theoretical purposes, it is convenient to assume that the
variables destined to end up in the final basis are ordered after those that will
not be in the final basis.

Now to transform 4.3.3 into the final tableau we can use row operations
to reduce Ab to the identity matrix and -c;f to zero or, equivalently, we can
premultiply both sides of 4.3.3 by the A4 + 1 by A4 + 1 matrix

[c;i;l q .
This produces the final simplex tableau (see Theorem 0.1.4)

A; A, I A,' O] I:] = [c;fA;lb A,1b 1 . (4.3.4)
c:A,'A,-c: OT c;fA;' +alT 1

4.3. THE DUAL SOLUTION 151

Now we can prove the following theorem.

Theorem 4.3.2. If the primal problem is feasible and has a bounded max-
imum, the optimal solution to the dual problem is y* = AcTCb, and the
maximum primal objective jimction value Pma, is equal to the minimum dual
objective function value Dmin.

Proof: We first show that y* is dual feasible. We know that there can be
no negative entries in the last row of the final simplex tableau; otherwise the
simplex algorithm must continue. Therefore (see 4.3.4) c;fA,'A, - C: 2 OT
or, transposing both sides, AZAcTcb 2 c , and so

ATy* = [] [AiTcb] 2 [2] = c,

proving that y* is dual feasible.
Now the solution to the primal problem is (as we have already seen) found

by setting the nonbasis variables x , and x , to zero and solving for the ba-
sis variables and P in the final tableau 4.3.4, which gives 2, = 0,Xb =
A,'b,x, = 0, Pmax = c;fA,'b. By Theorem 4.3.1, for any dual-feasible
y, b 9 2 Pmax = c;fA,'b = 2/*Tb, and therefore I/* minimizes bTy over all
dual-feasible points, and Dmin = b y' = P,,,.

Note that, in the final tableau 4.3.4, the dual solution Y * ~ = cZA,'
appears in the last row, in the columns corresponding to artificial variables.
Thus both the primal and the dual solutions are readily available from the
final tableau.

As illustrated by the examples in Section 4.1, LP applications more often
come with inequality constraints than equation constraints. For example, a
resource allocation problem usually takes the form

T

T

maximize P = c T x (4.3.5)

with constraints

Ax 5 b

and bounds

x 2 0.

When slack variables s are added to convert the inequality constraints to
equation constraints, the problem can be put in the form 4.3.1, as follows:

maximize P = [c, oIT[x, s]

with constraints

152 4. LINEAR PROGRAMMING

and bounds

The dual of this problem is, according to 4.3.2,

T minimize D = b 9

with constraints

or, equivalently,

minimize D = bTy (4.3.6)

with constraints

and bounds

Now of what use is the dual solution? First, it is sometimes more conve-
nient to solve the dual than the primal (or vice versa). For example, if the
matrix A in 4.3.5 is M by N , M slack variables and M artificial variables
have to be added, and the simplex tableau 4.2.3 will be M + 1 by N + 2M + 1.
The matrix AT, which appears in the dual problem, on the other hand, is N
by M , and hence the simplex tableau will be N + 1 by M + 2N + 1. If M is
much larger than N , the primal tableau will be a much larger matrix than the
dual tableau, and thus it is more efficient to solve the dual problem. Other
LP problems that are much easier to solve in dual form are given in Problems
3 and 4.

More importantly, however, the dual solution has a physically meaningful
and useful interpretation. This interpretation comes from the fact that the
optimal objective function value of the primal, P,,, is equal to bTy*, or
bly; + . . . + b ~ & . Hence, if bj is changed by a small amount (small enough
that the final basis does not change, and thus y* = AbTca does not change),
and the other right-hand sides are held constant while the problem is re-solved,
then the new optimum will change by AP,, = y; Abj.

In other words, if we solve an LP problem such as 4.2.1 once, we shall
obtain the optimal solution and the value of P (which is P,,) at that point
but, by looking at the dual solution, we can determine which right-hand side(s)
should be increased if we want to obtain an even higher maximum.

It might sometimes be useful to know how the optimum depends on the
coefficients ai,j as well as how it depends on bj , but this type of “sensitivity

4.4. EXAMPLES 153

analysis” is not as easy to do. In typical LP applications, however, the con-
straint limits b j are more readily controlled than the matrix coefficients; so
how the solution depends on the right-hand side is of more practical interest.
For example, in the resource allocation problem given by 4.1.1, the number of
man-hours or the quantity of wood required to build a chair is not so easily
modified, but the number of man-hours available, or the quantity of wood
available, can be increased simply by hiring more workers, or buying more
wood.

4.4 Examples

Let us use the simplex method to solve the resource allocation problem in
4.1 . l , repeated here:

maximize P = 40c + 50t

with constraints

2c+2t 5 60,

3 c + t 5 75,

c + 4 t 5 84,

and bounds

c > o ,
t 2 0.

After adding slack variables, we have

maximize P = 40c + 50t + Osl + O S Z + 0.53

with constraints

2c + 2t + s1 = 60,
3c + t + 52 = 75,
c + 4t + s 3 = 84,

and bounds

(4.4.1)

For resource allocation problems, there is no need for artificial variables, since
the simplex tableau already contains an identity matrix, and the right-hand

154 4. LINEAR PROGRAMMING

1 0 0.667 0 -0.333 0
0 0 -1.833 1 0.667 0
0 1 -0.167 0 0.333 0] 0 0 18.333 0 3.333 1 I

side components are already positive. Hence a starting feasible point, namely,
(O,O, 60,75,84), is already available.

- -
C

2 2 1 0 0 0

(4.4.2)
@ 0 0 1 0

-40 -50 0 0 0 1
P - -

- -
C

t 12

;; = [;i!i j - 1380

P -

The most negative entry in the last row is -50; so the second column will be
the pivot column. Comparing 6012,7511, and 8414 (since 2, 1, and 4 are all
positive), we see that the minimum is 8414 = 21; so the pivot row will be the
third row, and the pivot element will be the 4 circled in 4.4.2. We shall use
this pivot to knock out all other elements in the pivot column. After this is
done, and the third row is divided by 4 to reduce the pivot to 1, the simplex
tableau has the form shown below:

- -
C

8 0 1 0 -0.5 0

-27.5 0 0 0 12.5 1 1050

(4.4.3)

The new basis consists of (s1, s2, t) (BASIS= {3,4,2}), since the correspond-
ing columns form an identity matrix, and we can get our new extreme feasible
point by setting c = 53 = 0 and solving for the basis variables. This gives

Now we are finished with the first simplex iteration and axe ready to start a
new one. The most negative entry in the last row is now in column 1, and the
minimum of 1811.5, 5412.75, 2110.25 is 18/1.5; so the new pivot element is in
row 1, column 1 (circled in 4.4.3). Row operations using this pivot produced
the new tableau shown below:

c = 0, t = 21, ~1 = 18, ~2 = 54, ~3 = 0, P = 1050.

The new basis consists of (c , s2, t) , and the new extreme feasible point that
we have found is c = 12, t = 18, s1 = O,sz = 21,s3 = 0, P = 1380. Now
all entries in the last row are nonnegative, so we have finished, and we have
determined that our factory should produce 1 2 chairs and 18 tables per day.

4.4. EXAMPLES 155

Furthermore, we can calculate that the dual of this problem is (18.333,
0.0, 3.333). This means that increasing the limit on the second constraint (in-
creasing the number of machine-hours available) will not increase our profits.
This is because producing 12 chairs and 18 tables per day does not exhaust
the machine-hours already available. However, the dual solution tells us that
profits will increase by $18.33 for each additional man-hour, and by $3.33 for
each additional unit of wood, made available to the factory, at least until the
increases force a change in the composition of the final basis. Indeed, when
the above problem was resolved with the number of units of wood available
increased by 1 (to 85) the optimal profit did increase by exactly $3.33, to
$1383.33.

It is instructive to look a t this problem, and the simplex iteration, geomet-
rically. Figure 4.4.1 shows the feasible region for the problem given by 4.1.1,
which consists of those points (c , t) satisfying the three constraints and the
two bounds. We started the simplex iteration at the point c = 0, t = 0 (also
s1 = 60, s2 = 75, s3 = 84). The first iteration moved us to another vertex of
the feasible region, c = 0, t = 21, and the second iteration moved US to the
vertex c = 12, t = 18, the optimal solution. We see here that at each iteration
of the simplex method we move from one vertex (extreme feasible point) to a
neighboring but better vertex.

Figure 4.4.1
Feasible Region for Resource Allocation Problem

Next let us apply the simplex method to the blending problem given by
4.1.2. To convert this minimization problem to the form 4.2.1, we negate
the objective function, and add slack variables to convert the inequality con-
straints to equation constraints:

maximize P = -8c - 4b + Osl + Osy

156

1 0 2 - 1 0 1 0 0

8 4 0 O a a l
5 5 0 -1 0 l o]

4 . LINEAR PROGRAMMING

s1 120

;; = [71.
a2

P - -

with constraints

r -
C

b

5 0 -1 0 l o] :;
a2

P

(iiJ 2 -1 0 1 0 0 s1

8 - 1 5 ~ 1 4 - 7 a 0 0 1

- -

1 0 ~ + 2b - ~1

5c + 5b

120

- 200Q
= [80 1 .

= 120,
- ~2 = 80,

and bounds

c 2 0,

b 2 0,

s1 2 0,
s2 2 0.

Now we do have to use artificial variables (a l , a2) to get started, because no
starting feasible point is readily available (setting c = b = 0 yields negative
values for s1 ,s2) . After adding artificial variables (cf. 4.2.3), the simplex
tableau is

For this problem, the artificial variables can be thought of as representing
very expensive packets of pure protein and pure calcium. We start by using
a1 = 120 packets of pure protein and a2 = 80 packets of pure calcium. If
we are still using any of these expensive packets in our optimal solution, that
means there is no way to fulfill the requirements with corn and bonemeal
alone. If we are not, then we have solved our original problem; the expensive
packets are no longer needed.

Before actually starting the first simplex iteration, we need to clear the
a’s from the last row. We shall not actually assign a value to Q but shall treat
it as an arbitrary large positive number. The starting tableau is

Since Q is large, 8 - 15a is the most negative entry in the last row; so the
first column is the pivot column. Comparing 120/10 and 80/5, we see that

4.5. A FORTRANSO PROGRAM 157

the first row must be chosen as the pivot row. After the row operations to
knock out the other elements in the pivot column, we have the next tableau:

-0.1 0 0.1
0.5 -1 -0.5

0 2 . 4 - ~ C I 0 .8 -0 .5~1 CI -0.8+ 1 . 5 ~ ~ 0 1

After another iteration we have
-
C

b

0 1 0.125 -0.25 -0.125 0.25
0 0 0.5 0.6 - 0 . 5 + a

1 0 -0.125 0.05 0.125

a2
P -

Since all entries on the last row are now positive, we have finished. The
last basis {c , b } no longer includes any of the artificial variables al, a2; so we
conclude that there is a solution, and it is c = 11, b = 5 (also s1 = s2 = 0
and P = -108). Thus the feed company should mix 11 pounds of corn with
5 pounds of bonemeal in each bag. Since the maximum of the negative of the
cost was -108 cents, the minimum cost, corresponding to this blend, is 108
cents.

4.5 A FORTRAN90 Program

A FORTRAN90 program, DLPRG, which solves the LP problem 4.2.1, using
the simplex algorithm described in Section 4.2, is shown in Figure 4.5.1. The
matrix TAB holds the simplex tableau matrix but, since the last column of
this matrix never changes from its initial form (0,. . . ,0, I) , there is no need
to store it, and the right-hand side vector is stored in this column instead.
The matrix TAB is M + 2 by N + M + 1 rather than M + 1 by N + M + 1,
because the J t h element of the last row of the tableau is stored in the form
TAB(M+l,J)+a*TAB(M+2,J). Thus we treat CI as an arbitrary large number,
rather than assigning it a specific large value. This is necessary to avoid serious
accuracy problems: Adding a large number to a small one obscures the small
one.

158 4. LINEAR PROGRAMMING

SUBROUTINE DLPRG(A,B,C,N,M,P,X,Y)
IMPLICIT DOUBLE PRECISION (A-H, 0-2)

C DECLARATIONS FOR ARGUMENTS
DOUBLE PRECISION A(M,N) .B(M) .C(N) ,P,X(N) ,Y(M)
INTEGER N,M

DOUBLE PRECISION TAB(M+Z ,N+M+l)
INTEGER BASIS(M)

C DECLARATIONS FOR LOCAL VARIABLES

C
C SUBROUTINE DLPRG USES THE SIMPLEX METHOD TO SOLVE THE PROBLEM
C
C MAXIMIZE P = C(l)*X(l) + ... + C(N)*X(N)
C
C WITH X(l), ..., X(N) NONNEGATIVE. AND
C
C A(l,l)*X(l) + . . . + A(l,N)*X(N) = B(1)
C

C A(M,l)*X(l) + . . . + A(M,N)*X(N) = B(M)
C
C
C
C ARGUMENTS

WHERE B(1) , . . . ,B(M) ARE ASSUMED TO BE NONNEGATIVE.

C ON INPUT ON OUTPUT
C
C
C A - THE M BY N CONSTRAINT COEFFICIENT
C MATRIX.
C
C B - A VECTOR OF LENGTH M CONTAINING
C THE RIGHT HAND SIDES OF THE
C CONSTRAINTS. THE COMPONENTS OF
C B MUST ALL BE NONNEGATIVE.
C
c c - A VECTOR OF LENGTH N CONTAINING
C THE COEFFICIENTS OF THE OBJECTIVE
C FUNCTION.
C
C N - THE NUMBER OF UNKNOWNS.
C
C M - THE NUMBER OF CONSTRAINTS.
C
C P -
C
C
c x -
C

- - - - - - - - - - - - - - - - -

THE MAXIMUM OF THE
OBJECTIVE FUNCTION.

A VECTOR OF LENGTH N
WHICH CONTAINS THE LP

4.5. A FORTRAN90 PROGRAM 159

C SOLUTION.
C
C Y A VECTOR OF LENGTH M
C WHICH CONTAINS THE DUAL
C SOLUTION.
C
C---
C EPS = MACHINE FLOATING POINT RELATIVE
C PREC IS1 ON
C BIGNO = A VERY LARGE NUMBER
c .

c .
DATA EPS,BIGN0/2.D-16.1 .D35/

C
C
C

DO 5 I=l,M
BASIS(1) = N+I

' 5 CONTINUE
C

DO 10 I=l,M+2
DO 10 J=l,N+M+l

TAB(1.J) = 0.0
10 CONTINUE

C
C

DO 15 I=l,M
DO 15 J=l,N

TAB(1.J) = A(1.J)
15 CONTINUE

C
C

DO 20 I=l.M
TAB(I,N+I) = 1.0
TAB(I,N+M+l) = B(1)

20 CONTINUE
C

DO 25 J=l,N
TAB(M+l,J) = -C(J)

25 CONTINUE
C
C

DO 30 I=l.M
TAB(M+2,N+I) = 1.0

30 CONTINUE
C

DO 35 I=l.M
DO 35 J=l,N+M+l

BASIS(l>, ..., BASIS(M> HOLD NUMBERS OF
BASIS VARIABLES. INITIAL BASIS CONSISTS
OF ARTIFICIAL VARIABLES ONLY

INITIALIZE SIMPLEX TABLEAU

LOAD A INTO UPPER LEFT HAND CORNER
OF TABLEAU

LOAD M BY M IDENTITY
AND LOAD B INTO LAST

ROW M+l CONTAINS -C,

TO RIGHT OF A
COLUMN

INITIALLY

ROW M+2 CONTAINS COEFFICIENTS OF
"ALPHA", WHICH IS TREATED AS +INFINITY

CLEAR "ALPHAS" IN LAST ROW

160 4. LINEAR PROGRAMMING

TAB(M+2.J) = TAB(M+2.J) - TAB(1,J)
35 CONTINUE

C SIMPLEX METHOD CONSISTS OF TWO PHASES
DO 90 IPHASE=1,2

C
C

C
C
C

C
C
C

40

45

C
C

50

C

C
C

55

60
C
C

IF (IPHASE.EQ.1) THEN
PHASE I: ROW M+2 (WITH COEFFICIENTS OF
ALPHA) SEARCHED FOR MOST NEGATIVE ENTRY

MROW = M+2
LIM = N+M

ELSE
PHASE 11: FIRST N ELEMENTS OF ROW M+1
SEARCHED FOR MOST NEGATIVE ENTRY
(COEFFICIENTS OF ALPHA NONNEGATIVE NOW)

MROW = M+l
LIM = N

IF ANY ARTIFICIAL VARIABLES LEFT IN
BASIS AT BEGINNING OF PHASE 11, THERE
IS NO FEASIBLE SOLUTION

DO 45 I=I,M
IF (BASIS(1I.GT.N) THEN

PRINT 40
FORMAT (' ***** NO FEASIBLE SOLUTION *****'I
RETURN

ENDIF
CONTINUE

ENDIF
THRESH = SMALL NUMBER. WE ASSUME SCALES
OF A AND C ARE NOT *TOO* DIFFERENT

THRESH = 0.0
DO 50 J=I,LIM

CONTINUE
THRESH = 1000*EPS*THRESH

CONTINUE

THRESH = MAX(THRESH,ABS(TAB(MROW, J)))

BEGINNING OF SIMPLEX STEP

FIND MOST NEGATIVE ENTRY IN ROW MROW,
IDENTIFYING PIVOT COLUMN JP

CMIN = -THRESH
JP = 0
DO 60 J=I,LIM

IF (TAB (MROW, J) . LT. CMIN) THEN
CMIN = TAB(MROW,J)
JP = J

ENDIF
CONTINUE

IF ALL ENTRIES NONNEGATIVE (ACTUALLY.
IF GREATER THAN -THRESH) PHASE ENDS

IF (JP.EQ.0) GO TO 90

4.5. A FORTRAN90 PROGRAM 161

C
C
C

FIND SMALLEST POSITIVE RATIO
B (*) /TAB(*, JP) , IDENTIFYING PIVOT
ROW IP

RATMIN = BIGNO
IP = 0
DO 65 I=l.M

IF (TAB (I, JP) . GT .THRESH) THEN
RATIO = TAB (I .N+M+l) /TAB (I, JP)
IF (RATIO.LT.RATMIN) THEN

RATMIN = RATIO
IP = I

ENDIF
ENDIF

65 CONTINUE
C IF ALL RATIOS NONPOSITIVE. MAXIMUM
C IS UNBOUNDED

IF (IP.EQ.0) THEN
PRINT 70

RETURN
70 FORMAT (' ***** UNBOUNDED MAXIMUM *****I)

ENDIF

BASIS(1P) = JP

AMULT = l.O/TAB(IP,JP)
DO 75 J=l,N+M+l

C ADD X(JP) TO BASIS

C NORMALIZE PIVOT ROW TO MAKE TAB(IP,JP)=l

TAB(IP,J) = AMULT*TAB(IP,J)
75 CONTINUE

C ADD MULTIPLES OF PIVOT ROW TO OTHER
C ROWS, TO KNOCK OUT OTHER ELEMENTS IN
C PIVOT COLUMN

DO 85 I=l.MROW
IF (1.EQ.IP) GO TO 85
AMULT = TAB(1,JP)
DO 80 J=l.N+M+l

TAB(1.J) = TAB(1.J) - AMULT*TAB(IP.J)
80 CONTINUE
85 CONTINUE

GO TO 55
C END OF SIMPLEX STEP

C END OF PHASE 11; READ X.P,Y FROM
C FINAL TABLEAU

90 CONTINUE

DO 95 J=l,N
X(J) = 0.0

95 CONTINUE
DO 100 I-1.M

K = BASIS(1)

162 4. LINEAR PROGRAMMING

X(K) = TAB(I,N+M+I)
100 CONTINUE

P = TAB(M+l,N+M+I)
DO 105 I=I,M

Y(I) = TAB(M+I.N+I)
105 CONTINUE

RETURN
END

Figure 4.5.1

The simplex calculations are divided into two “phases.” During the first
phase, the most negative entry in the last row of the tableau is determined by
looking only at the coefficients of a, that is, at row M + 2 of TAB, since 0 is
assumed to be so large we can neglect the other terms. Phase I ends when all
entries in row M + 2 are nonnegative, which means that we have solved 4.2.2
with c1,. . . , CN taken to be negligible (zero). If any artificial variables are
still nonzero in this solution, the original problem 4.2.1 must be infeasible.
Otherwise-if no artificial variables remain in the basis-this solution is a
feasible point for 4.2.1 and phase I1 continues from this point. Throughout
phase I1 the a-components of the artificial variables will equal one and the
0-components of the other (first N) variables will equal zero (see Problem 6) .
Therefore, during phase I1 we determine the most negative entry of the last
row of the tableau by looking at only the first N components of row M + 1
of TAB.

As discussed in Section 4.2, we do not actually switch the columns of TAB
every time that a new variable enters the basis, t o keep the identity in the
last M columns of the tableau. We simply keep up with where the columns of
this identity matrix are (and hence which variables are in the basis) through
the vector BASIS.

As shown in Section 4.2, the simplex method moves from one basis to an-
other and will only stop iterating when it determines either that the maximum
is unbounded or that it has reached the maximum (of 4.2.2, which is also the
maximum of 4.2.1 unless the latter has no feasible points). Now there are only
a finite number of possible bases, since there are only (N + M) ! / [N ! M !] ways
to choose which M of the N + M variables to include in the basis. Now, as
long as the value of P actually increases each simplex iteration, no basis can
be repeated, and hence (N + M) ! / [N ! M !] is an upper bound to the number of
iterations required to reach the correct solution (or correctly determine that
there are no feasible points, or that the maximum is unbounded). However,
we noted in Section 4.2 that, if bi, is zero, P will not change in that step
(nor does 5 , for that matter, although the basis does change). This raises
the possibility of “cycling,” where the algorithm returns to a basis that it
has seen earlier, and thus cycles forever through two or more different bases
corresponding to the same value of P.

4.5. A FORTRAN90 PROGRAM 163

[o o o l l l 1 1 1 0 0 0 q, :"-
A = 1 0 0 1 0 0 B = 25

0 1 0 0 1 0 0 0 10
0 0 1 0 0 1 0 0 22 -

,

4.5. A FORTRAN90 PROGRAM 163

In practice, cycling is a very rare phenomenon, but it can happen, unless
anticycling measures are taken [Gill et al. 1991, Section 8.31. Furthermore,
the upper bound of (N + M) ! / [N ! M !] iterations is astronomically pessimistic
in real applications; the number of steps required by the simplex method to
converge to the correct solution is very rarely more than a small multiple
of the number M of equations. This is because the method is designed to
continually move toward increasing P , and thus it never passes through the
vast majority of the extreme feasible points (see Problem 7). Again, however,
it is possible (with much effort) to construct examples where the number of
iterations varies exponentially with the problem size.

It is easy to see by examining DLPRG that the number of multiplications
done each simplex iteration is approximately M (N + M) . This is because,
when N and M are large, nearly 100% of the computer time will be spent in
loop 80, where a multiple of row IP is added to row I (this is the only doubly
nested loop executed each iteration).

Now let us use DLPRG to solve the transportation problem given by 4.1.3,
repeated below:

minimize P = 550x11 + 300x12 + 400x13 + 350x21 + 300x22 + 100x23

with constraints

x11 + xl2 + x13 5 4 0 ,
x2l + x22 + x23 5 20,

x11 + X2l = 25,
x 1 2 + x 2 2 = 10,

x13 f x 2 3 = 22,

and the bounds

x11 2 0, x12 2 0, x13 2 0, x21 2 0, x22 ? 0, x23 2 0.

This problem has inequality and equality constraints, but it can be put into the
form 4.2.1 by adding nonnegative slack variables to the first two inequalities.
Then we can call DLPRG with N = 8, M = 5 , and

and C = (-550, -300, -400, -350, -300, -lOO,O,O).
The solution returned by DLPRG is X11 = 25, X12 = 10, X13 = 2, X21 =

O , X 2 2 = O , X 2 3 = 20, P = -19550. This means that the optimal solution is
to ship 25 bulldozers from warehouse 1 to store 1, 10 from warehouse 1 to
store 2, 2 from warehouse 1 to store 3, and 20 from warehouse 2 to store 3,
at a total cost of $19,550.

164 4. LINEAR PROGRAMMING

The curve-fitting problem given by 4.1.4 does not require that the un-
knowns be nonnegative; so it does not appear at first to be solvable using
DLPRG. However, note that the problem in 4.1.4 is precisely the dual 4.3.2
of the problem in 4.3.1, if we take

-1 -2 -3 -4 -5 1 2 3 4 5
A = -1 -1 -1 -1 -1 1 1 1 1 1 1 , b = [$ [1 1 1 1 1 1 1 1 1 1

c = (-1,-3,-2,-3,-4,1,3,2,3,4), and 9 = (m , b , ~) .
Therefore we solve 4.3.1 using DLPRG, and the dual solution returned,

(0.5, 1.25, 0.75), tells us that m = 0.5, b = 1.25, and E = 0.75. Therefore,
y = 0 . 5 ~ + 1.25 is the best straight-line approximation to the data, in the
&,-norm, and the maximum error is then E = 0.75. This line is plotted in
Figure 4.5.2, along with the original data points.

X

0.00 1 .oo 2.00 3.00 4.00 5.00
X

Figure 4.5.2
Best Linear Fit to Data in &-norm

4.6. THE REVISED SIMPLEX METHOD 165

4.6 The Revised Simplex Method
Consider again the LP problem

maximize P = cTx

with constraints

A x = b (b > O)

and bounds

(4.6.1)

where A is an M by N matrix. Suppose the initial simplex tableau is written
in the form

[-c: A, --c; Ab :][;]=[U"l.
where xb and x, are vectors containing the variables that will be in the basis
and will not be in the basis, respectively, at a certain stage in the simplex
method computations. Then the simplex tableau at that stage will have the
form (multiply the first block "row" through by A;' and add c;f times the
first row to the second, as in 4.3.4);

In the implementation of the simplex method as described in Section 4.2, the
matrix A;' is never explicitly formed or stored; the entries in the tableau are
computed using elementary row operations. In the revised simplex method,
the matrix A;' as stored and updated every simplex iteration; it is the tableau
itself that is not explicitly formed. However, it is easy to see from 4.6.2 that,
as long as we keep up with which variables are in the basis and have A;'
available, the rest of the information contained in the tableau is computable.
We shall show that it is possible to keep A;' up to date, and to compute the
information required to take one simplex step, in an efficient manner.

At each step of the simplex method we must calculate the following:

(1) y = AbTcb and dT = y T A - cT. Then we inspect dT (the last row of

(2) w = Ab'ajp and xb = Ab'b, where ajp represents the jpth column of
A. Then we compare the ratios of the components of these two vectors
to determine the pivot row, i p .

the tableau) to determine which entry, d j p , is most negative.

166 4. LINEAR PROGRAMMING

(3) Finally, we must update A;'. The new Ab (which we shall call A;) and
the previous one are identical except that the ipth column of Ab has
now been replaced by ajp, since x j p has been added to the basis. Since
premultiplying ajp by A;' gives w , and premultiplying each of the other
(unchanged) columns of A; by A;' will give a column of the identity
matrix, we have A;'A', = E , where

E =

- 1 0 ... U l ... 0 0
0 1 ... u2 . - . 0 0

0 0 ... 'uip . . ' . O O

.

.
0 0 ... WM-1 ... 1 0
0 0 ... W M ... 0 1

The inverse of this elementary matrix is given by

- V M - I

vip
2

V i p

(Recall that 'uip is the simplex pivot element; so it is nonzero.) Therefore

A;-' = E-lA-' b -

After convergence of the simplex method, xb contains the values of the
basis variables (the nonbasis variables are zero), and y = AbTcb contains the
dual solution (see Theorem 4.3.2).

A subroutine that solves the LP problem 4.6.1 using the revised simplex
method is given in Figure 4.6.1. DLPRV assumes that the last M columns
of the matrix A contain an identity matrix (these columns may correspond
to slack variables or artificial variables). Thus we can begin with a basis
containing the last A4 variables, and with A;' = I. Note that 2 b is not
calculated directly from xb = Ablb each iteration but is rather updated using
the formula x ; = A;-'b = E-'A;'b = E-lXb, which requires only O (M)
work.

The usual simplex method applied to 4.6.1 requires about MN multiplica-
tions per iteration, because that is the operation count for the row operations

4.6. THE REVISED SIMPLEX METHOD 167

required to zero everything in the pivot column, above and below the pivot.
The operations per iteration done by the revised simplex code DLPRV can
be counted as follows (we ignore O (M) and O (N) computations):

d = yTA - cT (loop 25) (N - M) M multiplications, T

v = Ablajp (loop 40) M 2 ,
(loop 60) M2,

y = ArTcb (loop 70) M 2 .
A;-' = E-'AL'

This gives a total of M (N + 2M) . If M is small compared with N (frequently
the case), then the two algorithms are comparable in speed; otherwise it
appears that the ordinary simplex method is slightly faster. However, if the
matrix A is sparse the calculation of dT = yTA - cT does not really require
(N - M) M operations, if advantage is taken of the sparsity of A. Thus, if
M << N and A is sparse, the revised simplex method may be much faster and
may require much less memory than the ordinary simplex method. This is
important, because most large LP problems have sparse constraint matrices.
The usual simplex algorithm cannot take advantage of sparseness because,
even if the initial tableau is sparse, it will fill in rapidly as the algorithm
progresses.

SUBROUTINE DLPRV(DOTA,B , C ,N .M ,P .X , Y)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

DOUBLE PRECISION B(M) ,C(N) ,P,X(N) ,Y(M)
INTEGER N,M
EXTERNAL DOTA

DOUBLE PRECISION V(M) ,WK(M) ,XB(M) ,D(N) .ABINV(M,M)
INTEGER BASIS(M)

C DECLARATIONS FOR ARGUMENTS

C DECLARATIONS FOR LOCAL VARIABLES

c;

C SUBROUTINE DLPRV USES THE REVISED SIMPLEX METHOD TO SOLVE THE PROBLEM
C
C MAXIMIZE
C
C WITH X(l), ..., X(N)
C
C A (1.1) *X (1)
C

C A (M, 1) *I(1)
C
C THE LAST M COLUMNS
C B(1) ,. . . .B(M) MUST
C
C ARGUMENTS
C

NONNEGATIVE. AND

+ ... + A(l,N)*X(N) = B(1)

OF A MUST CONTAIN AN IDENTITY MATRIX, AND
BE NONNEGATIVE.

168 4. LINEAR PROGRAMMING

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

DOTA

B

C

X

Y

- NAME OF A USER-SUPPLIED FUNCTION:
DOTA(Z,J) SHOULD RETURN THE
DOT PRODUCT OF THE M-VECTOR Z
WITH COLUMN J OF A, FOR J .LE. N-M
(IDENTITY MATRIX ASSUMED IN LAST
M COLUMNS).

- A VECTOR OF LENGTH M CONTAINING
THE RIGHT HAND SIDES OF THE
CONSTRAINTS. THE COMPONENTS OF
B MUST ALL BE NONNEGATIVE.

- A VECTOR OF LENGTH N CONTAINING
THE COEFFICIENTS OF THE OBJECTIVE
FUNCTION.

- THE NUMBER OF UNKNOWNS (N>M)

- THE NUMBER OF CONSTRAINTS.

- THE MAXIMUM OF THE
OBJECTIVE FUNCTION.

- A VECTOR OF LENGTH N
WHICH CONTAINS THE LP
SOLUTION.

- A VECTOR OF LENGTH M
WHICH CONTAINS THE DUAL
SOLUTION.

C---
C EPS = MACHINE FLOATING POINT RELATIVE
C PRECIS ION
C BIGNO = A VERY LARGE NUMBER
c .

c
C INITIALIZE Ab**(-1) TO IDENTITY

DATA EPS,BIGNO/2.D-l6,l.D35/

DO 5 I=l,M
DO 5 J=l.M

ABINV(1.J) = 0.0
IF (1.EQ.J) ABINV(1.J) = 1.0

5 CONTINUE
C BASIS(1).BASIS(M) HOLD NUMBERS OF

4.6. THE REVISED SIMPLEX METHOD 169

C BASIS VARIABLES

C INITIAL BASIS = LAST M VARIABLES
DO 10 I=l,M

K = N-M+I
BASIS(1) = K

Y(1) = C(K)

XB(1) = B(1)

C INITIALIZE Y TO Ab**(-T)*Cb = Cb

C INITIALIZE Xb TO Ab**(-l)*B = B

10 CONTINUE
C THRESH = SMALL NUMBER. WE ASSUME SCALES
C OF A AND C ARE NOT *TOO* DIFFERENT

THRESH = 0.0
DO 15 J=l,N

THRESH = MAX(THRESH,ABS(C(J)))
15 CONTINUE

THRESH = 1000*EPS*THRESH
C BEGINNING OF SIMPLEX STEP

20 CONTINUE
C D**T = Y**T*A - C**T

DO 25 J=l,N
IF (J.LE.N-M) THEN

ELSE
D(J) = DOTA(Y,J) - C(J)

D(J) = Y(J-(N-M)) - C(J)
ENDIF

25 CONTINUE
C FIND MOST NEGATIVE ENTRY IN D.
C IDENTIFYING PIVOT COLUMN JP

CMIN = -THRESH
JP = 0
DO 30 J=l,N

IF (D(J) .LT.CMIN) THEN
CMIN = D(J)
JP = J

ENDIF
30 CONTINUE

C IF ALL ENTRIES NONNEGATIVE (ACTUALLY,
C IF GREATER THAN -THRESH) WE ARE THROUGH

IF (JP.EQ.0) GO TO 80

DO 40 I=l.M
C V = Ab**(-l)*Ajp (Ajp = COLUMN JP OF A)

DO 35 J=l,M

IF (JP.LE.N-M) THEN

ELSE

35 WK(J) = ABINV(1.J)

V(1) = DOTA(WK.JP)

V(1) = WK(JP-(N-M))

170

40
C
C

45
C
C

50

C

C
C

55

60

65
C

70
75

4 . LINEAR PROGRAMMING

ENDIF
CONTINUE

FIND SMALLEST POSITIVE RATIO
Xb(I)/V(I), IDENTIFYING PIVOT ROW IP

RATMIN = BIGNO
IP = 0
DO 45 I=l,M

IF (V(1) .GT.THRESH) THEN
RATIO = XB(I)/V(I)
IF (RATIO.LT.RATMIN) THEN

RATMIN = RATIO
IP = I

ENDIF
ENDIF

CONTINUE
IF ALL RATIOS NONPOSITIVE. MAXIMUM
IS UNBOUNDED

IF (IP.EQ.0) THEN
PRINT 50
FORMAT (I ***** UNBOUNDED MAXIMUM *****'I
RETURN

ENDIF

BASIS(1P) = JP
ADD X(JP) TO BASIS

UPDATE Ab**(-1) = E**(-l)*Ab**(-l)
Xb = E** (-1) *Xb

DO 55 J=l,M
ABINV(1P.J) = ABINV(IP,J)/V(IP)
XB(1P) = XB(IP)/V(IP)
DO 65 I=l,M

IF (I.EQ.IP) GO TO 65
DO 60 J=l,M

CONTINUE
XB(1) = XB(1) - V(I)*XB(IP)

ABINV(1.J) = ABINV(1,J) - V(I)*ABINV(IP.J)

CONTINUE

DO 75 I=l,M
CALCULATE Y = Ab**(-T)*Cb

Y(1) = 0.0
DO 70 J=l,M

K = BASIS(J)
Y(1) = Y(1) + ABINV(J,I)*C(K)

CONTINUE
CONTINUE

GO TO 20

80 CONTINUE
C

C

END OF SIMPLEX STEP

CALCULATE X

4.6. THE REVISED SIMPLEX METHOD 171

DO 85 J=l,N
X(J) = 0.0

85 CONTINUE
DO 90 I-l,M

K = BASIS(1)
X(K) = XB(1)

90 CONTINUE
C

P = 0.0
DO 95 I=l,N

P = P + C(I)*X(I)
95 CONTINUE

RETURN
END

CALCULATE P

Figure 4.6.1

In fact, when we use the revised simplex code DLPRV to solve 4.6.1, we
do not even have to store the constraint matrix in a FORTRAN array. The
constraint matrix is defined indirectly by the user, by means of a function
DOTA(Z,J), which returns the dot product of 2 with the J t h column of A ,
when an arbitrary vector 2 is passed to it. This approach assures that, when
A is sparse, the memory and execution time requirements of DLPRV are
reduced accordingly.

The transportation problem (e.g., 4.1.3) is clearly an L P problem for
which the revised simplex method is ideally suited. If NW is the number
of warehouses, NS the number of stores, WCAP(i) the capacity of warehouse
i , SREQ(j) the requirement of store j , COST(i,j) the cost per unit to ship
from warehouse i to store j , and X (i , j) the number of units shipped from
warehouse i to store j , then the transportation problem can be formulated as
follows:

Nw N s

minimize COST(^, j)x(i, j)
i = l j = 1

with
Ns

j = 1
X (i , j) 5 WCAP(i) for i = 1 , . . . , NW

and

Nw

X (i , j) = SREQ(j) for j = 1 , . . . , Ns
i=l

and bounds

(4.6.3)

172 4. LXNEAR PROGRAMMING

The number of unknowns is N = N w N s while the number of constraints is
only M = NW + Ns; so clearly M <(N for large problems. Furthermore, the
constraint matrix is extremely sparse, and the revised simplex method can
take good advantage of this sparsity.

Let us consider the two-warehouse three-store problem posed in Section
4.1.3. If we add slack variables to the first two (warehouse capacity) con-
straints, we have a problem of the form 4.6.1:

max - 550x11 - 300X12 - 400x13 - 35OXz1 - 300x22 - lOOXZ3 + OS1 + OSZ

with

x11 f XlZ + x13 + Sl = 40,
+ s2 = 20,

x11 + XZl = 25,
XlZ + x22 = 10,

x13 + x23 = 22,

XZl + x22 + x23

and

x11, X12, x13, x21, x22, x23, s1, sz 2 0.

However, DLPRV requires that the last M = 5 columns of the constraint
matrix contain an identity matrix, so that a starting feasible point is available.
We comply with this requirement by adding artificial variables to the last three
constraints, giving

maximize -550x11 - 3oox12 - 400X13 - 350x21 - 300x22
-100x23 + 05’1 + OSz - C Y A ~ - C Y A ~ - C Y A ~

with

x11 + x12 + x13 + s1 = 40,
x21 + x22 + x23 + s, = 20,

x11 + x21 + Ai = 25,
x12 + x 2 2 + A2 = 10,

x13 + x23 + A3 = 22,

and

It is possible to view the artifact of adding artificial variables as equivalent
to adding an “artificial warehouse” A, which has infinite capacity but is very
distant from the stores (the per unit cost, a, to transport from A to any store
is higher than the cost of any “real” route). If the minimum cost solution
specifies that we ship anything from the distant warehouse (i.e., if any of
the artificial variables are nonzero), then it must not be possible to fill all
the stores’ orders from the closer “real” warehouses. On the other hand, if

4.6. THE REVISED SIMPLEX METHOD 173

A1 = A2 = A3 = 0, we have found the minimum cost solution of the original
problem; the fictitious warehouse A has served its purpose-providing an
initial feasible point-and we no longer need it.

The transportation problem given by 4.1.3 was solved using the FOR-
TRAN subroutine shown in Figure 4.6.2, which calls the revised simplex code
DLPRV to solve a general transportation problem of the form 4.6.3. The
solution returned was (as in Section 4.5)

xi1 = 25,X12 = 1o,x13 = 2,x21 = o,x22 = o,x23 = 20,

CMIN = 19550.

Note that the constraint matrix A for a transportation problem has at most
two nonzero elements per column. Thus the function DTRAN2(Z,J) (Figure
4.6.2), which indirectly defines A by returning the dot product of the M-vector
2 and the J th column of A, has only to add two elements of 2 together each
time that it is called. If A were a full matrix, M multiplications would be
required.

Although their complexity puts them beyond the scope of this text, we
should mention that, in recent years, “interior” algorithms have emerged as
competitors of the simplex algorithm for solving LP problems. These algo-
rithms, which plunge through the interior of the feasible region rather than
moving along the boundary, received much attention in the early 1980s when
mathematicians proved that they could be used to solve arbitrary LP prob-
lems in “polynomial time”, that is, in O(N”) time, where a is a constant. Al-
though the simplex method also converges in polynomial time for all practical
problems, it is possible to construct examples where it requires exponential
time (O (a N)) to converge. At first, the simplex method codes still clearly
outperformed the interior codes, despite their theoretical inferiority, but now
interior algorithm codes have been developed which are competitive with the
best simplex implementations, or perhaps superior to them.

The reader who would like to learn more about interior algorithms is re-
ferred to Schrijver [1986] and to Problem 9.

SUBROUTINE DTRAN(WCAP,SREQ.COST.NW.NS.CMIN,X)

C DECLARATIONS FOR ARGUMENTS
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

DOUBLE PRECISION WCAP(NW) ,SREQ(NS) .COST(NW,NS) ,CMIN.X(NW,NS)
INTEGER NW,NS

DOUBLE PRECISION B(NW+NS) .Y (NW+NS) .C(NW*NS+NW+NS),
C DECLARATIONS FOR LOCAL VARIABLES

% XSOL (NW*NS+NW+NS)
C
C SUBROUTINE DTRAN SOLVES THE TFLANSPORTATION PROBLEM
C
C MINIMIZE CMIN = COST(l.l)*X(l,l) + . . . + COST(NW,NS)*X(NW.NS)

174 4. LINEAR PROGRAMMING

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

WITH X(1,1), ..., X(NW,NS) NONNEGATIVE, AND

X(1.1) + . . . + X(1,NS) .LE. WCAP(1)

X(NW,l)+ . . . + X(NW,NS) .LE. WCAP(NW)
X(1.1) + . . . + X(NW,l) = SREQ(1)

X(l,NS)+ ... + X(NW.NS) = SREQ(NS)

ARGUMENTS

WCAP -

SREQ -

COST -

NW

NS

CMIN -

-

-

X -

A VECTOR OF LENGTH NW CONTAINING
THE WAREHOUSE CAPACITIES.

A VECTOR OF LENGTH NS CONTAINING
THE STORE REQUIREMENTS.

THE NW BY NS COST MATRIX. COST(1,J)
IS THE PER UNIT COST TO SHIP FROM
WAREHOUSE I TO STORE J.

THE NUMBER OF WAREHOUSES.

THE NUMBER OF STORES.

THE TOTAL COST OF THE
OPTIMAL ROUTING.

AN NW BY NS MATRIX
CONTAINING THE OPTIMAL
ROUTING. X(1, J) UNITS
SHOULD BE SHIPPED FROM
WAREHOUSE I TO STORE J.

LOAD WAREHOUSE CAPACITIES AND STORE

4.6. THE REVISED SIMPLEX METHOD 175

C REQUIREMENTS INTO B VECTOR
DO 5 I=l,NW

5 B(1) = WCAP(1)
DO 10 I=l,NS

10 B(NW+I) = SREQ(1)
C
C NEGATIVE SIGN PRESENT BECAUSE WE WANT
C TO MINIMIZE COST

FIRST NW*NS ENTRIES IN C ARE -COST(I,J).

K = O
CNORM = 0.0
DO 15 I=l.NW
DO 15 J=l.NS

K = K+l
C(K) = -COST(I,J)
CNORM = MAX(CNORM,ABS(C(K)))

15 CONTINUE
C NEXT NW COSTS ARE ZERO, CORRESPONDING
C TO WAREHOUSE CAPACITY SLACK VARIABLES

DO 20 I=l,NW
K = K+l
C(K) = 0.0

20 CONTINUE
C LAST NS COSTS ARE LARGE AND NEGATIVE,
C CORRESPONDING TO "ARTIFICIAL WAREHOUSE"
C TRANSPORTATION COSTS

ALPHA = 2*CNORM
DO 25 I=l.NS

K = K+l
C(K) -ALPHA

25 CONTINUE
C USE REVISED SIMPLEX METHOD TO SOLVE
C TRANSPORTATION PROBLEM

C IF ANY ARTIFICIAL VARIABLES LEFT, THERE
C IS NO FEASIBLE SOLUTION

CALL DLPRV(DTRAN2,B.C.N.M.P.XSOL.Y)

DO 35 I=l,NS
K = N-NS+I
IF (XSOL(K) .NE.O.O) THEN

PRINT 30

RETURN
30 FORMAT (' ***** NO FEASIBLE SOLUTION * * * * * I)

ENDIF
35 CONTINUE

C FORM OPTIMAL ROUTING MATRIX. X
CMIN = -P
K = O
DO 40 I=l.NW
DO 40 J=l,NS

176 4. LINEAR PROGRAMMING

K = K+l
X(1.J) = XSOL(K)

40 CONTINUE
RETURN
END

FUNCTION DTRAN:!(Z,J)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION Z(*)
COMMON /CTRAN/ W.NS

JW (J-l)/NS + 1
JS = MOD(J-1,NS) + 1
DTRAN2 = Z(JW) + Z(NW+JS)
RETURN
END

C DTRANZ=DDT PRODUCT OF 2 AND COLUMN J OF A

Figure 4.6.2

4.7 Problems

1. Solve the following LP problems using the simplex method and hand
calculations. Use artificial variables only when necessary. Graph the
feasible regions in the x-y plane,

a. Maximize P = 33: + 4y
with constraints

X + Y 53,
2 x + y 5 4,

and bounds

x 2 0,

Y 2 0-

b. Minimize P = 3s + 4y
with constraints

X + Y 2 3,
2 x + y 2 4,

and bounds

4.7. PROBLEMS 177

c. Maximize P = 3x + 4y
with constraints

X + Y L 5,
2x+ y 5 4,

2 2 0,

Y 1 0-

d. Maximize P = 3x + 4y

and bounds

with constraints

X + Y L 3,
2 x + y 2 4,

and bounds

x 2 0,

Y L 0.

2. Write the dual problem for

maximize P = c1x1 + . . . + CNXN

with constraints

and bounds

21 2 0,

3. The problem of minimizing IIAz - bll,, where A is an M by N matrix,
can be posed as an LP problem:

minimize P = c

178

N

C a i , j z j - bi
j=1

with constraints

5 €i (i = 1 , . . ., M) .

4 . LINEAR PROGRAMMING

Show that this LP problem can be put into the form

minimize P = (0 , ~) ~ (z , 6)

with constraints

where 1 = (1 1 , . . . , 1 ~) . Since the variables are not required to be
nonnegative, we cannot solve this LP problem as it stands. However,
find another problem whose dual solution is the solution to this problem.

4. The problem of minimizing ((Az - bill, where A is an M by N matrix,
can also be posed as an LP problem

minimize P = €1 + . . . + E M

with constraints

Show that this LP problem can be put into the form

minimize P = (0, ~)~(z, E)

with constraints

[-t :I[:]+;]-
Find a problem whose dual solution is the solution to this problem.

5. Find the straight line y = mx + b that best fits the data points of
the example in Section 4.1.4 in the L1-norm. Use subroutine DLPRG
(Figure 4.5.1) to solve the LP problem. Plot the computed line along
with the original data points. (Hint: See Problem 4).

4.7. PROBLEMS 179

6 . Verify the assertion made in Section 4.5 that, during phase 11, the
a-components of the artificial variables will equal one, while the a-
components of the other variables will equal zero. (Hint: Argue that
the tableau will have the form shown in Figure 4.3.4 throughout phase
11.)

7. Set b = (1 , . . . , 1) and use a random number generator with output in
(0 , l) (e.g., the FORTRAN90 routine RANDOM-NUMBER) to generate
the coefficients of an M by M matrix A, and the M-vector c in the
resource allocation problem

maximize cTx

with constraints and bounds

Modify DLPRG to output the total number of simplex iterations to
convergence, and use this program to solve the problems generated with
M = 10,20,30,40,50. What is the experimental dependence on M
of the number of iterations? For each M , compute (3M)!/[M!(2M)!],
the number of possible bases, and notice that the simplex method only
examines an extremely small percentage of them. (There will be 3M
unknowns in the tableau, because slack variables must be added, and
DLPRG will use artificial variables even though they could be avoided
for this problem.)

8. Compare the total memory requirements and operation counts (per it-
eration) for DLPRG and DTRAN/DLPRV, applied to a transportation
problem with NW warehouses and NS stores. Assume Nw = N s , and
both are large.

9. If we can find an x that is primal feasible (Ax = b , z 2 0), and a
y that is dual feasible (ATg - z = c, z 2 0) , such that cTx = bTy,
explain why Theorem 4.3.1 means that x must be the primal solution
and 2/ must be the dual solution. Show that for a primal feasible x and
dual feasible y, c T x = bTy is equivalent to x T z = 0, and thus (since
x and x are nonnegative) xizi = 0, for i = l , . . . , N . So the linear
programming problem 4.3.1 can be reduced to finding a solution of the
nonlinear system:

A X - b = 0,

A T g - z - c = 0,

X ; Z ~ = 0, i = 1 , . . . , N ,

180 4. LINEAR PROGRAMMING

with all components of x and z nonnegative. Show that the number of
equations is the same as the number of unknowns in this system.

Interior point methods attempt to solve this nonlinear system, while
keeping x and z nonnegative. Notice that solving a nonlinear system of
K equations and K unknowns normally takes O(K3) operations (what
is K here?), so it is not unreasonable to expect that a good algorithm
could solve this problem-even with the constraints-with O (K 3) work.

10. Using the most negative element in the last row to choose the pivot col-
umn is a reasonable strategy, but as the folIowing example illustrates,
it is not always the best strategy.

Maximize P = 32 + 2y

with constraints

2 x + y 5 2

and bounds

Solve this problem twice using the simplex method. The first time pick
the most negative element (-3) in the last row on the first iteration;
the second time, try choosing the other negative element (-2). You will
find the same solution each time, of course, but which requires fewer
iterations?

This example suggests an alternative strategy for picking the pivot col-
umn. One could inspect each column j p for which d j p < 0, find the
corresponding pivot row ip in the usual way, and compute the resulting
increase in P, -djpbiplaip,jp, and choose the pivot column that maxi-
mizes this projected increase. The increase in work associated with this
strategy is about M times the number of negative elements in the last
row, so it could be nearly as much as doing an extra iteration, and it is
not likely that it will decrease the number of iterations enough to pay
for the extra cost.

11. The dual solution for the transportation problem 4.1.3 is found to be
y = (0,300, -550, -300, -400). Why is it obvious from the “physical”
interpretation of the dual solution, given the solution reported in Section

4.7. PROBLEMS 181

4.5, that y1 would be O? Why could you also have predicted that y3
would be -550?

12. The curve-fitting problem 4.1.4 had to be solved in Section 4.5 as the
dual of another problem, because it does not have zero bounds on the
variables and thus cannot be solved by DLPRG as it stands. An alter-
native approach is to define m’ = m + d, b’ = b + d, where d is large
enough to ensure that m’ and b’ are positive at the optimal feasible
point, so that the bounds m’ 2 0, b’ 2 0 can be added without chang-
ing the solution. Rewrite 4.1.4 in terms of the new variables m’, b‘, e,
with zero bounds on all three variables, and solve the modified problem
directly using DLPRG (Figure 4.5.1), then subtract d from m’ and b’ to
obtain the optimal m, b. For this problem, d = 10 will be large enough.
Remember that DLPRG requires that the components of the B vector
be nonnegative.

Notice, however, that this approach requires solving a problem with a
10 by 13 coefficient matrix, while in Section 4.5, A was only 3 by 10.

5

The Fast Fourier
Transform

5.1 The Discrete Fourier Transform

Although this topic is not normally covered by texts on computational linear
algebra, the fast Fourier transform is really just an algorithm that calculates
a certain matrix-vector product efficiently, and thus it seems appropriate to
study it here.

The discrete Fourier transform of a complex N-vector f is y = Af, where
A is a complex N by N matrix with components ak,j -
exp[iZ.rr(k - l) (j - l) /N](i = a). In other words,

-

For a fixed j , the vector exp[i2r(k - l) (j - l)/N] varies periodically with k ,
cycling through j - 1 complete periods as Ic goes from 1 to N. Thus we can
think of f j as the amplitude of that component of y which has the frequency
j - 1, where the frequency is defined as the total number of cycles.

Suppose, for example, that the temperature at a certain weather station is
recorded every hour for 100 years, with the results stored in the vector y (yk is
the temperature after k hours). If the data points (k , y k) are plotted, a daily
cycle (period = 24 points) and an annual cycle (period = 24 x 365 points)
will be easily observed. If we transform the vector y (in the “time domain”)
into the vector f (in the “frequency domain”) using f = A-’y, f will have
one sharp peak corresponding to a frequency of 100 (100 complete cycles over
the course of the 100-year recording period) and another peak corresponding
to a frequency of 100 x 365 (36,500 cycles over the course of the data). In

182

5.2. THE FAST FOURIER TRANSFORM 183

other words, f101 and f36,501 will be large (in magnitude-the fi are complex
numbers). There might be other smaller peaks corresponding to less apparent
cycles (perhaps one coinciding with the 11-year sunspot activity cycle). These
minor periodic tendencies, if they exist, would be much easier to spot in the
frequency domain than in the time domain of the original data.

We can explicitly display the components of the matrix Awl:

>. = Nexp 7 - N
i27r(j - 1)(1- 1)

(5.1.1)

Note that aj,l = (l/N)Gj,l, and A-' = A/N, where the overbar means com-
plex conjugate. Since f = A-'y implies f = A(jj/N), this means that we
can calculate the inverse discrete Fourier transform of y by taking the forward
transform of j j /N and then conjugating the result.

To verify 5.1.1, let us multiply A by this matrix to see whether we get the
identity matrix. The (k, 2)th component of the product is

1 i 2 ~ (k - l) (j - 1)
N N

j=1 z a b , j a j , l = j=1 c z e x p (N N

1 i2n(j - l)(k - 1) N

= x z e x P (N
j= 1

1
N
-(1+ p + p2 + . . . + p N - l) ,

where ,B = exp[i27r(k - Z)/N]. If k = 1,p will be 1, and the sum will be
N/N = 1. Otherwise, if k # I , the sum will be 1/N[(PN - 1)/(/3 - l)] = 0,
since ,BN = 1, while /3 # 1. Thus the product matrix is the identity, and so
5.1.1 gives the components of A-' correctly.

The discrete Fourier transform can be used not only to identify periodic
tendencies but also to filter out high-frequency noise. If we transform a data
sequence y into the frequency domain by f = A-'y, and set f j = 0 for
all j greater than some given cutoff frequency, then, when the truncated
f' is transformed back into the time domain, the new data sequence y' =
Af' will be smoother than the original sequence, since its rapidly oscillating
components will be gone.

5.2 The Fast Fourier Transform

Forming the product of an N by N matrix with an N-vector normally requires
N2 multiplications. Hence the forward (y = Af) and reverse (f = A-ly)
Fourier transforms would each seem to require O (N 2) work and, if N is a
prime number, these transforms do indeed require O (N 2) operations. How-
ever, if N = 2m for some integer rn, the matrices A and A-' have a special

184 5. THE FAST FOURIER TRANSFORM

fl
f 3

-

f N - 1

f 2

f 4

f N -

structure that can be exploited using the “fast Fourier transform” [Cooley
and Tukey 1965; Brigham 1974, 19881, to reduce the work in the matrix-
vector multiplications to only O[N log(N)]. Since in applications N may be
extremely large, this represents an important savings in effort.

If N can be factored at all, there is some potential savings to be realized
by cleverly exploiting the matrix structure [Singleton 19671. However, if we
cannot control the number N of data points, this savings is unlikely to be
worth the effort, whereas if we can pick N as we please (as is often the case),
we might as well choose N to be a power of 2 and achieve the maximum
reduction in effort.

In order to achieve this work reduction, we reorder the columns of A, and
the corresponding unknowns, so that the odd columns (and unknowns) come
first, ahead of the even columns (and unknowns). Then (recall that N = 2m,
and so N is certainly even), the equation y = Af takes the form

= [*] (5.2.1)

Now let B be the N/2 by N/2 Fourier transform matrix, so that

Also, let us define an N/2 by N/2 diagonal matrix D to have diagonal com-
ponents

where h z exp(z27r/N). Recalling that A (the N by N Fourier transform
matrix) has components

a k j = exp (i 2 T (k - j) (j - 1) (k,j = l , . . . , N) ,

5.2. THE FAST FOURIER TRANSFORM 185

we can compute the elements of P, Q, R, and S in terms of those of D and B:

= b k , j r
i27r(k - 1)(2j - 2)

N p k , j = q 2 j - 1 = exp (

i 2 ~ (k - 1 + N/2)(2j - 2)
N r k j = a N / 2 + k , 2 j - I = exp (

i2n(lc - 1 + N/2)(2j - 1)
N s k , j = a N / 2 + k , 2 j = exp (

T k , j
i 2 ~ (k - 1 + N/2)

N
= exp (

= - d k , k b k , j .

Thus the system 5.2.1 can be rewritten in terms of D and B:

B f o d d + D B f e u e n] . (5.2.2) [YN ' 1 = [*] [*] = [B f o d d - D B f e u e n

From 5.2.2 we can see how our work reduction is achieved. To calculate the
Fourier transform of an N-vector we first need to transform two N/2-vectors
(i.e., we calculate f odd = Bf odd and f even = B f ,,,,). Next, we calculate
u f D f even using the formulas (recall that d k , k = h"')

d l . 1 = 1
N k = 1, ... - ' k = d k , k (f e v e n) k

' 2 c d k + l , k + l = h d k , k

This can be done in a total of N/2 + N/2 = N multiplications. Finally, the
first half of the vector y is calculated by adding f odd and u, and the second
half by adding f o d d and -u (a total of N additions).

186 5. THE FAST FOURIER TRANSFORM

Therefore, if W, represents the total number of multiplications (or addi-
tions, for that matter) required to transform a vector of length N = 2n, we
have the recurrence relation

Wm = 2Wm-1 + N = 2Wm-1 + 2". (5.2.3)

Since the 1 by 1 Fourier transform matrix is simply the number 1, the number
of multiplications required to transform a vector of length N = 1 is zero, so
that

wo = 0. (5.2.4)

The solution to the recurrence relation 5.2.3, with the initial condition 5.2.4,
is

Wm = m2" = Nlog,(N),

as we can verify by substituting Wm = m2" directly into 5.2.3 and 5.2.4:

2 ~ , - 1 + 2" = 2[(m - 1)2m-1] + 2" = m2" = W,

and Wo = 02' = 0.
This establishes the claim that, if N is a power of 2, the Fourier transform

of an N-vector can be done in O[Nlog(N)] operations. The key to this work
reduction is the fact that, as exhibited in 5.2.2, the multiplication Af requires
only two matrix-vector multiplications of order N/2, rather than four, as
would be required if A had no special structure.

5.3 A FORTRAN90 Program

The fast Fourier transform, algorithm is described above in a recursive man-
ner: To transform an N-vector we must first know how to transform an
N/2-vector. Thus it is more easily programmed in FORTRAN90 than in
FORTRAN77, which does not allow subprograms to call themselves recur-
sively. Figure 5.3.1 gives a recursive FORTRAN90 subroutine that calculates
a fast Fourier transform. Note that the subroutine DFFT calls itself twice,
to transform the N/S-vectors f o d d and f,,,,, as part of its computation of
the transform of an N-vector. Of course the recursion must stop somewhere
and so, for N = 1 (A4 = O), DFFT does nothing, because the transform of a
1-vector is itself. Note the remarkable simplicity of this subroutine.

RECURSIVE SUBROUTINE DFFT(F,M)
IMPLICIT DOUBLE PRECISION (A-H.0-2)

COMPLEX*16 F(2**M)
INTEGER M

C DECLARATIONS FOR ARGUMENTS

C DECLARATIONS FOR LOCAL VARIABLES

5.3. A FORTRANSO PROGRAM 187

COMPLEX* 16 FODD (2**M/2+ 1) , FEVEN (2**M/2+1) , D .H .U
C
C SUBROUTINE DFFT PERFORMS A FAST FOURIER TRANSFORM ON THE COMPLEX
C VECTOR F, OF LENGTH N=2**M. THE FOURIER TRANSFORM IS DEFINED BY
C Y(K) = SUM FROM J=1 TO N OF: EXPCI*2*PI*(K-l)*(J-l)/N]*F(J)
c WHERE I
C
C ARGUMENTS
C
C
C
C
C F -
C
C
C M -
C
C

= SQRT(-l)

THE COMPLEX VECTOR OF LENGTH THE TRANSFORMED VECTOR
2**M TO BE TRANSFORMED. Y.

THE LENGTH OF THE VECTOR F
IS ASSUMED TO BE 2**M.

C---

C FOURIER TRANSFORM OF A 1-VECTOR IS
C UNCHANGED

IF (M.EQ.O) RETURN
N = 2**M
PI = 3.141592653589793 DO
H = COS(2*PI/N) + SIN(2*PI/N)*CMPLX(O.O,l.O)
N2 = N/2

C COPY ODD COMPONENTS OF F TO FODD
C AND EVEN COMPONENTS TO FEVEN

DO 5 K=l,N2
FODD(K) = F(2*K-1)
FEVEN(K)= F(2*K)

5 CONTINUE
C
C

CALL DFFT(F0DD ,M-l)
CALL DFFT(FEVEN,M-1)
D = 1.0

DO 10 K=1,N2
C

U = D*FEVEN(K)
F(K) = FODD(K) + U
F(N2+K) = FODD(K) - U
D = D*H

10 CONTINUE
RETURN
END

TRANSFORM N/2-YECTORS FODD AND EVEN
INTO YODD AND YEEN

Y = (YODD+D*YEVEN , YODD-D*YEVEN)

Figure 5.3.1

188 5. THE FAST FOURIER TRANSFORM

As mentioned in Section 5.1 (see 5.1.1), A-l = A/N, and thus the inverse
A-'y can be calculated as f = A(jj/N). Hence DFFT Fourier transform f

can be used to calculate an inverse transform as follows:

10

20

N = 2**M
DO 10 K=I,N
Y (K) = CONJG(Y (K) 1 /N
CALL DFFT (Y , M)
DO 20 J=I,N
F(J) = CONJG(Y(J))

DFFT was used in this manner to calculate the inverse Fourier transform
f = A-'y of the vector y of length N = Z7 defined by

Y k = 30 + 20sin (;:) - + 8cos (7) , k = 1,. . . ,128. (5.3.1)

Y k is plotted as a function of k in Figure 5.3.2; y has a constant component,
a periodic component of period 30 (frequency= N/30 = 4.27), and another
periodic component, of smaller amplitude, of period 7 (frequency= N/7 =
18.29). These periodic components are evident in Figure 5.3.2.

The absolute values of the components of the complex vector f are plotted
as a function of frequency; that is, l f j l is plotted as a function of j - 1, in
Figure 5.3.3. There are peaks near frequencies of 4 and 18, as expected, plus
another peak at zero frequency corresponding to the constant component of y.
There are two additional peaks (not shown in Figure 5.3.3) near frequencies
of 124 and 110, whose presence is at first sight inexplicable. However, if we
expand

exp(i2nklP) - exp(-i2nk/P)

- exp(i2nklP) - exp(i2nk(P - l)/P)
2i

exp(i2nk/P) + exp(-i2nk/P)

sin (y) = 2i

-
7

cos (Y) = 2

- exp(i2~k/P) + exp(i2~k(P - 1)/P)
2

- ,
we see that, when a sine or cosine term of period P appears in Y k , peaks in
the frequency domain will occur at both NIP and N (P - 1) /P = N - N/P.

5.4 Problems

1. Compute the vector y using

Y k = 60 + 20 sin (+ 15sin (g) + s(7-k - 0.5),

5.4. PROBLEMS 189

0

0
(D

9

0

8

8

In

0

-t

-0
y ?
7%

8

8

0

hl

0

c

0

8
.oo 25.00 50.00 75.00 100.00 125.00

K

Figure 5.3.2
The Time Domain

where Tk is a random variable on (0 , l) generated by a random-number
generator (e.g., IMSL's RNUN). Choose N = 2*, where m is 17. Y k
might represent the temperature after k hours recorded at a weather
station; it has an annual cycle and a daily cycle, plus a random compo-
nent. Perform an inverse discrete Fourier transform on y, using the fast
Fourier transform routine DFFT (Figure 5.3.1). Print out the absolute
values of some of the complex coefficients fk to verify that, despite the
random component, f = A-'y has peaks corresponding to frequencies
of N/(24 x 365), N/24, and 0. (Why O?)

2. Run Problem 1 with three consecutive values of rn (preferably 15, 16,
and 17) and record the execution time, to verify that the time is nearly

190

0

0
r)

9

0 :

x

N

0

N

0

G m
- .,? --

0

0
9 -

0

m
9

0

0
9

5. THE FAST FOURIER TRANSFORM

Frequency (j- 1)

Figure 5.3.3
The Frequency Domain

proportional to N.

3. If N = 3”, do you think it would still be possible to transform an
N-vector in O [N log(N)] time? Explain.

4. Consider the following “slow Fourier transform” subroutine, which com-
putes y = Af by ordinary matrix multiplication:

SUBROUTINE SFT (F, Y, N)
IMPLICIT DOUBLE PRECISION (A-H,O-2)
COMPLEX*16 F(*) ,Y(*> ,H,HK,AKJ
PI = 3.141592653589793DO

C H = EXP(I*2*PI/N)

5.4. PROBLEMS 191

H = COS(2*PI/N) + SIN(2*PI/N))*CMPLX(O.O,l.O)

HK = 1.0
DO 10 K=l,N

C HK = H**(K-l)

Y(K) = 0.0

AKJ = 1.0
DO 5 J=l,N

C AKJ = HK**(J-l) = H**((J-l)*(K-l))

Y(K) = Y(K) + AKJ*F(J)
AKJ = AKJ*HK

5 CONTINUE
HK = HK*H

10 CONTINUE
RETURN
END

Transform the N-vector f, with f k E 1, first using this slow routine and
then using DFFT (Figure 5.3.1), with N = 214. Record the execution
time for each and compare.

5. Another important application of the fast Fourier transform is the fast
solution of the finite difference equations used to approximate certain
partial differential equations. For example, the partial differential equa-
tion

uzz + u y y = u + f (z , y)

with periodic boundary conditions

in 0 5 z 5 1, 0 5 y 5 1,

U (0 , Y) = U (l , ? /) , u(z,O) = u(z,1),

U z (0 , Y) = % (l , Y) , Uy(X,O) = U y (X , 11,

can be approximated by the finite difference equations

U j + l , k - 2 u j , k + u j - 1 , k + u j , k + l - 2u’ j , k -k u j , k - l = h 2 (U j , k + f j , k) ,

f o r j = l , ..., N , k = l , ..., N ,

with

192 5. THE FAST FOURIER TRANSFORM

Suppose that

and

a, Show that, no matter how the coefficients blm are chosen, the ap-
proximate solution satisfies the periodic boundary conditions.

b. Show that, once the coefficients clm of f are known, the solution
coefficients blm can be calculated from

Clmh2
~cos[~T(Z - 1)/N] + 2 ~ 0 ~ [2 r (m - l)/N] - 4 - h2 ' blm =

c. If U, F, B, and Care the N by N matrices with elements U j k , f j k , blm,

and elm, and if A is the discrete Fourier transform matrix (defined
in Section 5.1), show that

uT = A (A B) ~

and

FT = A(AC)T or C = A-'(A-'FT 1 .
d. If N is chosen to be a power of 2, the matrix-matrix multiplication

A 2 (or A-'Z) can be computed in only O[N2 log(N)] operations,
because its computation requires transforming the N columns of
2, at a cost of 0" log(N)] work per column, using fast Fourier
transforms. Use the results of parts (b) and (c) to show that, given
the matrix F , U can be calculated in O[N2 log(N)] operations. In
other words, we can solve the above finite difference equations in
0 [N 2 log(N)] operations. This is much faster than even the SOR
method (cf. Section l .B) , which requires O(N3) work to solve the
same finite difference system. Prove that it is impossible to solve
a 2D finite difference system in less than O(N2) operations, so this
FFT algorithm is essentially impossible to beat, in terms of speed
(this is also true for 3D problems).

6 . a, Generalize the formula in Problem 5b, for the partial differential
equation u,, + uyy +p, + qu, + TU = f (2, y), if u, is approximated
by (uj+t.l,k - uj-l,k)/(2h) and similarly for uy.

5.4. PROBLEMS 193

b. For the case p = 2,q = -1,r = -20, f(x, y) = ez2+Y, solve this
PDE with periodic boundary conditions, using the Fourier trans-
form method outlined in Problem 5 to exactly solve the finite differ-
ence system. Output your approximate solution at the square mid-
point. The exact solution of the PDE has u(0.5,0.5) = -0.262517.
Note that an accurate solution is found even though f (2, y) is not
periodic. Will this technique still work if p , q or T are functions of
x and y?

c. The Fourier expansion for u from Problem 5 can alternatively be
written in the form

N N

u (q , yk) = C C bl, e x p (i 2 ~ (~ - 1)xj) exp(i2~(m - 1) y k)
m=l k 1

and similarly for the expansion of f (zj, yk). Plug these expansions
directly into the PDE of Problem 6a, rather than into its finite
difference approximation, to find another formula for bl, in terms
of qm. Rerun your program from Problem 6b with this one-line
change, and get another estimate of u(0.5,0.5). In part (b), you
were using the FFT simply to rapidly solve the finite difference
equations exactly; now you axe using a Fourier series method, with
a truncated series. Is your answer more or less accurate (at the
midpoint) than in part (b)?

7. The discrete sine transform of a r ed N-vector f is Sf, where S is the
N by N matrix with elements S k , j = sin(nkj/(N + 1)).

a. Show that S-' = 2S/(N+1). (Hint: Use sin(8) = (eie - e - i e) / (2 i)
and use Section 5.1 to guide your calculations.)

b. The discrete sine transform can be used to help solve some differ-
ential equations where the solution is required to be zero on the
boundary. For example, consider the problem uxx = f (x) with
u(0) = u(1) = 0. We approximate this differential equation us-
ing the finite difference equation uj+l - 2uj + uj-1 = h2 fj,uo =
u ~ + 1 = 0, where h = 1/(N + l) , xj = j h , and uj approximates
u(xj). Now expand u and f in the form:

N

uj = C blsin(TjZ/(N + 1))
k 1

and
N

fj = C qsin(rj l /(N + 1)).
k 1

194 5. THE FAST FOURIER TRANSFORM

Insert these expansions into the finite difference equation and find
a formula for bl in terms of cl. Notice that uo and U N + I are zero
no matter what coefficients br are used.

c. For the case f(z) = 2 - 6z, solve the finite difference system, by
first finding c = S-lf, then b, then u = Sb. Although it is pos-
sible to write a “fast discrete sine transform” routine, you may
do the transforms the slow way, using matrix-vector multiplica-
tions. (Even using a fast transform, this approach is not faster
than using a band solver to solve these tridiagonal finite difference
equations; in higher dimensions it is faster.) Thc exact solution of
the differential equation is u(z) = z2(1 - z), and this finite differ-
ence equation has zero truncation error, so uj should exactly equal
u(z j) everywhere.

8. a. Find the approximate amount of memory (number of COMPLEX*16
words) used by the fast Fourier transform routine DFFT, as a func-
tion of N . Caution: At first glance it appears that the total mem-
ory is 2N words. But remember that this is a RECURSIVE sub-
routine, which means that when DFFT calls itself, another copy of
DFFT is created, with new automatic arrays FODD and FEVEN.
Thus you need to write and solve a recurrence relation for S, =
number of words of memory used by DFFT to solve a problem of
size N = 2m, not including the array F passed to DFFT from the
calling program (but add the N words for array F at the end, of
course).

b. What minor change can be made to DFFT to cut the total memory
usage to 2N COMPLEX*16 words? Make this change and re-run
Problem 4 to verify it still works.

9. Take the sequence Y k defined in 5.3.1 and plotted in Figure 5.3.2, and
calculate the inverse Fourier transform, f . Then set 111 = fl2 = ... =
f117 = 0, and transform f back, and plot the new time sequence yk,
which should be smoother now since the high frequencies have been
removed.

10. Write a non-recursive fast Fourier transform routine, and test it on
the vector of Problem 4. (Hint: Reorder the elements of f as shown
below, then make m passes over f , the first time “process” the 2-vectors
(fi, f2), (f3, f4) , ..., the second time process the 4-vectors (f1, f2, f3, f4) , ...

SUBROUTINE NRFFT(F,M)
IMPLICIT DOUBLE PRECISION(A-H.0-Z)
COMPLEX*16 F(2**M) ,FODD(2**M/2) ,FEVEN(2**M/2)
N = 2**M
DO 40 I=M,2.-1

5.4. PROBLEMS 195

NI = 2**I
N2 = NI/2
DO 30 J=O.N-l,NI

DO 10 K=1,N2
FODD(K) = F(J+2*K-l)
FEVEN(K) = F(J+2*K)

10 CONTINUE
DO 20 K=l,N2

F(J+K) = FODD(K)
F(J+NZ+K) = FEVEN(K)

20 CONTINUE
30 CONTINUE
40 CONTINUE

Linear Algebra on
Supercomputers

6.1 Vector Computers

For many years after the first computers were built, progress in computer
arithmetic speed was steady and rapid. Finally, however, we have reached a
point where it appears that further improvements in the speed of individual
arithmetic operations will be harder and harder to achieve. Today’s “super-
computers” are nevertheless able to solve problems more rapidly, not so much
because they do individual arithmetic operations faster, but because they can
do several operations simultaneously.

Consider, for example, the loop 25 in the linear system solver DLINEQ
(Figure 1.2.1), where 100% of the computer time is spent in the limit of large
problem size:

DO 25 K = I + l , N
A (J , K) = A (J , K) - L J I * A (I , K)

25 C O N T I N U E

A traditional “scalar” computer executes these statements one at a time and
does not begin updating A(J ,K) until it has finished updating A (J , K - 1).
If the loop were, for example,

DO 26 K = I + l , N
A (J , K) = A (J , K) - L J I * A (J , K - 1)

26 C O N T I N U E

then executing these statements in sequence would be necessary, because be-
fore we update A(J, K) we have to wait until the new value of A(J, K - 1) is
available. But there is no reason, in theory, why all of the updates in loop 25

196

6.1. VECTOR COMPUTERS 197

above cannot be done simultaneously, as they are completely independent of
each other.

There are, in fact, many “parallel” computer systems around today which
do have several processors, and we will see in the next section how such a
machine can indeed be programmed to distribute the work in loop 25 over
the available processors, thus doing some or all of the updates simultaneously.
We will see that this is somewhat more complicated than it may sound, for
the programmer. First, however, we want to talk about a simpler approach
to speeding up loops such as 25, which involves doing the updates, not quite
simultaneously, but rather in “assembly-line” fashion.

A “pipeline”, or vector, supercomputer [Schendel 1984; Buchanan and
Turner 19921 such as a Cray PVP machine, can perform the operations in
loop 25 in assembly-line fashion, on a single elaborate processor, and the
computer will begin updating A(J, K) before it has finished updating A(J, K -
1). An analogy is useful here to appreciate the difference between parallel
computers and pipeline computers. Suppose a radio factory initially has only
one worker to assemble all the radios. If we simply increase the number of
workers (processors) to P, we can produce the radios in parallel and increase
the production by a factor of P. On the other hand, if construction of a
radio can be divided into P subtasks, each of which requires the same time
to perform, we can assign one task to each of the P workers and produce the
radios in an assembly line. Once the first radio comes off the assembly line,
radios will be produced at a rate P times faster than a single worker can
produce them. In a similar manner, if the multiplication in loop 25 can be
broken into P substeps: for example, fetch A(1,K) from memory, fetch LJI,
multiply the mantissas of LJI and A(I,K), add their exponents, renormalize
the result, and so on, then a pipeline computer can process the multiplication
P times faster in assembly-line mode, provided the number of loop trips is
sufficiently large so that the start-up time can be neglected.

The addition (subtraction) can also be done in assembly-line mode, and,
in fact, most vector computers can “chain” an addition and multiplication
together, so that a calculation of the form A (K) = B (K) + C * D (K) (which
occurs quite often in numerical linear algebra software) can be computed in
one long assembly line, with the computation B (K) +C*D(K) starting down
the assembly line before B(K - 1) + C * D (K - 1) has finished.

Whether the updates are done in parallel on different processors, or just
in “assembly line” fashion on a single vector processor, in either case the
loop can be executed more rapidly only because the updates are mutually
independent, and the later updates do not have to wait for the results of the
earlier calculations. For a loop such as 26, which has a “dependency”, the
second update must not start until the first update has passed completely
through the assembly line, otherwise we will get the wrong answers.

A FORTRAN compiler designed to run on a pipeline computer will recog-
nize that the operations of loop 25 are mutually independent and will “vector-

198 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

ize” this loop. That is, it will generate object code that does these operations
in assembly-line form. For a loop such as 26, the compiler will recognize that
vectorization would result in wrong answers and will refuse to do it. These
compilers can scan very complicated DO loops and determine which involve
calculations that can be done simultaneously, and thus can be vectorized, and
which must be done sequentially.

Several of the FORTRAN90 codes from Chapters 1-5 were run on one
processor of a Cray SV1 at the Texas Advanced Computing Center in Austin,
to see the effect of vectorization, and the results are reported in Table 6.1.1.
Array elements were set using a random number generator.

Table 6.1.1
Results on Cray SV1 (Single Precision)

Code Problem CPU sec. CPU sec. Speed

DLINEQ
DLLSQR (REDQ)
DLLSQR (REDH)
DEGSYM
DEGNON* (QR)
DEGNON (QR)
DEGNON** (QR)
DEGNON (LR)
DLPRG

Size
N=1001
M=N=1001
M=N=1001
N=501
N=501
N=201
N=201
N=201
M=251,N=502

vector=on
3.2
6.9
7.9

56.0
13.9
55.9
2.0

19.4
8.2

vector=off
62.1
72.0
50.6

310.9
39.0

537.0
20.2

292.6
169.9

UP
19.4
10.4
6.4
5.6
2.8
9.6

10.1
15.1
20.7

DFFT N=222 33.2 46.4 1.4

*symmetric matrix, with QR modified as suggested in comments
**with shifts, gn = umm, where m = N - mod (n/lO, N)

When DLINEQ was used to solve a linear system with N=1001 unknowns,
the Cray SV1 compiler vectorized loop 25, and the program ran in 3.2 sec-
onds. Since solving an N by N linear system requires about $ N 3 floating
point operations, that means DLINEQ is doing about $ N3/3.2 calculations
per second, or about 210 million floating point operations per second (210
“megaflops”). When vectorization was turned off, the program required 62.1
seconds CPU time. Thus vectorization made the entire program run about 19
times faster. Vectorization also sped up the other programs by factors of at
least 5, with two exceptions. One is DEGNON in the symmetric case, where
the inner DO loops in QR are shortened to take advantage of the tridiago-
nal structure of the reduced matrix. The other exception is DFFT; the Cray
FORTRAN90 compiler was able to vectorize loop 10, even though it appears
to have a dependency, because D is defined recursively by D = D*H. Appar-
ently the compiler is able to see that D is just equal to H K - ’ , and thus it can
remove the recursion and vectorize the loop. Nevertheless, the speed-up ratio

6.2. PARALLEL COMPUTERS 199

is low, perhaps because most trips through this loop are short, or because of
the overhead associated with the recursive subroutine calls.

Notice that although, without vectorization, DLLSQR ran faster with
Householder transformations (REDH) than with Givens transformations
(REDQ) (as the operation count would predict), with vectorization REDQ
was faster. Also notice that the QR method, even without shifts, was faster
than the Jacobi method on the symmetric problem, but the LR method was
faster than QR on the nonsymmetric problem. Implementing shifts improved
the performance of the QR method dramatically.

No modifications to the original unoptimized programs were necessary to
achieve these large speed-up ratios; the compiler verified that the computa-
tions in critical innermost DO loops (e.g., loop 25 of DLINEQ) were mutually
independent and automatically vectorized the loops. Sometimes the program-
mer can improve performance by rewriting the code, for example, to reverse
the order of two DO loops to make the innermost loop the longer one, or to
remove a dependency that would otherwise prevent vectorization of the in-
nermost loop. But codes for linear algebra applications usually contain inner
loops that are easy for these compilers to vectorize efficiently, and the process
is generally pretty automatic, in contrast to the situation in the next section.

It should be mentioned that when N is changed from 1001 to 1000, DLINEQ
runs 5 times slower, with vectorization on. (The other routines exhibit similar
behavior.) The reason for this strange behavior has to do with the “stride”
through the matrices in the innermost DO loops. The stride is the distance
between successively referenced elements of an array. For reasons beyond the
scope of this book, nearly all modern computers perform best when strides
are equal to 1, and worst when they are a power of 2, or a multiple of a power
of 2. We will see in the next section how the performance of DLINEQ can be
improved dramatically by reversing the order of loops 25 and 30, to decrease
the stride through the innermost loop from N to 1.

6.2 Parallel Computers

The speed-up factor available through vectorization of a loop such as 25
is apparently limited by the number of subtasks into which the calculation
A (J , K) = A(J ,K) - LJI * A (I , K) can be split. If we hope to get higher
speed-ups we will have to take another approach, which generally involves
much more programming effort, and actually run the calculations simultane-
ously on the different processors of a multiprocessor system. Such systems
can be thought of as consisting of several autonomous computers, each with
its own memory (distributed memory machine) or at least its own section
of memory (shared memory machine), with the ability to pass data back and
forth between computers. Although much effort has been put into maximizing
the communication speed between processors, communication is still very slow

200 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

compared to the speed with which the data are processed internally within
a processor, so it is absolutely critical to minimize the amount of “message
passing” between processors.

There are a number of libraries that provide routines that can be called
by user programs to pass messages back and forth between processors. The
MPI library [Pacheco 1996; Bisseling 20041 is the most widely used set of
message passing routines, so we will use these routines in our examples. Figure
6.2.1 shows a routine PLINEQ, which uses Gaussian elimination with partial
pivoting to solve a linear system. The program is basically a parallel version
of DLINEQ (Figure 1.2.1), although it does not save the LU decomposition
of A , and there are a few other minor differences.

In this program, the same code is run on each processor; however, note
the call to MPI-COMMRANK, which returns the processor number ITASK
(=O,1 ,..., N P E S - l) , where NPES is the number of processors, so different
actions can be taken on different processors.

Ideally, the columns of A should be distributed cyclically over the proces-
sors, that is, columns 1, NPES+l, 2*NPES+l, ... should be stored only on
processor zero, while columns 2, NPES+2, 2*NPES+2, ... should be stored
only on processor one, and so on. In our version, each processor holds the
entire N by N matrix A in memory, but it never touches any but its “own”
columns. If PLINEQ were written so that each processor stored only its own
columns (Problem 2b), the program would be more efficient with regard to
memory usage, but it would be more difficult to read and use. PLINEQ could
be made memory-efficient by simply replacing each reference to A(1, J) by
A (I , (J - l)/NPES + l), and dimensioning A (N , *). The problem is, this
means the PLINEQ “user” must dimension A (N , (N - l)/NPES + 1) and
distribute the matrix over the available processors in the calling program; for
example, he/she could define A like this:

DO 10 I=l,N
DO 5 J=ITASK+l,N,NPES

A(I,(J-I)/NPES+I) = [element (1,J) of matrix]
5 CONTINUE
10 CONTINUE

This is exactly what normally should be done, but the version in Figure
6.2.1 is easier for the student to follow and does not require the PLINEQ user
to know anything about parallel programming. As written, the program is
very wasteful in its use of memory, but it does take good advantage of multiple
processors as far as computation time is concerned.

SUBROUTINE PLINEQ(A.N,X,B)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

DOUBLE PRECISION A(N,N) ,X(N) .B(N)
C DECLARATIONS FOR ARGUMENTS

6.2. PARALLEL COMPUTERS 201

C DECLARATIONS FOR LOCAL VARIABLES
DOUBLE PRECISION LJI,COLUMNI(N) ,ROWI(N) ,RWLOC(N)
INCLUDE 'mpif .h'

C
C SUBROUTINE PLINEQ SOLVES THE LINEAR SYSTEM A*X=B
n
L

C ARGUMENTS
C
C ON INPUT ON OUTPUT
C
C
C A - THE N BY N COEFFICIENT MATRIX. DESTROYED
C
C N
C
c x AN N-VECTOR CONTAINING
C THE SOLUTION.
C
C B - THE RIGHT HAND SIDE N-VECTOR. DESTROYED
C
C---
C INITIALIZE MPI

C NPES = NUMBER OF PROCESSORS

- - -- - - - - - - - - - - - - -

- THE SIZE OF MATRIX A.

-

CALL MPI-INIT (IERR)

CALL HPI-COMM-SIZE (MPI-COMM-WORLD.NPES.IERR)
C ITASK = MY PROCESSOR NUMBER (0.1, ..., NPES-1).
C I WILL NEVER TOUCH ANY COLUMNS OF A EXCEPT
C MY COLUMNS, ITASK+l+ K*NPES, K=0.1,2. ...

C BEGIN FORWARD ELIMINATION

C JTASK IS PROCESSOR THAT OWNS ACTIVE COLUMN

CALL MPI-COMM-RANK (MPI-COMM-WORLD, ITASK, IERR)

DO 35 I=l,N

JTASK = MOD(1-1.NPES)
IF (1TASK.EQ.JTASK) THEN

C IF JTASK IS ME, SAVE ACTIVE COLUMN IN
C VECTOR COLUMNI

DO 10 J=I.N
COLUMNI(J) = A(J.1)

10 CONTINUE
ENDIF

CALL MPI~BCAST~COLUMNI(I),N-I+1,MPI,DOUBLE~PRECISION,JTASK,
C RECEIVE COLUMNI FROM PROCESSOR JTASK

& MPI-COMM-WORLD,IERR)
C SEARCH FROM A(I,I) ON DOWN FOR LARGEST
C POTENTIAL PIVOT. A(L.1)

BIG = ABS (COLUMNI (I))
L = I
DO 15 J=I+l.N

202 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

15
C
C

C

C
C

20

C

C

C
C

25
C

30

IF (ABS(COLUMNI(J)) .GT.BIG) THEN
BIG = ABS(COLUMNI(J))
L = J

ENDIF
CONTINUE

IF LARGEST POTENTIAL PIVOT IS ZERO,
MATRIX IS SINGULAR

I0 IS FIRST COLUMN >= I THAT BELONGS TO ME
IF (BIG.EQ.O.O) GO TO 50

LO = (I-l+NPES-(ITASK+l) /NPES
I0 = ITASK+l+LO*NPES

SWITCH ROW I WITH ROW L, TO BRING UP
LARGEST PIVOT; BUT ONLY IN MY COLUMNS

DO 20 K=IO,N,NPES
TEMP = A(L,K)
A(L,K) = A(1.K)
A(1.K) = TEMP

CONTINUE
TEMP = COLUMNI(L)
COLUMNI(L) = COLuMNI(1)
COLUMNI(1) = TEMP

TEMP = B(L)
B(L) = B(1)
B(1) = TEMP
DO 30 J=I+l,N

SWITCH B(1) AND B(L)

CHOOSE MULTIPLIER TO ZERO A(J,I)
LJI = COLUMNI(J)/COLUMNI(I)
IF (LJI.NE.O.0) THEN

SUBTRACT LJI TIMES ROW I FROM ROW J;
BUT ONLY IN MY COLUMNS

DO 25 K=IO.N.NPES

CONTINUE

B(J) = B(J) - LJI*B(I)

A(J.K) = A(J,K) - LJI*A(I.K)

SUBTRACT LJI TIMES B(1) FROM B(J)

ENDIF
CONTINUE

35 CONTINUE
C SOLVE U*X=B USING BACK SUBSTITUTION.

C COLLECT PORTIONS OF ROW I (RWLOC) FROM
C EACH PROCESSOR. THEN CALL MPI-ALLREDUCE TC
C ADD THEM TOGETHER AND RETURN THE SUM TO
C ALL PROCESSORS IN ROWI.

DO 45 I=N,l,-l

DO 36 K=I.N
RWLOC(K) = 0.0
IF (MOD(K-l,NPES) .EQ.ITASK) RWLOC(K) = A(1.K)

6.2. PARALLEL COMPUTERS 203

36 CONTINUE
CALL MPI~ALLREDUCE(RWLOC(I),ROWI(I~,N-I+1.MPI_DOUBLE_PRECISION,

SUM = 0.0
DO 40 J=I+l,N

& MPI_SUM,MPI_COMM_WORLD.IERR)

SUM = SUM + ROWI(J)*X(J)
40 CONTINUE

45 CONTINUE
GO TO 60

50 IF (ITASK.EQ.0) PRINT 55
55 FORMAT (’***** THE MATRIX IS SINGULAR *****’I

60 CONTINUE
CALL MPI-FINALIZE(1ERR)
RETURN
END

x u) = (B(I)-SUM)/ROWI(I)

C CLOSE MPI

Figure 6.2.1

Figure 6.2.2 illustrates how the forward elimination proceeds when the
matrix is distributed over the processors in this way, when we have NPES=3
processors. After the first 2 columns have been zeroed, the “active” column is
column I = 3, which “belongs” to processor 2. Now we need to switch row 3
with the row corresponding to the largest potential pivot (in absolute value)
of the active column, and then take a multiple of the 3rd row and add it to
the 4th row, another multiple of the 3rd row to add to the 5th row, and so
on. Processor 0 can do its share of these row operations, to Yts” columns
4, 7 ,..., and processor 1 can do its share, to its columns (5, 8 ,...), but each
has to see the active column before it can know which row to switch with
row 3, and what multiples of row 3 to add to rows 4, 5, So processor 2
has to “broadcast” the active column to the other processors before they can
proceed.

When the size N of the matrix is large, each processor has many columns
to process and only one to receive (from whomever has the active column);
thus the amount of communication is small compared to the amount of work
done between communications. Since, for large N , the process of adding
multiples of one row to others consumes nearly 100% of the computer time
when Gaussian elimination is done, distributing this process over the available
processors, allowing all processors to work simultaneously on their parts of
the task, ensures that the overall computation time is greatly diminished,
compared to doing the whole elimination on one processor. In fact, each
processor will have approximately the same number of columns to work on,
so the total work should be decreased by approximately a factor of NPES,
when N is large. Note that loop 25 in Figure 6.2.1 now looks like:

204 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

DO 25 K=IO,N,NPES
A(J,K) = A(J,K) - LJI*A(I,K)

25 CONTINUE

so on any given processor, the work in this critical loop has decreased by a
factor of about NPES.

*
processor no. - 0 1 2 0 I 2 0 1 2 . . .
column no. - 1 2 3 4 5 6 7 8 9 . . .

_____________-______-
x x x x x x x x x ...
o x x x x x x x x

* o o x x x x x x x
o o x x x x x x x
o o x x x x x x x
o o x x x x x x x
o o x x x x x x x
o o x x x x x x x
o o x x x x x x x . . .

Figure 6.2.2

After the forward elimination, back substitution is used to find X; since
row I is distributed over the processors, the portions of that row held on
different processors must be collected together before back-solving for X(1).
This is done using the extremely useful MPI routine MPI-ALLREDUCE,
which collects vectors (or scalars) from all processors, finds the sum, product,
or maximum or minimum (element by element) of these vectors, and returns
the result to all processors. The fact that the back substitution is not done
in parallel is not important, because it uses a negligible amount of computer
time when N is large, compared to the forward elimination.

When PLINEQ was used to solve linear systems of N=2000 and 4000
unknowns, with elements generated by a random number generator, on a
Cray-Dell Xeon Cluster at the Texas Advanced Computing Center, the results
were as shown in Table 6.2.1.

For both problems, PLINEQ “scales” well for a while; that means doubling
the number of processors approximately doubles the speed. In fact, for the
case N = 4000, going from 1 to 64 processors sped up the program by a factor
of 80, a scaling that seems impossible. But eventually, adding more processors
failed to improve the speed. This is in part because more processors means
more messages between processors, but even if the communication time were

6.2. PARALLEL COMPUTERS 205

Table 6.2.1
PLINEQ Results

N = 2000
NPES Time(sec) NPES Time(sec)

1 145 1 3206
2 42 2 1755
4 21 4 833
8 13 8 402

16 13 16 216
32 26 32 77

64 40
128 64

N = 4000

negligible there would always be a limit to how fast the code could run as
NPES is increased. This is because, although the most expensive section of
the code is parallelized (the only part with an O (N 3) operation count, loop
25), there are other sections of the code with O (N 2) operation counts that
are not parallelized, so even if there are so many processors that loop 25 uses
no time at all, the total time to solve the linear system will never fall below
the time required to execute the scalar sections. “Amdahl’s law” [Leiss 19951
tells us that if f, is the fraction of the calculations which can be parallelized,
then the best speed-up factor we can hope for, assuming message passing and
other overhead to be negligible, is given by

Amdahl’s law imposes an upper limit of 1/(1 - f,) on the speed-up attain-
able, which ensures that any program will eventually quit improving as NPES
increases; however, the larger the size of the problem, the later this occurs.
With N = 2000, only about 8 processors can be used productively, while with
N = 4000, we see improvements up to NPES = 64.

As mentioned in the last section, most processors, including these Xeon
processors, perform much better when DO loops operate on arrays with unit
strides. Since FORTRAN matrices are stored by columns, this means that
innermost DO loops should, when possible, operate on the columns, not the
rows, of matrices, so the stride will be equal to 1 rather than N . In fact, when
we replace loop 30 in PLINEQ with the following code:

DO 30 K=IO,N,NPES
LJI = A(I,K)/COLUMNI(I)
IF (LJI.NE.O.0) THEN

DO 25 J=I+I,N

206 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

A (J , K) = A (J , K) - LJI*COLUMNI(J)
25 CONTINUE

ENDIF
30 CONTINUE

LJI = B (I) /COLUMN1 (I)
DO 31 J=I+l,N

B(J) = B(J) - LJI*COLUMNI(J)
31 CONTINUE

which basically just reverses the order of loops 25 and 30, we get the much
better results shown in Table 6.2.2. This time the columns of A were physically
distributed over the processors, as suggested above, to avoid memory overflow
in the case N = 8000, but this had no measurable effect on the speed, only
on the memory requirements.

Table 6.2.2
PLINEQ Results with Stride=l

N = 4000
NPES Time(sec) NPES Time(sec)

1 141 1 1190
2 123 2 974
4 63 4 490
8 36 8 259

16 25 16 140
32 27 32 93

64 66
128 120

N = 8000

For the case N = 8000, NPES = 64, our program is now doing about
$N3/66 operations per second, or 5.2 gigaflops. A speed of 16 gigaflops was
achieved using 64 processors, by switching to single precision and increasing N
to 32000. Replacing loops 25 and 30 by a call to the assembly-language BLAS
(Basic Linear Algebra Subroutines) [Dongarra et al. 19881 routine SGER gave
no further improvements.

A parallel version, PLPRG, of the linear programming routine of Figure
4.5.1 is given in Figure 6.2.3. Again, each processor ITASK holds the entire
tableaux, TAB, in memory, but only touches its own columns ITASK+l+
k*NPES, k=0,1,2 ..., except in the initializations, where speed is not impor-
tant. However, the last column, B, is common to all processors. Thus, like
PLINEQ, PLPRG takes advantage of multiple processors to decrease the com-
putation time, but not to decrease the memory usage. The last row is spread
out over the processors, and the portions on the different processors must be
merged (using MPIALLREDUCE) so it can be inspected to find the pivot

6.2. PARALLEL COMPUTERS 207

column, JP. The pivot column must be broadcast, by whoever owns it, to
the other processors, who save it in array COLJP. Now when a multiple of
the pivot row is added to the other rows, each processor processes its own
columns, and so the work is almost evenly distributed over the processors. In
fact, the inner loop 80, where all computer time is spent in the limit of large
problem size, now has limits J=ITASK+l,N+M,NPES.

C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE PLPRG(A.B.C,N,M,P,X,Y)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

DOUBLE PRECISION A(M.N) ,B(M) ,C(N) ,P.X(N) .Y(M)
INTEGER N.M

DOUBLE PRECISION TAB(M+P,N+M+l) ,COLJP(M+P) .LROWI (N+M),

INTEGER BASIS (M)
include 'mpif.h'

DECLARATIONS FOR ARGUMENTS

DECLARATIONS FOR LOCAL VARIABLES

& LROW(N+M)

SUBROUTINE PLPRG USES THE SIMPLEX METHOD TO SOLVE THE PROBLEM

WITH X(1),X(N) NONNEGATIVE, AND

WERE B(1). . . . ,B(M) ARE ASSUMED TO BE NONNEGATIVE.

ARGUMENTS

A -

B -

C -

THE M BY N CONSTRAINT COEFFICIENT
MATRIX.

A VECTOR OF LENGTH M CONTAINING
THE RIGHT HAND SIDES OF THE
CONSTRAINTS. THE COMPONENTS OF
B MUST ALL BE NONNEGATIVE.

A VECTOR OF LENGTH N CONTAINING
THE COEFFICIENTS OF THE OBJECTIVE
FUNCTION.

208 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

C N - THE NUMBER OF UNKNOWNS.
C
C M - THE NUMBER OF CONSTRAINTS.
C
C P -
C
C
c x -
C
C
C
C Y -
C
C
C

THE MAXIMUM OF THE
OBJECTIVE FUNCTION.

A VECTOR OF LENGTH N
WHICH CONTAINS THE LP
SOLUTION.

A VECTOR OF LENGTH M
WHICH CONTAINS THE DUAL
SOLUTION.

C
C
C

EPS = MACHINE FLOATING POINT RELATIVE

BIGNO = A VERY LARGE NUMBER
PRECIS ION

c .
DATA EPS,BIGNO/Z.D-16,1 .D35/

c .
C INITIALIZE MPI

CALL MPI-INIT (IERR)
C NPES = NUMBER OF PROCESSORS

CALL MPI-COMM-SIZE (MPI_COMM_WORLD.NPES,IERR)
C ITASK = MY PROCESSOR NUMBER (O,l, ..., NPES-1).
C I WILL NEVER TOUCH ANY COLUMNS OF TAB EXCEPT
C MY COLUMNS. ITASK+l+ K*NPES, K=0,1,2. . . .
C (EXCEPT IN INITIALIZATION STAGE)

C BASIS(l), ..., BASIS(M) HOLD NUMBERS OF
C BASIS VARIABLES. INITIAL BASIS CONSISTS
C OF ARTIFICIAL VARIABLES ONLY

CALL MPI-COMM-RANK (MPI-COMM-WORLD,ITASK.IERR)

DO 5 I=I,M
BASIS(1) = N+I

5 CONTINUE
C

DO 10 I=I.M+2
DO 10 J=I,N+M+I

TAB(1,J) = 0.0
10 CONTINUE

C
C

DO 15 I=I.M
DO 15 3sl.N

TAB(1.J) = A(1,J)
15 CONTINUE

INITIALIZE SIMPLEX TABLEAU

LOAD A INTO UPPER LEFT HAND CORNER
OF TABLEAU

6.2. PARALLEL COMPUTERS 209

C LOAD M BY M IDENTITY TO RIGHT OF A
C AND LOAD B INTO LAST COLUMN

DO 20 I=l,M
TAB(I,N+I) = 1.0
TAB(I,N+M+l) = B(1)

20 CONTINUE
C ROW M+1 CONTAINS -C, INITIALLY

DO 25 J=l,N
TAB(M+l,J) = -C(J)

25 CONTINUE
C ROW M+2 CONTAINS COEFFICIENTS OF
C "ALPHA", WHICH IS TREATED AS +INFINITY

DO 30 I=l,M
TAB(M+2,N+I) = 1.0

30 CONTINUE
C CLEAR "ALPHAS" IN LAST ROW

DO 35 I=l.M
DO 35 J=l.N+M+l

TAB(M+2.J) = TAB(M+2,J) - TAB(1,J)
35 CONTINUE

C SIMPLEX METHOD CONSISTS OF TWO PHASES
DO 90 IPHASE=1,2

C
C

C
C
C

C
C
C

40

45

C
C

IF (IPHASE.EQ.1) THEN
PHASE I: ROW M+2 (WITH COEFFICIENTS OF
ALPHA) SEARCHED FOR MOST NEGATIVE ENTRY

MROW = M+2
LIM = N+M

ELSE
PHASE 11: FIRST N ELEMENTS OF ROW M+1
SEARCHED FOR MOST NEGATIVE ENTRY
(COEFFICIENTS OF ALPHA NONNEGATIVE NOW)

MROW = M+1
LIM = N

IF ANY ARTIFICIAL VARIABLES LEFT IN
BASIS AT BEGINNING OF PHASE 11, THERE
IS NO FEASIBLE SOLUTION

DO 45 I=l,M
IF (BASIS(1) .GT.N) THEN

IF (ITASK.EQ.0) PRINT 40
FORMAT (' ***** NO FEASIBLE SOLUTION *****')
RETURN

ENDIF
CONTINUE

ENDIF
THRESH = SMALL NUMBER. WE ASSUME SCALES
OF A AND C ARE NOT *TOO* DIFFERENT

THRESH1 = 0.0
DO 50 J=ITASK+l,LIM,NPES

210 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

C

C
C
C

C
C

C
C

C

C

C
C
C

50

%

55

56

%

60

61

&

THRESH1 = MAX(THRESHI.ABS(TAB(MR0W.J)))
CONTINUE
CALL MPI~ALLREDUCE(THRESHI,THRESH,1,MPI~DOUBLE~PRECISION,
MPI-MAX,MPI-COMM-WORLD, IERR)
THRESH = 1000*EPS*THRESH

CONTINUE
BEGINNING OF SIMPLEX STEP

COLLECT PORTIONS (LROWI) OF LAST ROW FROM
DIFFERENT PROCESSORS AND MERGE THEM
INTO LROW, USING MPI-ALLREDUCE.

DO 56 J=l,LIM
LROWI(J) = 0
IF (MOD(J-1,NPES) .EQ.ITASK) LROWI(J) = TAB(MROW,J)

CONTINUE
CALL MPI-ALLREDUCE(LROWI,LROW,LIM,MPI-DOUBLE-PRECISION.
MPI-SUM.MP1-COMM-WORLD.IERR)

FIND MOST NEGATIVE ENTRY IN ROW MROW,
IDENTIFYING PIVOT COLUMN JP.

CMIN = -THRESH
JP = 0
DO 60 J=l,LIM

IF (LROW(J).LT.CMIN) THEN
CMIN = LROW(J)
JP = J

ENDIF
CONTINUE

IF ALL ENTRIES NONNEGATIVE (ACTUALLY,
IF GREATER THAN -THRESH) PHASE ENDS

IF I OWN COLUMN JP. SAVE IT IN COLJP
IF (JP.EQ.0) GO TO 90

JTASK = MOD(JP-1,NPES)
IF (1TASK.EQ.JTASK) THEN

DO 61 I=l,MROW

CONTINUE
COLJP(1) = TAB(1. JP)

ENDIF

CALL MPI-BCAST(COLJP.MROW,MPI-DOUBLE-PRECISION.
JTASK,MPI-COMM-WORLD, IERR)

FIND SMALLEST POSITIVE RATIO
B(*) /TAB(*, JP) , IDENTIFYING PIVOT
ROW IP

RECEIVE COLJP FROM PROCESSOR THAT OWNS IT

RATMIN = BIGNO
IP = 0
DO 65 I=l,M

IF (COLJP(1) .GT.THRESH) THEN
RATIO = TAB (I, N+M+ 1) /COL JP (I)
IF (RATIO.LT.RATMIN) THEN

6.2. PARALLEL COMPUTERS 211

RATMIN = RATIO

65
C
C

70

C

C

75

C
C
C

80
C

85

C

IP = I
ENDIF

ENDIF
CONTINUE

IF ALL RATIOS NONPOSITIVE, MAXIMUM
IS UNBOUNDED

IF (IP.EQ.0) THEN
IF (ITASK.EQ.0)
FORMAT (’ *****
RETURN

ENDIF

BASIS(1P) = JP

PRINT 70
UNBOUNDED

ADD X(JP)

NORMALIZE

MAXIMUM * * * * * I)

TO BASIS

PIVOT ROW TO MAKE TAB(IP.JP)=I
AMULT = I.O/COLJP(IP)
DO 75 J=ITASK+l,N+M,NPES

CONTINUE
TAB (IP ,N+M+l) = AMULT*TAB (IP, N+M+l)

TAB(IP,J) = AMULT*TAB(IP.J)

DO

ADD MULTIPLES OF PIVOT ROW TO OTHER
ROWS. TO KNOCK OUT OTHER ELEMENTS IN
PIVOT COLUMN

85 I=l,MROW
IF (1.EQ.IP) GO TO 85
AMULT = COLJP(1)
DO 80 J=ITASK+l,N+M,NPES

CONTINUE

TAB(I,N+M+l) = TAB(I.N+M+l) - AMULT*TAB(IP,N+M+l)

TAB(1.J) = TAB(1.J) - AMULT*TAB(IP,J)

MODIFY B(1)

CONTINUE
GO TO 55

END OF SIMPLEX STEP
90 CONTINUE

C END OF PHASE 11; READ X,P,Y FROM
C FINAL TABLEAU

DO 95 J=l,N
X(J) = 0.0

95 CONTINUE
DO 100 I=l,M

K = BASIS(1)
X(K) = TAB(I,N+M+I)

100 CONTINUE
P = TAB(M+l,N+M+l)

C COLLECT PORTIONS (LROWI) OF LAST ROW FROM
C DIFFERENT PROCESSORS AND MERGE THEM
C INTO LROW, USING MPI-ALLREDUCE.

212 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

DO 105 J=l,N+M
LROWI(J) = 0.0
IF (MOD(J-1,NPES) .EQ.ITASK) LROWI(J) = TAB(M+l,J)

CALL MPI-ALLREDUCE(LROWI.LROW,N+M.MPI-DOUBLE-PRECISION.

DO 110 I=l,M

105 CONTINUE

& MPI_SUM,MPI_COMM_WORLD.IERR)

Y(1) = LROW(N+I)

CALL MPI-FINALIZE(IERR1
RETURN
END

110 CONTINUE

Figure 6.2.3

Table 6.2.3 shows the results on a Cray T3E (Pittsburgh Supercomputer
Center) when PLPRG (single precision version) was used to solve a resource
allocation problem with randomly generated coefficients, with 1000 inequal-
ities and 1000 variables (thus N = 2000 after adding slack variables, and
M = 1000). Loop 85 was replaced with the following code, which essentially
reverses the order of loops 80 and 85, so that the stride through the inner
loop is 1, resulting in a significant improvement in speed again:

DO 85 J=ITASK+l,N+M,NPES
AMULT = TAB(IP,J)
DO 80 I=l,MROW

IF (1.EQ.IP) GO TO 80
TAB (I, J) = TAB (I, J) - AMULT*COLJP (I)

80 CONTINUE
85 CONTINUE

C MODIFY B
AMULT = TAB(IP,N+M+l)
DO 86 I=l,MROW

IF (1.EQ.IP) GO TO 86
TAB(I,N+M+l) = TAB(I,N+M+l) - AMULT*COLJP(I)

86 CONTINUE

Another parallel routine is shown in Figure 6.2.4. Subroutine PCG solves
a symmetric linear system using the conjugate-gradient iterative method, de-
fined as follows [Sewell 2005, Section 4.81:

6.2. PARALLEL COMPUTERS 213

Table 6.2.3
PLPRG Results with Stride=l

M = 1000, N = 2000
NPES Time(sec)

1 243
2 127
4 66
8 36

16 22
32 15
64 12

128 11

xo = starting guess,
TO = b - A ~ o ,

Po = To,

An = (TZPn)/(PTAPn), n = 172, .*-,
Xn+1 1 xn + L P n ,

Tn+1 = r n - L A P , ,
an = -(TZ+;+1APn) / (d A p n) 7

Pn+l = fn+l + a n P n .

The multiplication of the sparse matrix A by p n is the most time consum-
ing calculation, and that is very easy to parallelize, because if A* is the part
of A stored on processor i, then A = A0 +Al+. . . , and so Ap, = Aop, + A l p n
+ .._ . The other calculations are also parallelized, and although all N el-
ements of X, R, P and AP are stored on each processor, the local processor
never touches any but “its” elements, ITASK-tl + k*NPES, k=0,1,2, ..., ex-
cept after convergence, when the parts of the solution vector X stored on the
different processors are merged together. The routine MPIALLREDUCE
plays a key role in this program.

SUBROUTINE PCG(A,IROW.JCOL.NZ,X,B,N)
IMPLICIT DOUBLE PRECISION (A-H. 0-Z)

DOUBLE PRECISION A(NZ) ,B(N) ,X(N)
INTEGER IROW(NZ), JCOL(NZ)

DOUBLE PRECISION R(N) ,P(N) ,API(N) ,AP(N) .LAMBDA
include ’mpif.h’

C DECLARATIONS FOR ARGUMENTS

C DECLARATIONS FOR LOCAL VARIABLES

214 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c

SUBROUTINE PCG SOLVES THE SYMMETRIC LINEAR SYSTEM A*X=B, USING THE
CONJUGATE GRADIENT ITERATIVE METHOD. THE NON-ZEROS OF A ARE STORED
IN SPARSE FORMAT. THE COLUNNS OF A ARE DISTRIBUTED CYCLICALLY OVER
THE AVAILABLE PROCESSORS.

ARGUMENTS

A - A(IZ) IS THE MATRIX ELEMENT IN
ROW IROW(IZ), COLUMN JCOL(IZ),
FOR IZ=1, ..., NZ. ELEMENTS WITH
MOD(JCOL(1Z)-l,NPES)=ITASK
ARE STORED ON PROCESSOR ITASK.

IROW - (SEE A).

JCOL - (SEE A).

NZ - NUMBER OF NONZEROS STORED ON
THE LOCAL PROCESSOR.

X -

B - THE RIGHT HAND SIDE N-VECTOR.

N - SIZE OF MATRIX A.

AN N-VECTOR CONTAINING
THE SOLUTION.

C

C

C
C
C

10
C

C

NPES = NUMBER OF PROCESSORS

ITASK = MY PROCESSOR NUMBER

xo = 0
RO = B
PO = RO

CALL MPI-CONK-SIZE (HPI-COMM-WORLD ,NPES, IERR)

CALL MPI-CONK-RANK (HPI-COMM-WORLD,ITASK.IERR)

X(1:N) = 0
DO 10 I=ITASK+I,N,NPES

R(1) = B(1)
P(1) = R(1)

CONTINLTE

NITER = 10000
DO 90 ITER=I,NITER

NITER = MAX NUMBER OF ITERATIONS

AP = A*P

6.2. PARALLEL COMPUTERS 215

20
C
C
C
C

&
C

30

B
C

40

&
C

C
C

50
C

60

&
C

C

70
C

API(1:N) = 0
DO 20 IZ=l,NZ

I = IROW(1Z)
J = JCOL(1Z)
API(1) = API(1) + A(IZ)*P(J)

CONTINUE
MPI-ALLREDUCE COLLECTS THE VECTORS API
(API = LOCAL(A)*P) FROM ALL PROCESSORS
AND ADDS THEM TOGETHER, THEN SENDS
THE RESULT, AP, BACK TO ALL PROCESSORS.

CALL MPI-ALLREDUCE(API,AP.N,MPI-DOUBLE-PRECISION.
MPI_SUM.MPI_COMM_WDRLD.IERR)

PAP = (P,AP)
PAPI = 0.0
DO 30 I=ITASK+l,N,NPES

CONTINUE
CALL MPI-ALLREDUCE(PAPI.PAP,l,MPI_DDUBLE-PRECISION,

PAPI = PAPI + P(I)*AP(I)

MPI_SUM.MPI_COMM_WORLD.IERR)
RP = (R.P)

RPI = 0.0
DO 40 I=ITASK+I.N,NPES

CONTINUE
RPI = RPI + R(I)*P(I)

CALL MPI-ALLREDUCE(RPI.RP,l,MPI-DOUBLE-PRECISION,
MPI-SUM,MPI_COMM-WORLD.IERR)

LAMBDA = (R,P)/(P.AP)

X = X + LAMBDA*P
R = R - LAMBDA*AP

LAMBDA = RP/PAP

DO 50 I=ITASK+l.N,NPES
X(1) = X(1) + LAMBDA*P(I)
R(1) = R(1) - LAMBDA*AP(I)

CONTINUE

RAPI = 0.0
DO 60 I=ITASK+l.N,NPES

CONTINUE
CALL MPI~ALLREDUCE(RAPI,RAP,l,MPI~DOUBLE~PRECISION,

RAP = (R,AP)

RAPI = RAPI + R(I)*AP(I)

MPI-SUM,MPI_CDMM_WORLD.IERR)
ALPHA = - (R, AP) / (P, AP)

ALPHA = -RAP/PAP
P = R + ALPHA*P

DO 70 I=ITASK+l,N,NPES

CONTINUE
P(1) = R(1) + ALPHA*P(I)

RMAX = MAX OF RESIDUAL (R)

216 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

80

&

C
C

%

RMAXI = 0
DO 80 I=ITASK+l,N,NPES

CONTINUE
CALL MPI~ALLREDUCE(RMAXI,RMAX,1,MPI~DOUBLE~PRECISION,

IF (ITF.R.EQ.1) THEN
ROMAX = W A X

ELSE

RMAXI = MAX(RMAXI,ABS(R(I)))

MPI-MAX,MPI_COMM_WORLD,IERR)

IF CONVERGED, MERGE PORTIONS OF X
STORED ON DIFFERENT PROCESSORS

IF (RMAX .LE. 1. D-lO*ROMAX) THEN
IF (ITASK.EQ.0) PRINT *. ' Number of i terat ions = ',ITER
CALL MPI_ALLREDUCE(X,R,N.MPI_DOUBLE_PRECISION,

X(1:N) = R(1:N)
RETURN

MPI-SUM.MPI-COMM-WORLD, IERR)

ENDIF
ENDIF

90 CONTINUE
C PCG DOES NOT CONVERGE

IF (ITASK.EQ.0) PRINT 100

RETURN
END

100 FORMAT('***** PCG DOES NOT CONVERGE *****'I

Figure 6.2.4

This conjugate-gradient subroutine is used in Figure 6.2.5 to solve the
symmetric linear system 1.8.10. The columns are distributed over the proces-
sors in the main program, and the solution at the box center is output after
convergence, to check the result.

If the matrix A has N Z nonzeros, then the total work per iteration is
about 2NZ + 12N flops (2 N Z flops in loop 20, 12N in loops 30-70), while
N + 4 words are communicated by MPI-ALLREDUCE between processors.
The work in every loop is distributed almost evenly over the processors, but
for this problem N Z is only about 7N, and so the ratio of computation to
communication (about 26:1, i.e., 26 floating point operations are done for
every number communicated) is too low for good parallel performance.

PCG was also used to solve a large 3D linear system generated by the finite
element program PDE2D (www.pde2d.com), with N =3456 and NZ(tota1) =
1477152. For this problem there were about 427 nonzeros per row, so the ratio
of computation to communication is now about 866:1, and the performance
was better, as seen in Table 6.2.4. These tests were run on an IBM P690 at
University of Texas El Paso.

6.2. PARALLEL COMPUTERS 217

Table 6.2.4

PCG Results on Finite Element Linear System

N = 3456, N Z = 1477152
NPES Time(sec)

1 409
2 216
4 121
8 77

16 97

PARAMETER (M=20,N=(M-l) **3,NZMAX=7*N)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)
DIMENSION IROW(NZMAX) , JCOL(NZMAX) ,AS(NZMAX) ,X(N) ,B(N)
INCLUDE 'mpif.h'

CALL MPI-INIT (IERR)

CALL MPI-COMM-SIZE (MPI-COMM-WORLD.NPES.IERR)

CALL MPI-COMM-RANK (MPI-COMM-WORLD.ITASK,IERR)

H = l.dO/M
L = O
NZ = 0
DO 10 1-1,M-1
DO 10 JZ1.M-1
DO 10 K=l,M-1

L = L+l
IF (MOD(L-l.NPES).EQ.ITASK) THEN

C INITIALIZE MPI

C NPES = NUMBER OF PROCESSORS

C ITASK = MY PROCESSOR NUMBER

C SOLVE 1.8.10 USING CONJUGATE GRADIENT ITERATION

C DISTRIBUTE L-TH COLUMN TO PROCESSOR MOD(L-1,NPES)
NZ = NZ + 1
IROW(NZ) = L
JCOL(N2) = L
AS(NZ) = 6
IF (K.NE.1) THEN

NZ = NZ + 1

JCOL(NZ) = L
IROW(NZ) = L-1

AS(NZ) = -1
ENDIF
IF (K.NE.M-1) THEN

NZ = NZ + 1
IROW(NZ) = L+l
JCOL(NZ) = L

218 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

AS(NZ) = -1
ENDIF
IF (J.NE.l) THEN

NZ = NZ + 1
IROW(NZ) L-(M-l)
JCOL(NZ) = L
AS(NZ) = -1

ENDIF
IF (J.NE.M-1) THEN

NZ = NZ + 1
IROW(NZ) = L+(M-l)
JCOL(NZ) = L
AS(NZ) = -1

ENDIF
IF (I.NE.1) THEN

NZ = NZ + 1
IROW (NZ) = L-(M-l) **2
JCDL(NZ) = L
AS(NZ) = -1

ENDIF
IF (1.NE.M-1) THEN

NZ = NZ + 1

JCOL(NZ) = L
IROW(NZ) = L+(M-1)**2

AS(N2) = -1
ENDIF

ENDIF
B(L) = H**2

10 CONTINUE
CALL PCG(AS , IROW, JCOL ,NZ .X ,B .N)

C SOLUTION AT BOX CENTER SHOULD BE ABOUT 0.056
IF (ITASK.EQ.0) PRINT *, ' Solution at midpoint = '.X((N+1)/2)
CALL MPI-FINALIZE(IERR)
STOP
END

Figure 6.2.5

6.3 Problems

1. The Jacobi iterative method 1.8.4 can be written in the form zn+l =
z, i- D-'(b - Az,,). Write an MPI-based subroutine JACOB1 with ar-
guments (A,IROW,JCOL,NZ,X,B,N), which iterates the Jacobi method
to convergence, to solve an N by N (possibly nonsymmetric) linear
system Aa: = b, with sparse matrix A distributed over the available
processors. Solve the system 1.8.10, using the main program in Figure

6.3. PROBLEMS 219

6.2.5 to test your program. For M = 20, compare the number of itera-
tions required by the Jacobi iteration, to the number (53) used by the
conjugate-gradient method. Run with 2 and 4 processors; the wall clock
time will probably increase with increasing NPES. Why?

2. a. Use PLINEQ (Figure 6.2.1) to solve the linear system 1.8.10, and
output the solution at the midpoint again, to check your answer.
You can use the main program from Figure 6.2.5 to define the
matrix AS in sparse format; then copy AS to an N by N full
matrix A (inefficient for a sparse system such as this, of course),
with columns also distributed over the available processors. You
will need to remove the CALL MPIJNIT in PLINEQ since you are
now initializing MPI in the main program.

Run with 2, 4, and 8 processors, with M as large as you can make
it without memory overflow. If you don’t see much speed-up with
increasing NPES, try removing the lines ”IF (LJI.NE.O.0) THEN
- ENDIF” from PLINEQ. Then PLINEQ will treat this banded
system as a full matrix, and even more computer time will be re-
quired, but the effect of increasing NPES will be more pronounced.
(It is often possible to increase a program’s megaflop rate by mak-
ing it less efficient; and it is easy to forget that this is not really
progress!)

b. In part (a), although no processor ever touches any columns but
its own, you are still storing the entire N by N matrix on every
processor. This can be avoided, as suggested in the text, by re-
placing every reference to A (I , J) by A (I , (J - l) / N P E S + l) , in
both the main program and PLINEQ. Then A can be dimensioned
A (N , (N-l)/NPES+l) and each processor will only store its own
columns. However, NPES is not known until execution time, so you
cannot dimension A in a DIMENSION statement; you should use
the FORTRAN90 ALLOCATE statement to dynamically allocate
space for A. This means

ALLOCATABLE A (: , :)

CALL MPI-COMM-SIZE (MPI-COMM-WORLD,NPES,IERR)
ALLOCATE (A (N , (N- 1) /NPES+l))

Make these modifications and retest your program. You should be
able to solve problems with larger M now, using many processors.

3. Write a parallel version, PLLSQR, of the linear least squares routine
of Figure 2.2.2. You can follow closely the pattern used by PLINEQ

220 6. LINEAR ALGEBRA ON SUPERCOMPUTERS

(Figure 6.2.1), and distribute the columns of A cyclically over the avail-
able processors. In REDQ, whoever has the active column L should
broadcast it to the other processors, who should save it in a vector
COLUMNL, since all need access to this column. Each processor will
need to modify COLUMNL itself, as well as their own columns, since
COLUMNL(1) changes and is used, each pass through the loop 10. The
back substitution can be done almost exactly as in PLINEQ. ERRLIM
can be passed as an argument to PLLSQR, if desired.

Since PLLSQR should find the exact solution of Ax = b if there is one,
you can test your routine on the system 1.8.10 again, simply repeat
both parts of Problem 2 using PLLSQR in place of PLINEQ. Physically
distributing the columns of A over the processors (part (b)) will be easy,
as in PLINEQ. However, switching the order of the REDQ loops 5 and
10, to produce a unit stride in the inner loop, would be more difficult.
Why?

4. Set b = (1,. . . , 1) and use a random number generator with output in
(0,l) (e.g., the FORTRAN90 routine RANDOM-NUMBER) to generate
the coefficients of an M by M matrix A, and the M-vector c in the
resource allocation problem

maximize cTx

with constraints and bounds

With M = 250, solve this problem using DLPRG (Figure 4.5.1), with
one modification: increase the first dimension of TAB from M+2 to
256. Record the computer time to solve this problem, then rerun the
same problem with the first dimension of TAB set to 257. On most
computers-pipeline, parallel, or neither-DLPRG will run much faster
when the first dimension is 257. Explain why.

5 . Why is it preferable, in PLINEQ, to distribute the columns of A cycli-
cally over the processors rather than by blocks, that is, assigning the
first N/NPES columns to processor 0, and so on?

Appendix A-MATLAB
Programs

All of the FORTRAN90 codes given in Chapters 1-5 have been translated
into MATLAB programs, which are listed below. Both versions are available
from the author (see Preface).

Since MATLAB does not allow zero or negative subscripts, Figures 1.5.4,
1.8.1, and 1.8.2 had to be rewritten slightly to keep subscripts positive; oth-
erwise the MATLAB versions are almost line by line translations of the FOR-
TRANS0 codes. MATLAB vector syntax (e.g., A(1:N) = B(l:N)), while pop-
ular with users, is not used here, for the same reason it is not used in the
FORTRAN90 versions: It is easier for the student to analyze the computa-
tional complexity of the algorithms if all for/DO loops are shown explicitly
(and indented).

There are many good MATLAB references, including Higham and Higham
[2000] and Hanselman and Littlefield [2001].

x
x
x
x
x
x
x
x
x
x
x
x
x
x

function [X,IPERM,Al = DLINEQ(A.N,B)

FUNCTION DLINEQ SOLVES THE LINEAR SYSTEM A*X=B

ARGUMENTS

ON INPUT ON OUTPUT
- - - - - - - - - - - - - - - - -

A - THE N BY N COEFFICIENT MATRIX. THE DIAGONAL AND UPPER
TRIANGLE OF A CONTAINS
AND THE LOWER TRIANGLE
OF A CONTAINS THE LOWER
TRIANGLE OF L. WHERE
PA = LU, P BEING THE
PERMUTATION MATRIX
DEFINED BY IPERM.

U

221

222 A. MATLAB PROGRAMS

% N - THE SIZE OF MATRIX A.
x
x x
x THE SOLUTION.
%
X B - THE RIGHT HAND SIDE N-VECTOR.
x
X IPERM - AN N-VECTOR CONTAINING
x A RECORD OF THE ROW
x INTERCHANGES MADE. IF
x J = IPERMCK), THEN ROW
x J ENDED UP AS THE K-TH
x ROW.
x
...

- AN N-VECTOR CONTAINING

x

x

x
x

x
x

x
%

x

x

x

INITIALIZE IPERM = (1,2,3, ..., N)
f o r K=l:N

end

f o r I=l:N-l

IPERMCK) = K;

BEGIN FORWARD ELIMINATION

SEARCH FROM A(1,I) ON DOWN FOR
LARGEST POTENTIAL PIVOT, A(L.1)

BIG = abs(A(1,I));
L = I;
f o r J=I+l:N

i f (abs(A(J.1)) > BIG)
BIG = abs(A(J,I));
L = J;

end
end

IF LARGEST POTENTIAL PIVOT IS ZERO,
MATRIX IS SINGULAR

i f (BIG == 0.0)

end
error(’***** THE MATRIX IS SINGULAR * * * * * I)

SWITCH ROW I WITH ROW L, TO BRING
UP LARGEST PIVOT

f o r K=l:N
TEMP = A(L,K);
A(L,K) = A(1,K);
A(1,K) = TEMP;

end

TEMP = B(L);
B(L) = B(1);
B(1) = TEMP;

ITEMP = IPERMCL);
IPERM(L) = IPERM(1);
IPERM(1) = ITEMP;
f o r J=I+l:N

SWITCH B(1) AND B(L)

SWITCH IPERM(1) AND IPERM(L)

CHOOSE MULTIPLIER TO ZERO A(J,I)
LJI = A(J,I)/A(I,I);
i f (LJI -= 0.0)

A. MATLAB PROGRAMS 223

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

function X = DRESLV(A,N,C,IPERM)

FUNCTION DRESLV SOLVES THE LINEAR SYSTEM A*X=C IN O(N**2) TIME,
AFTER DLINEQ HAS PRODUCED AN LU DECOMPOSITION OF PA.

ARGUMENTS

ON INPUT ON OUTPUT
- - - - - - - - - - - - - - -- -

A - THE N BY N COEFFICIENT MATRIX
AFTER PROCESSING BY DLINEQ.
AS OUTPUT BY DLINEQ, A CONTAINS
AN LU DECOMPOSITION OF PA.

N - THE SIZE OF MATRIX A.
X - AN N-VECTOR CONTAINING

THE SOLUTION.

C - THE RIGHT HAND SIDE N-VECTOR.

IPERM - THE PERMUTATION VECTOR OF
LENGTH N OUTPUT BY DLINEQ.

A. MATLAB PROGRAMS 223

x

SUBTRACT LJI TIMES ROW I FROM ROW J
for K=I+l:N

end

B(J) B(J) - LJI*B(I);

A(J,K) = A(J,K) - LJI*A(I,K);

SUBTRACT LJI TIMES B(I) FROM B(J)

end
SAVE LJI IN A(J,I). IT IS UNDERSTOOD,
HOWEVER, THAT A(J,I) IS REALLY ZERO.

A(J,I) = LJI;
end

end
if (A(N,N) == 0 . 0)

end

X(N) = B(N)/A(N,N);
for I=N-l:-l:l

SUM = 0.0;
for J=I+l:N

end

error(’***** THE MATRIX IS SINGULAR *****’)

x SOLVE U*X = B USING BACK SUBSTITUTION.

SUM = SUM + A(I,J)*X(J);

X(1) = (B(I)-SUM)/A(I,I);
end

224 A. MATLAB PROGRAMS

for K=l:N
J = IPERMCK);
X(K) = C(J);

end
for K=l:N

end
C(K) = X(K);

x BEGIN FORWARD ELIMINATION, TO CALCULATE
x c = L̂ (-l)*C

for I=l:N-l
for J=I+l:N

x RETRIEVE MULTIPLIER SAVED IN A(J.1)

x SUBTRACT LJI TIMES C(1) FROM C(J)
LJI = A(J.1);

C(J) = C(J) - LJI*C(I);
end

end

X(N) = C(N)/A(N,N);
for I=N-1:-1:1

f o r J=I+l:N

end
X(1) = (C(I)-SUM)/A(I,I);

x SOLVE U*X = C USING BACK SUBSTITUTION.

SUM = 0.0;

SUM = SUM + A(I.J)*X(J);

end
I---

I--------------------------------------*--------------------------------

x
X FUNCTION DBAND SOLVES THE LINEAR SYSTEM A*X=B, WHERE A IS A
x BAND MATRIX.

I---------------------------- FIGURE 1.5.4

function X = DBAND(A.N,NLD,NUD,B)

1.
x
x

x
x
x

ARGUMENTS

ON OUTPUT

A - THE N BY NUD+2*NLD+l BAND MATRIX.
FIRST NLD COLUMNS = SUBDIAGONALS
NEXT 1 = MAIN DIAGONAL
NEXT NUD = SUPERDIAGONALS
NEXT NLD = WORKSPACE (FILL-IN)

N - THE SIZE OF MATRIX A.

NLD - NUMBER OF NONZERO LOWER DIAGONALS
IN A, I.E., NUMBER OF DIAGONALS
BELOW THE MAIN DIAGONAL.

1.
X NUD - NUMBER OF NONZERO UPPER DIAGONALS
x IN A, I.E., NUMBER OF DIAGONALS
x ABOVE THE MAIN DIAGONAL.
x

A. MATLAB PROGRAMS 225

AN N-VECTOR CONTAINING
THE SOLUTION.

MD = NLD+l;

for I=1 :N
for J=NUD+l:NUD+NLD

A(I,MD+J) = 0.0;
end
end

for I=l:N-l

ZERO TOP NLD DIAGONALS (WORKSPACE)

BEGIN FORWARD ELIMINATION

SEARCH FROM A11 ON DOWN FOR
LARGEST POTENTIAL PIVOT, ALI

BIG = abs(A(1,MD));
L = I;
for J=I+l:min(I+NLD,N);

if (abs(A(J,MD+I-J)) > BIG)
BIG = abs(A(J,MD+I-J));
L = J;

end
end

IF LARGEST POTENTIAL PIVOT IS ZERO,
MA%IX IS SINGULAR

if (BIG == 0.0)

end
error(>***** THE MATRIX IS SINGULAR *****'I

SWITCH ROW I WITH ROW L, TO BRING
UP LARGEST PIVOT

for K=I:min(I+NUD+NLD,N)
TEMP zs A(L.MD+K-L);
A(L,MD+K-L) = A(I,MD+K-I);
A(I,MD+K-I) = TEMP;

end

TEMP = B(L);
B(L) = B(1);
B(1) = TEMP;
for J=I+l:min(I+NLD,N)

SWITCH B(1) AND B(L)

CHOOSE MULTIPLIER TO ZERO AJI
LJI = A(J,MD+I-J)/A(I,MD);
if (uI -= 0.0)

SUBTRACT LJI

A(J,MD+K-J) = A(J,MD+K-J)

SUBTRACT LJI

for K=I:min(I+NUD+NLD,N)

end

B(J) = B(J) - LJI*B(I);
end

and
end

TIMES ROW I FROM ROW J

- LJI*A (I, MD+K-I ;
TIMES B(1) FROM B(J)

A. MATLAB PROGRAMS

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
%
x
x
x
x
x
x
x
x
x
x
x
x
x

function YOUT = DSPLN(X.Y, N ,YXX1 ,YXXN ,XOUT ,NOUT)

FUNCTION DSPLN FITS AN INTERPOLATORY CUBIC SPLINE THROUGH THE
POINTS (X(I),Y(I)), I=l, ..., N, WITH SPECIFIED SECOND DERIVATIVES
AT THE END POINTS, AND EVALUATES THIS SPLINE AT THE OUTPUT POINTS
XOUT(l), ..., XOUT(N0UT).

ARGUMENTS

X -

Y -

N -

YXXl -

YXXN -

XOUT -

YOUT -

A VECTOR OF LENGTH N CONTAINING
THE X-COORDINATES OF THE DATA
POINTS.

A VECTOR OF LENGTH N CONTAINING
THE Y-COORDINATES OF THE DATA
POINTS.

THE NUMBER OF DATA POINTS
(N >= 3) .

THE SECOND DERIVATIVE OF THE
CUBIC SPLINE AT X (1) .

THE SECOND DERIVATIVE OF THE
CUBIC SPLINE AT X(N). (YXXl=O
AND YXXN=O GIVES A NATURAL
CUBIC SPLINE)

A VECTOR OF LENGTH NOUT CONTAINING
THE X-COORDINATES AT WHICH THE
CUBIC SPLINE IS EVALUATED. THE
ELEMENTS OF XOUT MUST BE IN
ASCENDING ORDER.

A VECTOR OF LENGTH NOUT.
YOUT(1) CONTAINS THE
VALUE OF THE SPLINE

226 A. MATLAB PROGRAMS

if (A(N,MD) == 0.0)

end

X(N) = B(N)/A(N,MD);
f o r I=N-l:-1:1

error(’***** THE MATRIX IS SINGULAR *****’I

SOLVE U*X = B USING BACK SUBSTITUTION.

SUM = 0.0;
for J=I+l:rnin(I+NUD+NLD,N)

end
SUM = SUM + A(I,MD+J-I)*X(J);

X(1) = (B(I)-SUM)/A(I,MD);
end

A . MATLAB PROGRAMS 227

SIC(1) = YXX1;
SIG(N) = YXXN;

SET UP TRIDIAGONAL SYSTEM SATISFIED
BY SECOND DERIVATIVES (SIG(I)=SECOND
DERIVATIVE AT X(1)).

f o r I=l:N-2
HI = X(I+l)-X(I);
HIP1 = X(I+2)-X(I+I);
R(1) (Y(I+P)-Y(I+l))/HIPl - (Y(I+l)-Y(I))/HI;
A(I.1) = HI/6.0;
A(I,2) = (HI + HIP1)/3.0;
A(I,3) = HIP1/6.0;
if (I == 1)

end
i f (I == N-2)

end

R (1) R (1) - HI/ G.O*SIC(I);

R(N-2) = R(N-2) - HIPI/G.O*SIC(N) ;

end

NLD = 1;
NUD = 1;
SIC(2 :N-1) = DBANDCA ,N-2, NLD ,NUD ,R) ;

CALL DBAND TO SOLVE TRIDIACONAL SYSTEM

CALCULATE COEFFICIENTS OF CUBIC SPLINE
IN EACH SUBINTERVAL

f o r I=I:N-1
HI = X(I+l)-X(I);
COEFF(1,I) = Y(1);
COEFF(2,I) = (Y(I+l)-Y(I))/HI - HI/6.0*(2*SIC(I)+SIG(I+l));
COEFF(3,I) = SIG(I)/S.O;
COEFF(4, I) = (SIC(I+l) -SIC(I)) / (6.O*HI) ;

end
L = 1;
f o r I=l:NOUT

FIND FIRST VALUE OF J FOR WHICH X(J+1) IS
GREATER THAN OR EQUAL TO XOUT(1). SINCE
ELEMENTS OF XOUT ARE IN ASCENDING ORDER,
WE ONLY NEED CHECK THE KNOTS X(L+1) ... X(N)
WHICH ARE GREATER THAN OR EQUAL TO
XOUT(1-I).

f o r J=L:N-1
JSAVE = J;
if (X(J+l) >= XOUT(1))

break
end

end
L = JSAVE;

EVALUATE CUBIC SPLINE IN INTERVAL
(X(L) ,X(L+I))

P = XOUT(I)-X(L);

A. MATLAB PROGRAMS

JACOBI METHOD
M = 10;
H = I.O/M;

SET BOUNDARY KNOWNS TO ZERO PERMANENTLY
AND INTERIOR UNKNOWNS TO ZERO TEMPORARILY

f o r I=I:M+l
f o r J=l:M+l
f o r K=I:M+I

end
end
end

f o r ITER = 1:lOOOO

UOLD(I,J,K) = 0 . 0 ;

BEGIN JACOBI ITERATION

UPDATE UNKNOWNS ONLY
f o r I=2:M
f o r J=2:M
f o r K=2:M

UNEW(I,J,K) = H"2/6.0 + (UOLD(I+I,J.K) + UOLD(1-I,J,K) ..
+ UOLD(I,J+l,K) + UOLD(I,J-I,K) ..
+ UOLD(I.J,K+I) + UOLD(I,J,K-1))/6.0;

end
end
end

f o r I=2:M
f o r J=2:M
f o r K=2:M

end
end
end

COPY UNEW ONTO UOLD

UOLD(I,J,K) = UNEW(1,J.K);

EVERY 10 ITERATIONS CALCULATE MAXIMUM
RESIDUAL AND CHECK FOR CONVERGENCE

i f (mod(ITER,lO) -= 0)
continue

end
RMAX = 0.0;
f o r I=2:M
f o r J=2:M
f o r K=2:M

RESID = B*UOLD(I,J,K) - UOLD(I+l,J,K) - UOLD(1-1,J.K) ...
- UOLD(I,J+I,K) - UOLD(1.J-1.K) ...
- UOLD(I,J,K+I) - UOLD(I,J,K-I) - H-2;

RMAX = max(RMAX,abs(RESID));
end
end
end
ITER

A . MATLAB PROGRAMS 229

RMAX = RMAX/H^2
if (RMAX <= 1.0-10)

end
break

end
I---

I---
I---------------------------- FIGURE 1.8.2 -__-__-_____________---------

x GAUSS-SEIDEL METHOD
M = 10;
H = l.O/M;

x SET BOUNDARY KNOWNS TO ZERO PERMANENTLY
x AND INTERIOR UNKNOWNS TO ZERO TEMPORARILY

for I=l:M+l
for J=l:M+l
for K=l:M+1

end
end
end

f o r ITER = 1:lOOOO

U(I,J,K) = 0.0;

x BEGIN GAUSS-SEIDEL ITERATION

x UPDATE UNKNOWNS ONLY
for I=2:M
for J=2:M
for K=2:M

GAUSS = H-2/6.0 + (U(I+l,J,K) + U(1-1,J.K) ...
+ U(I,J+l,K) + U(I,J-l,K) ...
+ U(I,J,K+I) + U(I,J,K-1))/6.0;

U(I,J,K) = GAUSS;
end
end
end

x EVERY 10 ITERATIONS CALCULATE MAXIMUM
x RESIDUAL AND CHECK FOR CONVERGENCE

if (mod(ITER,lO) -= 0)
continue

end
RMAX = 0.0;
f o r I=2:M
for J=2:M
for K=2:M

RESID = 6*U(I,J,K) - U(I+1, J,K) - U(1-I, J,K) . . .
- U(I,J+l,K) - U(1,J-l.K) ...
- U(I,J,K+l) - U(1,J.K-1) - H-2;

RMAX = max(RMAX,abs(RESID));
end
end
end
ITER
RMAX = RMAX/H-2
if (RMAX <= 1.0-10)

end
break

end

A. MATLAB PROGRAMS

x
x
x
x
x
x
%
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

function X = DLLSQR(A,M,N,B)

FUNCTION DLLSQR SOLVES THE LINEAR LEAST SQUARES PROBLEM

MINIMIZE 2-NORM OF (A*X-B)

ARGUMENTS

ON INPUT

A - THE M BY N MATRIX.

M - THE NUMBER OF ROWS IN A.

N - THE NUMBER OF COLUMNS IN A.

X -

B - THE RIGHT HAND SIDE M-VECTOR.

AN N-VECTOR CONTAINING
THE LEAST SQUARES
SOLUTION.

AMAX = MAXIMUM ELEMENT OF A
AMAX = 0 . 0 ;
for I=l:M
for J=l:N

end
end
ERRLIM = 1000*EPS*AMAX;

[A ,B, PIVOT, NPIVOT] = REDQ(A ,M ,N ,B ,ERRLIM) ;

if (NPIVOT -= N)

end

AMAX = max(AMAX,abs(A(I,J)));

REDUCTION TO ROW ECHELON FORM

CAUTION USER IF SOLUTION NOT UNIQUE.

disp(’ NOTE: SOLUTION IS NOT UNIQUE ’)

ASSIGN VALUE OF ZERO TO NON-PIVOT
VARIABLES.

for K-l:N

end
X(K) = 0 . 0 ;

SOLVE FOR PIVOT VARIABLES USING BACK
SUBSTITUTION.

for I=NPIVOT:-1:1

A. MATLAB PROGRAMS 231

x

x

x
x

L = PIVOT(1);
SUM = 0.0;
for K=L+l:N

end
X(L) = (B(I)-SUM)/A(I,L);

SUM = SUM + A(I,K)*X(K);

end

function [A,B,PIVOT,NPIVOTl = REDQ(A,M,N,B,ERRLIM)

I dI.XI.dXXI.I . I .

x
x TO ROW ECHELON FORM

USE GIVENS ROTATIONS TO REDUCE A

I = 1;
for L=I:N

x USE PIVOT A(1,L) TO KNOCK OUT ELEMENTS
x I+1 TO M IN COLUMN L.

for J=I+l:M
if (A(J,L) == 0.0)

end
DEN = sqrt(A(I,L)-2+A(J,L)-2);
C = A(I,L)/DEN;
S = A(J,L)/DEN;

for K=L:N

continue

PREMULTIPLY A BY Qij-T

BIK = C*A(I,K) + S*A(J,K);
BJK =-S*A(I.K) + C*A(J,K);
A(1.K) = BIK;
A(J,K) = BJK;

end

BI = C*B(I) + S*B(J);
BJ =-S*B(I) + C*B(J);
B(1) = BI;
B(J) = BJ;

PREMULTIPLY B BY Qij-T

end
PIVOT A(1.L) IS NONZERO AFTER PROCESSING
COLUMN L--MOVE DOWN TO NEXT ROW, I+1

if (abs(A(1,L)) <= ERRLIM)
A(I,L) = 0.0;

end
if (A(I,L) -= 0.0)

NPIVOT = I;
PIVOT(NPIVOT) = L;
I = I+1;
if (I > M)

end
return

and
end

y---

y---

x USE HOUSEHOLDER TRANSFORMATIONS TO
x REDUCE A TO ROW ECHELON FORM

I---------------------------- FIGURE 2 3 1

function [A,B,PIVOT,NPIVOT] = REDH(A,M.N,B,ERRLIM)

A . MATLAB PROGRAMS

x

I = 1 ;
f o r L=i:N

x USE PIVOT A(1,L) TO KNOCK OUT ELEMENTS
x 1+1 TO M IN COLUMN L.

x CHOOSE UNIT M-VECTOR W (WHOSE FIRST
x 1-1 COMPONENTS ARE ZERO) SUCH THAT WHEN
x COLUMN L IS PREMULTIPLIED BY
x H = I - 2W*W-T, COMPONENTS I+1 THROUGH
x M ARE ZEROED.

x PREMULTIPLY A BY H = I - 2W*W"T

if (I+1 <= M)

W = CALW(A(l:M,L),M,I);

f o r K=L:N
WTA = 0.0;
f o r J=I:M

end
TWOWTA = 2*WTA;
f o r J=I:M

end

WTA = WTA + W(J)*A(J,K);

A(J,K) A(J,K) - TWOWTA*W(J);
end

WTA = 0.0;
f o r J=I:M

end
TWOWTA = 2*WTA;
f o r J=I:M

end

PREMULTIPLY B BY H = I - 2W*W**T

WTA = WTA + W(J)*B(J);

B(J) = B(J) - TWOWTA*W(J);

end
x PIVOT A(1.L) IS NONZERO AFTER PROCESSING
x COLUMN L--MOVE DOWN TO NEXT ROW. I+i

if (abs(A(1,L)) <= ERRLIM)
A(1.L) = 0.0;

end
i f (A(1,L) -= 0.0)

NPIVOT = I;
PIVOT(NPIV0T) = L;
I = I+i;
if (I > M)

end
return

end
end

function W = CALW(A,M.I)

.****..... x x x x x x x x x x

x SUBROUTINE CALW CALCULATES A UNIT
x M-VECTOR W (WHOSE FIRST 1-1 COMPONENTS
x ARE ZERO) SUCH THAT PREMULTIPLYING THE
x VECTOR A BY H = I - 2WtW-T ZEROES
x COMPONENTS I+1 THROUGH M.

s = 0.0;
f o r J=I:M

A. MATLAB PROGRAMS

S = S + A(J1-2;
W(J) = A(J);

end
if (A(1) >= 0.0)

BETA = sqrt(S);
else

BETA = -sqrt(S);
end
W(1) = A(1) + BETA;
TWOALP = sqrt(2*BETA*W(I));

x TWOALP=O ONLY IF A(1). ..., A(M) ARE ALL
x ZERO. IN THIS CASE, RETURN WITH W=O

if (TWOALP == 0.0)

end

for J=I:M

end

return

x NORMALIZE W

W(J) = W(J)/TWOALP;

233

X FUNCTION DLSQSP CALCULATES A NATURAL CUBIC SPLINE WITH KNOTS AT
X X(1). ..., X(N) WHICH IS THE LEAST SQUARES FIT TO THE DATA POINTS
X (XD(I),YD(I)), I=l, ..., M, AND EVALUATES THIS SPLINE AT THE OUTPUT
X POINTS XOUT(1). . . . ,XOUT(NOUT).
x
X ARGUMENTS
x
x ON INPUT ON OUTPUT
x -- - - - -- - - -- - -- -- -

x x - A VECTOR OF LENGTH N CONTAINING
x THE SPLINE KNOTS.
x
% N - THE NUMBER OF KNOTS.
x (N >= 3).
x
X XD - A VECTOR OF LENGTH M CONTAINING
x THE X-COORDINATES OF THE DATA
x POINTS.
7.
x
x
x

x
x

YD - A VECTOR OF LENGTH M CONTAINING
THE Y-COORDINATES OF THE DATA
POINTS.

M - THE NUMBER OF DATA POINTS.

XOUT - A VECTOR OF LENGTH NOUT CONTAINING
THE X-COORDINATES AT WHICH THE
CUBIC SPLINE IS EVALUATED. THE
ELEMENTS OF XOUT MUST BE IN
ASCENDING ORDER.

234 A . MATLAB PROGRAMS

A VECTOR OF LENGTH NOUT.
YOUT(1) CONTAINS THE
VALUE OF THE SPLINE
AT XOUTCI).

%
x

%
%
x

ARGUMENTS

A - THE N BY N SYMMETRIC MATRIX. A DIAGONAL MATRIX,
WITH THE EICENVALUES
OF A ON THE DIAGONAL.

N - THE SIZE OF MATRIX A.

x X - AN N BY N MATRIX WHICH

ZERO = 0.0;
f o r J=l:N

end
f o r J=l:N

Y(J) = 0.0;

Y(J) = 1.0;
CALCULATE PHI(J,X), NATURAL CUBIC SPLINE
WHICH IS EQUAL TO ONE AT KNOT X(J) AND
ZERO AT OTHER KNOTS. THEN SET

A(1.J) = PHI(J,XD(I)). I=l, ..., M
AJ = DSPLN(X.Y,N,ZERO,ZERO,XD,M);
f o r I=l:M

end
Y(J) = 0.0;

A(I,J) = AJ(1);

end

Y = DLLSQR(A,M,N,YD);
x

% LEAST SQUARES SPLINE IS
x Y(l)*PHI(l,X) + ... + Y(N)*PHI(N,X).
x

CALL DLLSQR TO MINIMIZE NORM OF A*Y-YD

EVALUATE SPLINE AT XOUT(l), ..., XOUT(N0UT)
YOUT = DSPLN(X,Y,N,ZERO,ZERO,XOUT,NOUT);

I---
r---------------------------- FIGURE 3.2 1

function [A.Xl = DEGSYM(A,N)
x
X FUNCTION DEGSYM SOLVES THE EICENVALUE PROBLEM
x
x A*X = LAMBDA*X
x
% WHERE A IS A SYMMETRIC MATRIX.
x
%
% ARGUMENTS

A. MATLAB PROGRAMS 235

x
x

%
%

x

x

x

% CONTAINS THE EIGEN-
x VECTORS OF A IN ITS
x COLUMNS, IN THE SAME
x ORDER AS THE EIGENVALUES
x APPEAR ON THE DIAGONAL.
x r-------
x EPS = MACHINE FLOATING POINT RELATIVE
x PRECIS1 ON
x .

x
x
x X INITIALIZED TO IDENTITY

EPS = eps;

ANORM = SUM OF ALL SQUARES

ANORM = 0.0;
for I=I:N

for J=l:N
ANORM = ANORM + A(1.J)-2;
X(1.J) = 0.0;

end
X(I.1) = 1.0;

end
ERRLIM = IOOO*EPS*ANORM;

EK = 0.0;
for Ill :N
for J=l:N

x EK = SUM OF OFF-DIAGONAL SQUARES

if (I -= J)

end
EK = EK + A(1.J)-2;

end
end
if (EK <= ERRLIM)

end
THRESH 0.5*EK/N/(N-l);
while (1 > 0)

return

for I=I:N-1
for J=I+l:N

IF A(J,I)"2 LESS THAN HALF THE
AVERAGE FOR OFF-DIAGONALS, SKIP IT.

if (A(J,1)-2 <= THRESH)

end
continue

KNOCKING OUT A(J,I) WILL DECREASE OFF-
DIAGONAL SUM OF SQUARES BY 2*A(J,I)"2.

EK EK - 2*A(J,I)-2;

THRESH 0.5*EK/N/(N-l);

BETA = (A(1, I) -A (J , J> / (2 . *A(J, I) ;
FRACT = 0.5*BETA/sqrt (l.O+BETA-2) ;
S = sqrt(rnax(O.5-FRACT,O.O));
C = sqrt (max(O.5+FRACT,0.0) ;

CALCULATE NEW THRESHOLD.

CALCULATE C,S

PREMULTIPLY A BY Qij-T

236 A. MATLAB PROGRAMS

x

for K=I:N
PIK = C*A(I,K)+S*A(J,K);
PJK -S*A(I,K)+C*A(J,K);
A(1,K) = PIK;
A(J,K) = PJK;

end

for K=I:N
POSTMULTIPLY

BKI = C*A(K,I)+S*A(K,J);
BKJ = -S*A(K,I)+C*A(K.J);
A(K,I) = BKI;
A(K,J) = BKJ;
XKI = C*X(K,I)+S*X(K,J);
XKJ = -S*X(K,I)+C*X(K.J);
X(K.1) = XKI;
X(K,J) = XKJ;

end

A AND X BY Qij

x
- 'nu

if (EK <=
return

end
end

end
x

end

CHECK FOR CONVERGENCE
ERRLIM)

RETURN TO BEGINNING OF CYCLE

function EIG = DEGNON(A,N)
x
X FUNCTION DEGNON SOLVES THE EIGENVALUE
x
x A*X = LAMBDA*X
x
X WHERE A IS A GENERAL REAL MATRIX.
x
x
X ARGUMENTS
x
x ON INPUT
x
x
% A - THE N BY N MATRIX.
x
X N - THE SIZE OF MATRIX A.
x
X EIG -
x
x
x

- - -- - - --

PROBLEM

ON OUTPUT

A COMPLEX N-VECTOR
CONTAINING THE EICEN-
VALUES OF A.

x EPS = MACHINE FLOATING POINT RELATIVE
x PRECISION
x

EPS = eps;

A. MATLAB PROGRAMS 237

x

x

x

x .
x AMAX = MAXIMUM ELEMENT OF A

AMAX = 0 . 0 ;
f o r I=l:N
for J=l:N

end
end
ERRLIM = sqrt(EPS)*AMAX;

A = HESSQ(A,N);

A = QR(A,N,ERRLIM);

AMAX = max(AMAX.abs(A(I,J)));

x REDUCTION TO HESSENBERG FORM

x REDUCTION TO QUASI-TRIANGULAR FORM

x EXTRACT EICENVALUES OF QUASI-TRIANGULAR
x MATRIX

I = 1;
while (I <= N-1)

if (A(I+l,I) == 0.0)
1 BY 1 BLOCK ON DIAGONAL

EIG(1) = A(1,I);
I = I+l;

else
2 BY 2 BLOCK ON DIAGONAL

DISC (A(1 ,I)-A(I+l, 1+1))-2 + 4.0*A(I, I+1) *A(I+l, I) ;
TERM = 0.5*(A(I,I)+A(I+l ,I+l)) ;
if (DISC >= 0 . 0)

EIG(1) = TERM + 0.5*sqrt(DISC);
EIG(I+l)= TERM - 0.5*sqrt(DISC);

EIG(1) = TERM + 0.5*sqrt(-DISC)*i;
EIC(I+l)= TERM - 0.5*sqrt(-DISC)*i;

else

end
I = I+2;

end
end
if (I == N)

end

function A = HESSQ(A,N)
if (N <= 2)

return
end

EIGCN) = A(N,N);

. a , . . . I . . . L L L 4 L L L L L L

x USE GIVENS ROTATIONS TO REDUCE A
x TO UPPER HESSENBERG FORM

for 1-2:N-1
f o r J=I+l:N

if (A(J.1-1) == 0 . 0)

end
DEN = sqrt (A (I, 1-11 -2+A(J ,I-l) -2) ;
C = A(I,I-l)/DEN;
S = A(J,I-l)/DEN;

for K=I-l:N

continue

PRPlULTIPLY BY Qij-T

238 A. MATLAB PROGRAMS

x

x
x

x
x

PIK = C*A(I,K) + S*A(J,K);
PJK =-S*A(I,K) + C*A(J.K);
A(1,K) = PIK;
A(J,K) = PJK;

end

for K=I:N
POSTMULTIPLY BY Qij

BKI = C*A(K,I) + S*A(K,J);
BKJ =-S*A(K,I) + C*A(K,J);
A(K,I) = BKI;
A(K,J) = BKJ;

end
end

end

function A = QR(A,N,ERRLIM)
if (N <= 2)

return
end

,..,.. 1 . 1 1 LLLLLLLLLL

x
x MATRIX A TO QUASI-TRIANGULAR FORM

USE QR ITERATION TO REDUCE HESSENBERG

NITER = 1000*N;
for ITER=l:NITER

x
x ORTHOGONAL REDUCTION (PREMULTIPLY BY
x Qi j-T MATRICES)

REDUCE A TO UPPER TRIANGULAR FORM USING

for I=l:N-1
if (A(I+l,I) == 0.0)

c = 1.0;
s = 0 . 0 ;

DEN = sqrt(A(I,I)-2 + A(1+1,1)-2);
C = A(I,I)/DEN;
S = A(I+l,I)/DEN;

else

end
USE SAVE TO SAVE C,S FOR POST-
MULTIPLICATION PHASE

SAVE(1,I) = C;
SAVE(2,I) = S;
if (S == 0.0)

continue
end

IF MATRIX SYMMETRIC, LIMITS ON K
CAN BE: K = I : min(I+2,N)

for K=I:N
PIK = C*A(I,K) + S*A(I+l,K);
PJK =-S*A(I,K) + C*A(I+l,K);
A(1,K) = PIK;
A(I+l,K) = PJK;

end
end

for I4:N-1
x NOW POSTMULTIPLY BY Qij MATRICES

C = SAVE(l.1);
S = SAVE(2.1);

A. MATLAB PROGRAMS 239

i f (S == 0.0)
continue

end
IF MATRIX SYMMETRIC, LIMITS ON K
CAN BE: K = rnax(1,I-1) : I+1

f o r K=l:I+l
BKI = C*A(K,I) + S*A(K.I+l);
BKJ =-S*A(K,I) + C*A(K,I+l);
A(K,I) = BKI;
A(K,I+l) = BKJ;

end
end

SET NEARLY ZERO SUBDIAGONALS TO ZERO,
TO AVOID UNDERFLOW.

f o r I=l:N-l
i f (abs(A(I+l,I)) < ERRLIM)

end
A(I+l,I) = 0.0;

end
CHECK FOR CONVERGENCE TO “QUASI-
TRIANGULAR” FORM.

ICONV = 1;
f o r 1=2:N-1

i f (A(1,I-1) -= 0.0 k A(I+l,I) -= 0.0)

end
ICONV = 0;

end
if (ICONV == 1)

end
return

end

error(’***** QR ITERATION DOES NOT CONVERGE *****’)
HAS NOT CONVERGED IN NITER ITERATIONS

%---------------------------- FIGURE 3.4.2 ------__-____________________
x---

function A = HESSH(A.N)
i f (N <= 2)

return
end

x USE HOUSEHOLDER TRANSFORMATIONS TO
x

x CHOOSE UNIT N-VECTOR W (WHOSE FIRST
x 1-1 COMPONENTS ARE ZERO) SUCH THAT WHEN
x COLUMN 1-1 IS PREMULTIPLIED BY
x H = I - 2W*W^T, COMPONENTS 1+1 THROUGH
x N ARE ZEROED.

x PREMULTIPLY A BY H I - 2W*W-T

REDUCE A TO UPPER HESSENBERG FORM
f o r 1=2:N-l

W = CALW(A(1:N.I-l),N,I);

f o r K=I-1:N
WTA = 0.0;
f o r J=I:N

end
WTA = WTA + W(J)*A(J,K);

240 A. MATLAB PROGRAMS

TWOWTA = 2*WTA;
for J=I:N

end
A(J,K) = A(J,K) - TWOWTA*W(J);

end

for K=I:N
x POSTMULTIPLY A BY H = I - 2WtW-T

WTA = 0 . 0 ;
for J=I:N

end
TWOWTA = 2*WTA;
for J=I:N

end

WTA = WTA + W(J)*A(K,J);

A(K,J) = A(K,J) - TWOWTA*W(J);

end
end

I -

I -
I - FIGURE 3 4 4

function A = HESSM(A.N)
if (N <= 2)

return
end

x USE M i j TRANSFORMATIONS TO REDUCE A
x TO UPPER HESSENBERG FORM

x SEARCH FROM A(1,I-1) ON DOWN FOR
x LARGEST POTENTIAL PIVOT, A(L,I-l)

for I=2:N-l

BIG = abs(A(1,I-1));
L = I;
for J=I+l:N

if (abs(A(J.1-1)) > BIG)
BIG = abs(A(J,I-1));
L = J;

end
end

x IF ALL SUBDIAGONAL ELEMENTS IN COLUMN
x 1-1 ALREADY ZERO, GO ON TO NEXT COLUMN

if (BIG == 0 . 0)
continue

end
x PREMULTIPLY BY Pi1
x (SWITCH ROWS I AND L)

for K=I-l:N
TEMP = A(L,K);
A(L,K) = A(1.K);
A(I,K) = TEMP;

end
x POSTMULTIPLY BY Pil-(-l) = Pi1
x (SWITCH COLUMNS I AND L)

for K=l:N
TEMP = A(K,L);
A(K,L) = A(K,I);
A(K.1) = TEMP;

A. MATLAB PROGRAMS 241

x
x

x
x

x
x

x

x
x

end
f o r J=I+l:N

R = A(J,I-l)/A(I,I-l);
if (R == 0.0)

continue
end

PREMULTIPLY BY Mij-(-l)
(SUBTRACT R TIMES ROW I FROM ROW J)

f o r K=I-l:N

end
A(J,K) = A(J.K) - R*A(I,K);

POSTMULTIPLY BY Mij
(ADD R TIMES COLUMN J TO COLUMN I)

f o r K=l:N

end
A(K,I) = A(K.1) + R*A(K,J);

end
end

I -

I -
I---- FIGURE 3.4.5

function A = LR(A.N,ERRLIM)
if (N <= 2)

return
end

x USE LR ITERATION TO REDUCE HESSENBERG
x MATRIX A TO QUASI-TRIANGULAR FORM

NITER = 10001N;
f o r ITER=l:NITER

x REDUCE A TO UPPER TRIANGULAR FORM USING
x GAUSSIAN ELIMINATION (PREMULTIPLY BY
x Mij-(-l) MATRICES)

f o r I=l:N-l
i f (A(I+l,I) == 0 .0)

else
R = 0.0;

IF PIVOTING NECESSARY, GIVE UP
if (abs(A(I.1)) < ERRLIM)

end
R = A(I+l,I)/A(I,I);

break

end
USE SAVE TO SAVE R FOR POST-
MULTIPLICATION PHASE

SAVECI) = R;
i f (R == 0 .0)

cont inue
end

IF MATRIX TRIDIACONAL, LIMITS ON K
CAN BE: K = I : 1+1

f o r K=I:N

end
A(I+l,K) = A(I+l,K) - R*A(I,K);

end
NOW POSTMULTIPLY BY Mij MATRICES x

242 A. MATLAB PROGRAMS

x
x

for I=l:N-l
R = SAVE(1);
if (R == 0.0)

continue
end

IF MATRIX TRIDIAGONAL, LIMITS ON K
CAN BE: K = I : I+1

for K=l:I+l

end
A(K,I) = A(K,I) + R*A(K.I+l);

end
x
x TO AVOID UNDERFLOW.

if (abs(A(I+l,I)) < ERRLIM)

end

SET NEARLY ZERO SUBDIAGONALS TO ZERO,

f o r , I=l:N-I

A(I+l,I) = 0.0;

end
x CHECK FOR CONVERGENCE TO "QUASI-
x TRIANGULAR" FORM.

ICONV = 1;
for 1=2:N-l

if (A(I.1-1) -= 0.0 C A(I+l,I) -= 0.0)

end
ICONV = 0;

end
if (ICONV == 1)

end
return

end
error('*+*** LR ITERATION DOES NOT CONVERGE * * * * * I)

%---

I---

x
x FUNCTION OPOWER FINDS ONE EIGENVALUE OF A, AND A CORRESPONDING

I---------------------------- FIGURE 3.5 2

function [EIG ,V] = DPOWERCA ,N ,EIG .V, IUPDAT)

x
x
x
x
x
x
x
x
x
x
x
x
x
x
%
x
x
x

EIGENVECTOR, USING THE SHIFTED INVERSE POWER METHOD.

ARGUMENTS

A

N

EIG

V

- THE N BY N MATRIX.

- THE SIZE OF MATRIX A.

- A (COMPLEX) INITIAL GUESS AT
AN EIGENVALUE.

- A (COMPLEX) STARTING VECTOR
FOR THE SHIFTED INVERSE POWER
METHOD. IF ALL COMPONENTS OF

AN EIGENVALUE OF A.
NORMALLY THE ONE CLOSEST
TO THE INITIAL GUESS.

AN EIGENVECTOR OF A,
CORRESPONDING TO THE
COMPUTED EIGENVALUE.

A. MATLAB PROGRAMS 243

x
x

x

1 V ARE ZERO ON INPUT, A RANDOM
% STARTING VECTOR WILL BE USED.
x
X IUPDAT - THE NUMBER OF SHIFTED INVERSE
% POWER ITERATIONS TO BE DONE
1 BETWEEN UPDATES OF P. IF
x IUPDAT=l, P WILL BE UPDATED EVERY
% ITERATION. IF IUPDAT > 1000,
x P WILL NEVER BE UPDATED.
x
I---
x EPS = MACHINE FLOATING POINT RELATIVE
x PRECISION
x .

x .
x IF V = 0, GENERATE A RANDOM STARTING
x VECTOR

EPS = eps;

if (V == 0)
SEED = N+10000;
DEN = 2.0’31-1.0;
for I=l:N

SEED = rnod(7-5*SEED,DEN);
V(1) = SEED/(DEN+l.O);

end
end

VNORM = 0.0;
for I=l:N

end
VNORM = sqrt(VN0RM);
for I=l:N

x NORMALIZE V, AND SET VN=V

VNORM = VNORM + abs(V(I))-2;

V(1) = V(I)/VNORM;
VN(1) = V(1);

end

NITER = 1000;
for ITER=O:NITER

x BEGIN SHIFTED INVERSE POWER ITERATION

if (mod(ITER, IUPDAT) == 0)
EVERY IUPDAT ITERATIONS, UPDATE PN
AND SOLVE (A-PN*I)*VNPl = VN

PN = EIG;
for I-l:N
for J=l:N

if (I == J)

else

end

B(1,J) = A(1,J) - PN;

B(1,J) = A(1,J);

end
end
[VNPl ,IPERM.Bl = DLINEQ(B,N,V) ;

else
BETWEEN UPDATES, WE CAN USE THE LU

244

x
%

%
x

%

%
x

x

A. MATLAB PROGRAMS

DECOMPOSITION OF B=A-PN*I CALCULATED
EARLIER, TO SOLVE B*VNPI=VN FASTER

VNPl = DRESLV(B,N.V,IPERM);
end

CALCULATE NEW EIGENVALUE ESTIMATE,
PN + (VN*VN)/(VN*VNPI)

RNUM = 0.0;
RDEN = 0.0;
for I=l:N

RNUM = RNUM
RDEN = RDEN

end
R = RNUM/RDEN;
EIG = PN + R;

+ VN(I)*VN(I);
+ VN(I)*VNPI(I) ;

SET V = NORMALIZED VNPI
VNORM = 0.0;
f o r I=l:N

end
VNORM = sqrt(VN0RM);
for I=l:N

end

VNORM = VNORM + abs(VNPl(I))-2;

V(1) = VNPI(I)/VNORM;

IF R*VNPl = VN (R = (VN*VN)/(VN*VNPI)),
ITERATION HAS CONVERGED.

ERRMAX = 0.0;
for I=I:N

end
if (ERRMAX <= sqrt(EPS))

end

f o r 111 :N

end

ERRMAX = max(ERRMAX,abs(R*VNPI(I)-VN(I)));

return

SET VN = \I = NORMALIZED VNPI

VN(1) = V(1);

end
error(]***** INVERSE POWER METHOD DOES NOT CONVERGE *****I)

x
% WHERE B (l) , ..., B(M) ARE ASSUMED TO BE NONNEGATIVE.

x
x
x
x
%
%
x
x
x
x
x
x
x

function [P,X,Y] = DLPRGCA ,B ,C ,N ,M)

FUNCTION DLPRG USES THE SIMPLEX METHOD TO SOLVE THE PROBLEM

MAXIMIZE P = C(l)*X(l) + ... + C(N)*X(N)

WITH X(l), ..., X(N) NONNEGATIVE, AND

A(i,l)*X(l) + ... + A(l,N)*X(N) = B(1)

A(M,~)*X(~) + ... + A(M,N)*X(N) = B(M)

WHERE B(l), ..., B(M) ARE ASSUMED TO BE NONNEGATIVE.

A. MATLAB PROGRAMS 245

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

ARGUMENTS

ON INPUT

- THE M BY N CONSTRAINT COEFFICIENT
MATRIX.

- A VECTOR OF LENGTH M CONTAINING
THE RIGHT HAND SIDES OF THE
CONSTRAINTS. THE COMPONENTS OF
B MUST ALL BE NONNEGATIVE.

- A VECTOR OF LENGTH N CONTAINING
THE COEFFICIENTS OF THE OBJECTIVE
FUNCTION.

- THE NUMBER OF UNKNOWNS.

- THE NUMBER OF CONSTRAINTS.

THE MAXIMUM OF THE
OBJECTIVE FUNCTION.

A VECTOR OF LENGTH N
WHICH CONTAINS THE LP
SOLUTION.

A VECTOR OF LENGTH M
WHICH CONTAINS THE DUAL
SOLUTION.

r-------
x EPS = MACHINE FLOATING POINT RELATIVE
x PRECIS1 ON
x BIGNO = A VERY LARGE NUMBER
x

EPS = eps;
BIGNO = l.e.35;

P = 0 ;
X = zeros(N,l);
Y = zeros(M,l);

x ****************?*****?******

x BASIS(l), ..., BASIS(M) HOLD NUMBERS OF
x BASIS VARIABLES. INITIAL BASIS CONSISTS
x OF ARTIFICIAL VARIABLES ONLY

for 1=1 :M

end

for I=l:M+2
for J=l:N+M+l

end

BASIS(1) = N+I;

x INITIALIZE SIMPLEX TABLEAU

TAB(1,J) = 0 . 0 ;

A. MATLAB PROGRAMS

x
x

x
x

x

x
x

x
x

x
x
x

x
x

end
LOAD A INTO UPPER LEFT HAND CORNER
OF TABLEAU

for 111 :M
for J=l:N

end
end

TAB(1.J) = A(1,J);

LOAD M BY M IDENTITY TO RIGHT OF A
AND LOAD B INTO LAST COLUMN

for 1=1 :M
TAB(I,N+I) = 1.0;
TAB(I,N+M+l) = B(1);

end

for J=l:N

end

ROW M+l CONTAINS -C, INITIALLY

TAB(M+l,J) = -C(J);

ROW M+2 CONTAINS COEFFICIENTS OF
"ALPHA", WHICH IS TREATED AS +INFINITY

for 1=1 :M

end

for I=l:M
for J=l:N+M+l

end
end

for IPHASE=1:2

TAB(M+2,N+I) = 1.0;

CLEAR "ALPHAS" IN LAST ROW

TAB(M+2,J) = TAB(M+2,J) - TAB(1,J);

SIMPLEX METHOD CONSISTS OF TWO PHASES

if (IPHASE == 1)
PHASE I: ROW M+2 (WITH COEFFICIENTS OF
ALPHA) SEARCHED FOR MOST NEGATIVE ENTRY

MROW = M+2;
LIM = N+M;

else
PHASE 11: FIRST N ELEMENTS OF ROW M+1
SEARCHED FOR MOST NEGATIVE ENTRY
(COEFFICIENTS OF ALPHA NONNEGATIVE NOW)

MROW = M+1;
LIM = N;

IF ANY ARTIFICIAL VARIABLES LEFT IN
BASIS AT BEGINNING OF PHASE 11, THERE
IS NO FEASIBLE SOLUTION

for 1=1 :M
if (BASIS(1) > N)

disp (I * * * * * NO FEASIBLE SOLUTION * * * * * I)

return
end

end
end

THRESH = SMALL NUMBER. WE ASSUME SCALES
OF A AND C ARE NOT *TOO* DIFFERENT

THRESH = 0.0;

A. MATLAB PROGRAMS 247

x

x
x

x
x

x
x
x

x
x

x

x

x
x
x

for J=I:LIM

end
THRESH = lOOO*EPS*THRESH;

while (1 > 0)

THRESH = rnax(THRESH ,abs (TAB(MR0W. J))) ;

BEGINNING OF SIMPLEX STEP

FIND MOST NEGATIVE ENTRY IN ROW MROW,
IDENTIFYING PIVOT COLUMN JP

CMIN = -THRESH;
JP = 0;
for J=I:LIM

if (TAB(MR0W.J) < CMIN)
CMIN = TAB(MR0W. J) ;
JP = J;

end
end

IF ALL ENTRIES NONNEGATIVE (ACTUALLY,
IF GREATER THAN -THRESH) PHASE ENDS

if (JP == 0)
break

end
FIND SMALLEST POSITIVE RATIO
B(*)/TAB(*,JP), IDENTIFYING PIVOT
ROW IP

RATMIN = BIGNO;
IP = 0;
for I=I:M

if (TAB(1, JP) > THRESH)
RATIO = TAB(I,N+M+l)/TAB(I,JP);
if (RATIO < RATMIN)

RATMIN = RATIO;
IP = I;

end
end

end
IF ALL RATIOS NONPOSITIVE. MAXIMUM
IS UNBOUNDED

if (IP == 0)
disp (’**I** UNBOUNDED MAXIMUM * * * * * I)

return
end

BASIS(1P) = JP;

AMULT = I.O/TAB(IP,JP);
for J=l:N+M+l

end

ADD X(JP) TO BASIS

NORMALIZE PIVOT ROW TO MAKE TAB(IP,JP)=I

TAB(IP,J) = AMULT*TAB(IP,J);

ADD MULTIPLES OF PIVOT ROW TO OTHER
ROWS, TO KNOCK OUT OTHER ELEMENTS IN
PIVOT COLUMN

for I=l:MROW
if (I == IP)

end
continue

248 A. MATLAB PROGRAMS

END OF SIMPLEX STEP

END OF PHASE 11; READ X,P,Y FROM
FINAL TABLEAU

AMULT = TAB(1,JP);
for J=l:N+M+l

end
TAB(1.J) = TAB(1,J) - AMULT*TAB(IP,J);

end
end

x

x
x

end

for J=l:N

end
for I=l:M

X(J) = 0 . 0 ;

K = BASIS(1);
X(K) = TAB(I,N+M+l) ;

end
P = TAB(M+l.N+M+l);
for I=l:M

end
Y(1) = TAB(M+l,N+I);

y---

I---

x
x FUNCTION DLPRV USES THE REVISED SIMPLEX METHOD TO SOLVE THE PROBLEM
x
x MAXIMIZE P = C(l)*X(l) + .-. + C(N)*X(N)
x
'/, WITH X(l), ..., X(N) NONNEGATIVE, AND
x
x A(l,l)*X(l) + ... + A(l.N)*X(N) = B(1)
x

I---------------------------- FIGURE 4 6.1

function [P ,X,Y] = DLPRV(DOTA,B ,C ,N ,M)

1.
x A(M,l)*X(l) + ._. + A(M,N)*X(N) = B(M)
x
x THE LAST M COLUMNS OF A MUST CONTAIN AN IDENTITY MATRIX, AND
X B(1), . . . ,B(M) MUST BE NONNEGATIVE.
x
X ARGUMENTS
x
x ON INPUT ON OUTPUT
x - - - - - - - - ---------
1.
X DOTA - STRING CONTAINING THE NAME
x OF A USER-SUPPLIED FUNCTION:
x DOTA(2.J) SHOULD RETURN THE
74 DOT PRODUCT OF THE M-VECTOR 2
x WITH COLUMN J OF A, FOR J <= N-M
x (IDENTITY MATRIX ASSUMED IN LAST
x M COLUMNS).
x
7 . B - A VECTOR OF LENGTH M CONTAINING
x THE RIGHT HAND SIDES OF THE

A. MATLAB PROGRAMS 249

x CONSTRAINTS. THE COMPONENTS OF
x
x
x c - A VECTOR OF LENGTH N CONTAINING
x THE COEFFICIENTS OF THE OBJECTIVE
x FUNCTION.
x
X N - THE NUMBER OF UNKNOWNS (N>M).
x
X M - THE NUMBER OF CONSTRAINTS.
x
x P - THE MAXIMUM OF THE
x OBJECTIVE FUNCTION.
x
x x - A VECTOR OF LENGTH N
x WHICH CONTAINS THE LP
x SOLUTION.
x
X Y - A VECTOR OF LENGTH M
x WHICH CONTAINS THE DUAL
x SOLUTION.
x
I -
x EPS = MACHINE FLOATING POINT RELATIVE
x PRECIS1 ON
x BIGNO = A VERY LARGE NUMBER
x *******I*********************

B MUST ALL BE NONNEGATIVE.

EPS = eps;
BIGNO = 1.~35;

x .
P = 0;
X = zeros(N,l);
Y = zeros(M,l);

for I=l:M
for J=l:M

x

ABINV(1.J) = 0.0;
if (I == J)

end
ABINV(1,J) = 1.0;

end
end

x
x

x
for I=l:M

K = N-M+I;
BASIS(1) = K;

Y(1) = C(K);

XE(1) = B(I);

x

x

end
x
x

INITIALIZE Ab"(-l) TO IDENTITY

BASIS(l), ..., BASIS(M) HOLD NUMBERS OF
BASIS VARIABLES

INITIAL BASIS = LAST M VARIABLES

INITIALIZE Y TO Ab"(-T)*Cb = Cb

INITIALIZE Xb TO Ab-(-l)*B = B

THRESH = SMALL NUMBER. WE ASSUME SCALES
OF A AND C ARE NOT *TOO* DIFFERENT

250 A. MATLAB PROGRAMS

x

x

x
x

x
x

x

x
x

x

THRESH = 0.0;
for J=l:N

end
THRESH = 1000*EPS*THRESH;

while (1 > 0)

THRESH = max(THRESH,abs(C(J)));

BEGINNING OF SIMPLEX STEP

D-T = Y-T*A - C-T
for J=l:N

if (J <= N-M)

else

end

D(J) = feval(DOTA,Y,J) - C(J);

D(J) = Y(J-(N-M)) - ~(3);

end
FIND MOST NEGATIVE ENTRY IN D.
IDENTIFYING PIVOT COLUMN JP

CMIN = -THRESH;
JP = 0;
for J=l:N

if (D(J) < CMIN)
CMIN = D(J);
JP = J;

end
end

IF ALL ENTRIES NONNEGATIVE (ACTUALLY,
IF GREATER THAN -THRESH) WE ARE THROUGH

if (JP == 0)
break

end

for I=l:M
V = Ab-(-l)*Ajp (Ajp = COLUMN JP OF A)

for J=l:M

end
if (JP <= N-M)

else

end

WK(J) = ABINV(1,J);

V(1) = feval(DOTA,WK,JP);

V(1) = WKCJP-(N-M));

end
FIND SMALLEST POSITIVE RATIO
Xb(I)/V(I), IDENTIFYING PIVOT ROW IP

RATMIN = BIGNO;
IP = 0;
for I=l:M

if (V(1) > THRESH)
RATIO = XB(I)/V(I);
if (RATIO < RATMIN)

RATMIN = RATIO;
IP = I;

end
end

end
IF ALL RATIOS NONPOSITIVE, MAXIMUM

A . MATLAB PROGRAMS 251

% IS UNBOUNDED
if (IP == 0)

d isp (I * * * * * UNBOUNDED MAXIMUM *****’)
return

end

BASIS(1P) = JP;
x ADD X(JP) TO BASIS

%
% Xb = E-(-l)*Xb

UPDATE Ab- (- 1) = E- (- 1) *Ab- (-1)

f o r J=l:M

end
XB(IP) = XB(IP)/V(IP);
f o r I=l:M

ABINV(1P.J) = ABINV(IP,J)/V(IP);

if (I == IP)

end
f o r J=l:M

end

continue

ABINV(1.J) = ABINVCI, J) - V(I)*ABINV(IP, J) ;

XB(I) = XB(I) - V(I)*XB(IP);
end

f o r I=l:M
x CALCULATE Y = Ab̂ (-T)*Cb

Y(1) = 0.0;
f o r J=l:M

K = BASIS(J);
Y(1) = Y(1) + ABINV(J,I)*C(K);

end
end

end
x END OF SIMPLEX STEP
x CALCULATE X

f o r J=l:N

end
f o r 1=1 :M

X(J) = 0.0;

K = BASIS(1);
X(K) = XB(1);

end

P = 0 .0 ;
x CALCULATE P

f o r I=l:N

end
P = P + C(I)*X(I);

x---------

y---

x
x FUNCTION DTRAN SOLVES THE TRANSPORTATION PROBLEM
x
x MINIMIZE CMIN = COST(l,l)*X(l,l) + ... + COST(NW,NS)*X(NW,NS)
x
x WITH X(1,1), ..., X(NW,NS) NONNEGATIVE, AND

%---------------------------- FIGURE 4.6.2

function [CMIN.X] = DTRAN(WCAP.SREP.COST,NW,NS)

A . MATLAB PROGRAMS

x
x
x
x
x
x
x
x
x
x
x
x
%
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

ARGUMENTS

WCAP

SWU

COST

NW

NS

CMIN

X

A VECTOR OF LENGTH NW CONTAINING
THE WAREHOUSE CAPACITIES.

A VECTOR OF LENGTH NS CONTAINING
THE STORE REQUIREMENTS.

THE NW BY NS COST MATRIX. COST(1.J)
IS THE PER UNIT COST TO SHIP FROM
WAREHOUSE I TO STORE J.

THE NUMBER OF WAREHOUSES.

THE NUMBER OF STORES.

THE TOTAL COST OF THE
OPTIMAL ROUTING.

AN NW BY NS MATRIX
CONTAINING THE OPTIMAL
ROUTING. X(1,J) UNITS
SHOULD BE SHIPPED FROM
WAREHOUSE I TO STORE J.

LOAD WAREHOUSE CAPACITIES AND STORE
REQUIREMENTS INTO B VECTOR

FIRST NW*NS ENTRIES IN C ARE -COST(I,J).
NEGATIVE SIGN PRESENT BECAUSE WE WANT

A . MATLAB PROGRAMS

TO MINIMIZE COST
K = 0;
CNORM = 0.0;
f o r 111 :NW
f o r J=l:NS

K = K+l;
C(K) = -COST(I,J);
CNORM = max(CNORM,abs(C(K)));

end
end

NEXT NW COSTS ARE ZERO, CORRESPONDING
TO WAREHOUSE CAPACITY SLACK VARIABLES

f o r 1=1 :NW
K = K+1;
C(K) = 0.0;

end
LAST NS COSTS ARE LARGE AND NEGATIVE,
CORRESPONDING TO "ARTIFICIAL WAREHOUSE"
TRANSPORTATION COSTS

253

1

x
x

x
x
x

x
x

x
x

x

ALPHA = 2*CNORM;
f o r I=l:NS

K = K+1;
C(K) -ALPHA;

end
USE REVISED SIMPLEX METHOD TO SOLVE
TRANSPORTATION PROBLEM

IF ANY ARTIFICIAL VARIABLES LEFT, THERE
IS NO FEASIBLE SOLUTION

[P,XSOL,Y] = DLPRV('DTRAN2',B,C,N,M);

f o r I-1:NS
K = N-NS+I;
i f (XSOLCK) -= 0.0)

disp ('***** NO FEASIBLE SOLUTION *****'I
break

end
end

FORM OPTIMAL ROUTING MATRIX, X
CMIN = -P;
K = 0;
f o r I=l :NW
for J=l:NS

K = K+1;
X(1.J) = XSOL(K);

end
end

x%%%%%'l.%%%
f u n c t i o n DOTA = DTRAN2(Z.J)
global NWg
global NSg

NW = NWg;
NS = NSg;
JW = fix((J-l)/NS) + 1;
JS = rnod(J-1.NS) + 1;
DOTA = Z(JW) + Z(NW+JS);

x DOTA=DOT PRODUCT OF Z AND COLUMN J OF A

254 A. MATLAB PROGRAMS

FOURIER TRANSFORM OF A 1-VECTOR IS
UNCHANGED

if (M == 0)
return

end
N = 2-M;
H = cos(2*pi/N) + sin(2*pi/N)*i;
N2 = Nl2;

COPY ODD COMPONENTS OF F TO FODD
AND EVEN COMPONENTS TO FEVEN

for K=l : N2
FODD(K) = F(2*K-1);
FEVEN(K)= F(2*K);

end
TRANSFORM N/2-VECTORS FODD AND FEVEN
INTO YODD AND YEVEN

FODD = DFFT(F0DD ,M-l);
FEVEN = DFFT(FEVEN,M-I) ;
D = 1.0;

for K=l:N2
Y = (YODD+D*YEVEN , YODD-D+YEVEN)

U = D*FEVEN(K);
F(K) = FODD(K) + U;
F(N2+K) = FODD(K) - U;
D = D*H;

end

254 A. MATLAB PROGRAMS

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

function F = DFFT(F,M)

FUNCTION DFFT PERFORMS A FAST
VECTOR F. OF LENGTH N=2-M.

Y(K) = SUM FROM J=l TO N
WHERE I

ARGUMENTS

F -

M -

THE COMPLEX VECTOR

FOURIER TRANSFORM ON THE COMPLEX

OF: EXP[I*2*PI*(K-l)*(J-l)/N]*F(J)
THE FOURIER TRANSFORM IS DEFINED BY

OF LENGTH THE TRANSFORMED VECTOR
2**M TO BE TRANSFORMED. Y.

THE LENGTH OF THE VECTOR F
IS ASSUMED TO BE 2-M.

Appendix B-Answers to
Selected Exercises

1.1. $ N 3 multiplications (50% more than Gauss elimination).

1.5. Suppress pivoting, change ”DO 25 K=I+l,N” to ”DO 25 K=J,N’ and
only one further change is required.

1.10. ~ l , ~ , ~ = 4 s i n 2 (7 r ~ / (2 ~)) + 4sin2(7rrn/(2~)) + 4s in2(7rn / (2~))

1.11. Number of iterations is about 2M21n(l/e)/7r2.

1.12. When N = 20, U(7r/2) = 1.0041157 for (a),(b), and (c). Here is a
periodic tridiagonal solver for part (b):

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

SUBROUTINE TRIPER(A,B,C,X,F,N)
IMPLICIT DOUBLE PRECISION(A-H.0-2)

SOLVE LINEAR SYSTEM WITH A PERIODIC, TRI-DIAGONAL MATRIX:

A = SUBDIAGONAL OF COEFFICIENT MATRIX
B = MAIN DIAGONAL
C = SUPERDIAGONAL
D = LAST ROW
E = LAST COLUMN
F = RIGHT HAND SIDE VECTOR
X = SOLUTION

COPY F ONTO X
DIMENSION A(N) ,B(N) .C(N) ,D(N) .E(N) ,X(N) ,F(N)

DO 5 I=l.N
X (1) = F(1)

255

256 B. ANSWERS T O SELECTED EXERCISES

D(1) = 0.0
E(1) = 0.0

5 CONTINUE
D(1) = C(N)
E(1) = A(1)

C BEGIN FORWARD ELIMINATION
DO 10 K=l,N-2

IF (B(K).EQ.O.O) GO TO 20
AMULA = -A(K+l)/B(K)
AMULD = -D (K) /B (K)
B(K+l) = B(K+l) + AMIJL.A*C(K)
B(N) = B(N) + AmD*E(K)
IF (K.LT.N-2) THEN

E(K+l) = E(K+l) + AMULA*E(K)
D(K+l) = D(K+1) + AMULD*C(K)

C(K+l) = C(K+1) + AMULA*E(K)
A(N) = A(N) + AMULD*C(K)

ELSE

ENDIF
X(K+1) = X(K+1) + AMULA*X(K)
X(N) = X(N) + AMULD*X(K)

10 CONTINUE
IF (B(N-l).EQ.O.O) GO TO 20
AMULA = -A(N)/B(N-l)
B(N) = B(N) + AMULA*C(N-1)
X(N) = X(N) + AMULA*X(N-1)
IF (B(N).EQ.O.O) GO TO 20

C BACK SUBSTITUTION
X(N) = X(N)/B(N)
X (N-1) =
DO 15 K=N-2,1,-1

(X (N-1) -C (N-1) *X (N)) /B (I-1)

X(K) = (X(K) -C(K) *X(K+l) -E (K) *X(N) /B (K)
15 CONTINUE

RETURN

20 PRINT 25
25 FORMAT (' ZERO PIVOT ENCOUNTERED')

RETURN
END

C ZERO PIVOT ENCOUNTERED

L = -0.75 1 0 , U = 0 -5 5
1.14. (a). [-0:25 002 r] [y 1" :]
1.16. A;: = 0.7250783463.

2.4. Texas A&M = 4.75, Texas = -14 (assuming UTEP is last variable, and
thus UTEP = 0).

B. ANSWERS TO SELECTED EXERCISES 257

2.7. (a). Q =

2.5. p3(~) = -3.4 + 6.5% - 2 . 2 5 ~ ~ + 0 . 2 5 ~ ~

- -
0.44721 -0.63246 0.53452 -0.31623 0.11952
0.44721 -0.31623 -0.26726 0.63246 -0.47809
0.44721 0.00000 -0.53452 0.00000 0.71714
0.44721 0.31623 -0.26726 -0.63246 -0.47809

- 0.44721 0.63246 0.53452 0.31623 0.11952 -

C

SUBROUTINE REDQ2(A,M,N,B,PIVOT,NPIVOT,ERRLIM)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)

C DECLARATIONS FOR ARGUMENTS
DOUBLE PRECISION A(M,N) .B(M) .ERRLIM
INTEGER PIVOT(M),M,N.NPIVOT

C USE GIVENS ROTATIONS TO REDUCE
C A TO ROW ECHELON FORM

I = l
DO 15 L-l.N

C USE PIVOT A(I,L) TO KNOCK OUT
C ELEMENTS 1+1 TO M IN COLUMN L.

DO 10 J=I+l,M
IF (A(J,L).EQ.O.O) GO TO 10
C = COS(A(J.L))
S = SIN(A(J,L))

BI = C*B(I) + S*B(J)
BJ =-S*B(I) + C*B(J)
B(1) = BI
B(J) = BJ

PREMULTIPLY B BY Qij**T

10 CONTINUE
C PIVOT A(1,L) IS NONZERO AFTER
C PROCESSING COLUMN L--MOVE DOWN
C TO NEXT ROW. 1+1

IF (ABS(A(I,L)).LE.ERRLIM) A(1.L) = 0.0
IF (A(1.L) .NE.O.O) THEN

NPIVOT = I
PIVOT(NPIV0T) = L
I = 1+1
IF (1.GT.M) RETURN

ENDIF
15 CONTINUE

RETURN
END

2.9. p 5 (~) = -4.37752 + 3.71201% + 5 . 0 8 3 8 1 ~ ~ - 4 . 4 8 2 5 9 ~ ~ + 1 . 1 6 1 1 4 ~ ~
- 0 . 0 9 6 8 5 ~ ~ .

258 B. ANSWERS TO SELECTED EXERCISES

(f). UDVT =

0 0 1 -13

0 -5/13 12/13
2.10 (a).

-
-4.98654 7.00467 3.08472 3.94083 -8.00078

5.00304 8.00106 3.01916 5.98661 7.99982
3.01693 -6.99412 -2.89340 -4.07446 4.99902

- 6.99995 3.99998 4.99971 9.00020 5.00000
-3.00037 -.00013 3.99767 5.00162 3.00002

3.3. Move ”20 CONTINUE” to before ”EK = 0.0”

3.9. 22 iterations (101 without shifts).

rl -1 6 1
2 - 1 9 2 I 0 - 1 6 1

3.10. (a).

0 0 -13 -2

1 2 0
-1 5 -1
0 16 -39/16 i 0 0 211256

(b). - 13
7/16

1
1
I

8.16288 0.00000 3.24497
A(new) = 0.00000 1.83772 2.33884

3.24497 2.33884 6.00000

7.60000 3.00000 0.00000
A(new) = 3.00000 7.77600 0.83200

0.00000 0.83200 0.62400

6.25000 3.00000 0.00000
A(new) = 2.81250 8.01667 4.00000 [0.00000 1.84889 1.73333

[
[

3.18. (a).

(b).

(c).

4.1. (b). Minimum is P = 9, at (3, 0).

4.2. Minimize bTy

with ATy 2 c and yl, ..., yk 2 0.

3.12. (v:vZn+l)/(v:vZn), so by doing n iterations with u = vn you can get
the same result as doing 2n iterations with u = vo.

3.15. (a). 9 iterations

(b). > 1000 iterations

(c). 19 iterations

B. ANSWERS T O SELECTED EXERCISES 259

4.7. Results will vary depending on the random number generator used, but
here is one set of results:

M Iterations Possible Bases
10 16 3*107
20 45 4*1015
30 83 7*1023
40 138 1 * 1 0 ~ ~
50 195 2*1040

4.8. If NW = NW = I c , DLPRG requires O(Ic3) memory and does O(k3)
operations. DTRAN requires O (k 2) memory and does O(Ic2) operations.

5.1. There should be peaks at f (l) , f (l6) and f(5462).

5.6. (b). When N = Z9, U(0.5,0.5) = -0.262116.

(c). When N = Z9, U(0.5,0.5) = -0.266101.

5.8. (a). About 3N COMPLEX*16 words are used.

(b). Make the user pass FODD and FEVEN in as workarrays (a little
extra work for the user, that is why DFFT doesn’t do this):

SUBROUTINE DFFT(F,N,FODD,FEVEN)

then use the array F as workspace for the lower level DFFT calls:

CALL DFFT(FODD,M-1 ,F(1) ,F(N2+1))
CALL DFFT(FEVEN,M-1 ,F(1) ,F(N2+1))

Now no automatic arrays are used, so the only memory used is the
2 N words allocated by the user in the main calling program.

5.9. Plot after removing high frequencies is shown on next page.

6.2. With M = 12, U at the midpoint should be 0.055627.

6.3. Here is a parallelized version of REDQ, where each processor stores only
its own columns of A:

260

0

8
u3

0

0
0

9

0

8 *

-
-0

t o
S?
--r?

0

8

8

N

0

7

0

8

B. ANSWERS T O SELECTED EXERCISES

0.00 25.00 50.00 75.00 100.00 125.00
K

Problem 5.9
Figure 5.3.2 Without High Frequencies

SUBROUTINE PREDQ(A.M.N,B.PIVOT,NPIVOT,ERRLIM)
IMPLICIT DOUBLE PRECISION (A-H.0-2)

C DECLARATIONS FOR ARGUMENTS
DOUBLE PRECISION A(M,*) .B(M) ,ERRLIM
INTEGER PIVOT(M),M,N.NPIVOT

DOUBLE PRECISION COLUMNL(M)
include 'mpif . h

C NPES = NUMBER OF PROCESSORS
CALL MPI-COMM-SIZE (MPI-COMM_WORLD,NPES,IERR)

C ITASK = MY PROCESSOR NUMBER
CALL MPI-COMM-RANK (MPI-COMM-WORLD,ITASK,IERR)

C USE GIVENS ROTATIONS TO REDUCE A

C DECLARATIONS FOR LOCAL VARIABLES

B. ANSWERS TO SELECTED EXERCISES 26 1

C TO ROW ECHELON FORM
1 = 1
DO 15 L=l,N

C

C
C

1

C

0
C

C
C

C

5

C

10
C
C

JTASK OWNS ACTIVE COLUMN L
JTASK = MOD(L-1,NPES)
IF (1TASK.EQ.JTASK) THEN

IF JTASK IS ME, SAVE ACTIVE COLUMN IN
VECTOR COLUMNL

LME = (L-l)/NPES+l
DO 1 J=I,M

CONTINUE
COLUMNL(J) = A(J.LME)

ENDIF

CALL MPI~BCAST(COLUMNL(I),M-I+1,MPI~DOUBLE~PRECISION.
JTASK,MPI-COMM-WORLD.IERR)

RECEIVE COLUMNL FROM PROCESSOR JTASK

LO = FIRST COLUMN >= L BELONGING TO ME
LLO = (L-~+NPES-(ITASK+~))/NPES
LO = ITASK+l+LLO*NPES

USE PIVOT A(1.L) TO KNOCK OUT ELEMENTS
1+1 TO M IN COLUMN L.

DO 10 J=I+l,M
IF (COLUMNL(J).EQ.O.O) GO TO 10
DEN = SQRT(C0LUMNL (I **2+COLUMNL (J) **2)
C = COLU"L(I)/DEN
S = COLU"L(J)/DEN

DO 5 K=LO.N.NPES
PREMULTIPLY A BY Qij**T

KME = (K-l)/NPES+l
BIK = C*A(I.KME) + S*A(J,KME)
BJK =-S*A(I,KME) + C*A(J,KME)
A(1,KME) = BIK
A(J.KME) = BJK

CONTINUE
BIL = C*COLUMNL(I) + S*COLU"L(J)
BJL =-S*COLUHh'L(I) + C*COLUMNL(J)
COLUMNL(1) = BIL
COLUMNL(J) = BJL

BI = C*B(I) + S*B(J)
BJ =-S*B(I) + C*B(J)
B(1) = BI
B(J) = BJ

PREMULTIPLY B BY Qij**T

CONTINUE
PIVOT A(1.L) NONZERO AFTER PROCESSING
COLUMN L--MOVE DOWN TO NEXT ROW, 1+1

IF (ABS(COLUMNL(1)) .LE.ERRLIM) COLUMNL(1) = 0.0
IF (COLUMNL(1) .NE.O.O) THEN

262 B. ANSWERS T O SELECTED EXERCISES

NPIVOT = I
PIVOT(NPIV0T) = L
I = I+1
IF (1.GT.M) RETURN

ENDIF
15 CONTINUE

RETURN
END

References

Bisseling, R.H. (2004), Parallel Scientific Computing, Oxford University Press.

Brigham, E.O. (1974), The Fast Fourier Transform, Prentice Hall.

Brigham, E.O. (1988), The Fast Fourier Transform and Its Applications,
Prentice Hall.

Buchanan, J.L. and P.R. Turner (1992), Numerical Methods and Analysis,
McGraw-Hill.

Cooley, J.W. and J.W. Tukey (1965), “An algorithm for the machine cal-
culations of complex Fourier series,” Mathematics of Computation 19,
29 7-30 1.

Dantzig, G.B. (1951), “Maximization of a linear function of variables subject
to linear inequalities,” in Activity Analysis of Production and Allocation,
John Wiley & Sons. pp. 339-347.

Dantzig, G.B. (1963), Linear Programming and Extensions, Princeton Uni-
versity Press.

de Boor, C. (1978), A Practical Guide to Splines, Springer.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK
User’s Guide, SIAM.

Dongarra, J.J., J. Du Croz, S. Hammarling and R.J. Hanson (1988), “An ex-
tended set of FORTRAN basic linear algebra subprograms,’’ A C M Trans-
actions on Mathematical Software 14, 1-32.

Duff, I., A. Erisman, and J . Reid (1986), Direct Methods for Sparse Matrices,
Oxford University Press.

Forsythe, G. and P. Henrici (1960), “The cyclic Jacobi method for computing
the principal values of a complex matrix,” Transactions of the American
Mathematical Society 94, 1-23.

263

264 REFERENCES

Forsythe, G., M. Malcolm, and C.B. Moler (1977), Computer Methods for
Mathematical Computations, Prentice Hall.

Francis, J.G.F. (1961), “The Q-R transformation, parts I and 11,” Computer
Journal 4, 265-271, 332-345.

George, A. and J.W.H. Liu (1981), Computer Solution of Large Sparse Posi-
tive Definite Systems, Prentice Hall.

Gill, P., W. Murray, and M. Wright (1991), Numerical Linear Algebra and
Optimization, Volume I, Addison-Wesley.

Hagar, W.W. (1988), Applied Numerical Linear Algebra, Prentice Hall.

Hanselman, D. and B. Littlefield (2001), Mastering MATLAB 6, Prentice
Hall.

Heath, M.T. (2002), Scientific Computing, An Introductory Survey, McGraw-
Hill.

Higham, D.J. and N.J. Higham (2000), MATLAB Guide, SIAM.

Kahaner, D, C. Moler, and S. Nash (1989), Numerical Methods and Software,
Prentice Hall.

Kincaid, D. and W. Cheney (2004), Numerical Mathematics and Computing,
Fifth Edition, Brooks and Cole.

Leiss, E. (1995), Parallel and Vector Computing, McGraw-Hill.

Pacheco, P. (1996), Parallel Programming with MPI, Morgan Kaufmann.

Rutishauser, H. (1958), “Solution of eigenvalue problems with the L-R trans-
formation,” U.S. Bureau of Standards Applied Mathematics Series 49,
47-81.

Schendel, U. (1984), Introduction to Numerical Methods for Parallel Comput-
ers, Ellis Horwood.

Schrijver, A. (1986), Theory of Linear and Integer Programming, John Wiley
& Sons.

Sewell, G. (2005), The Numerical Solution of Ordinary and Partial Difleren-
tial Equations, Second Edition, John Wiley & Sons.

Singleton, R. (1967), “On computing the fast Fourier transform,” Communi-
cations of the ACM 10(10), 647-654.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, U. Ikebe, V.C. Klema,
and C.B. Moler (1976), Matrix Eigensystem Routines-EISPACK Guide,
Springer.

REFERENCES 265

Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press.

Trefethen, N. (2002), “A Hundred-dollar, Hundred-digit Challenge,’’ SIAM
News 35(1), 1.

Wilkinson, J.H. (1965), The Algebraic Eigenvalue Problem, Oxford University
Press.

Young, D.H. (1971), Iterative Solution of Large Linear Systems, Academic
Press.

This Page Intentionally Left Blank

Index

Amdahl’s Law, 205
artificial variables, 142

back substitution, 15
band matrix, 27
band width, 27
basis variables, 145
BLAS, 206
blending problem, 139
block matrices, 4

chaining operations, 197
Cholesky decomposition, 27
complete pivoting, 16
condition number, 42, 65
conjugate-gradient method, 212
curve fitting problem, 140
cycling, 162

determinant, 42
diagonal dominance, 49
discrete Fourier transform, 182
distributed memory system, 199
dual problem, 149

eigenvalues, 86
eigenvectors, 86
EISPACK, 109
elastic membrane, 87
elementary matrices, 24, 114
extreme feasible points, 144

fast Fourier transform, 184
feasible points, 141
fill-in, 33
finite element method, 130

flops, 198
FORTRAN, 17, 186
forward elimination, 13
frequency domain, 182

Gauss-Jordan elimination, 57
Gauss-Seidel iteration, 50
Gaussian elimination, 12
generalized eigenvalue problem, 130
Givens rotations, 68, 89, 102

Hessenberg matrix, 5, 97
Hilbert matrix, 45
Householder transformations, 73,109

ill-conditioned matrix, 41
IMSL, 109
interior algorithms, 173
interpolation, 39
inverse power method, 123
iterative methods, 46

Jacobi iteration (linear systems), 49
Jacobi method (eigenvalues), 88
Jordan canonical form, 47, 120

least squares problem, 63
least squares spline, 79
linear equations, 12
linear programming, 138
LR method, 114
LU decomposition, 26, 123

MATLAB, 221
minimal degree ordering, 33
MPI, 200

267

268 INDEX

natural cubic spline, 35
nonsingular matrix, 6
normal equations, 65
norms, 7

objective function, 141
orthogonal matrix, 7, 67, 89
overdetermined system, 84

parallel computer, 197, 199
partial differential equation, 52,87,

191
partial pivoting, 16
PDE2D, 216
periodic boundary conditions, 60,

191
permutation matrix, 24
pipeline computer, 197
pivot, 14, 149
positive-definite matrix, 6, 51
power method, 119
primal problem, 149

QR decomposition, 72
QR method, 99
quasitriangular matrix, 101

resource allocation problem, 138
revised simplex method, 165
roundoff errors, 39
row echelon form, 66

scaled partial pivoting, 45
scaling, 45
shared memory system, 199
shifted inverse power method, 123
shifted QR method, 108, 199
simplex method, 142
simplex phase, 162
simplex tableau, 144
sine transform, 193
singular value decomposition, 135
slack variables, 142
slow Fourier transform, 190
sparse matrix, 33, 46

splines, 33, 78
stride, 199
successive overrelaxation (SOR), 51
supercomputers, 196
symmetric matrix, 6, 88

time domain, 182
transportation problem, 139, 173
transpose, 1
triangular matrix, 5
tridiagonal matrix, 5

underdetermined system, 84

vector computer, 197
vectorization, 198

PURE AND APPLIED MATHEMATICS
A Wiley-Interscience Series of Texts, Monographs, and Tracts

Founded by RICHARD COURANT
Editors Emeriti: MYRON B. ALLEN 111, DAVID A. COX, PETER HILTON, HARRY
HOCHSTADT, PETER LAX, JOHN TOLAND

ADAMEK, HERRLICH, and STRECKER-Abstract and Concrete Catetories
ADAMOWICZ and ZBIERSKI-Logic of Mathematics
AINSWORTH and ODEN-A Posteriori Error Estimation in Finite Element Analysis
AKIVIS and GOLDBERG-Conformal Differential Geometry and Its Generalizations
ALLEN and ISAACSON-Numerical Analysis for Applied Science

AUBIN-Applied Functional Analysis, Second Edition
AZIZOV and IOKHVIDOV-Linear Operators in Spaces with an Indefinite Metric
BERG-The Fourier-Analytic Proof of Quadratic Reciprocity
BERMAN, NEUMANN, and STERN-Nonnegative Matrices in Dynamic Systems
BERKOVITZ-Convexity and Optimization in [w"
BOYARINTSEV-Methods of Solving Singular Systems of Ordinary Differential

Equations
BURK-Lebesgue Measure and Integration: An Introduction

CASTILLO, COBO, JUBETE, and PRUNEDA-Orthogonal Sets and Polar Methods in
Linear Algebra: Applications to Matrix Calculations, Systems of Equations,
Inequalities, and Linear Programming

CASTILLO, CONEJO, PEDREGAL, GARCIA, and ALGUACIL-Building and Solving
Mathematical Programming Models in Engineering and Science

CHATELIN-Eigenvalues of Matrices
CLARK-Mathematical Bioeconomics: The Optimal Management of Renewable

COX-Galois Theory

Multiplication

*ARTIN-Geometric Algebra

*CARTER-Finite Groups of Lie Type

Resources, Second Edition

?COX-Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex

*CURTIS and REINER-Representation Theory of Finite Groups and Associative Algebras
*CURTIS and REINER-Methods of Representation Theory: With Applications to Finite

Groups and Orders, Volume I
CURTIS and REINER-Methods of Representation Theory: With Applications to Finite

Groups and Orders, Volume I1
DINCULEANU-Vector Integration and Stochastic Integration in Banach Spaces

*DUNFORD and SCHWARTZ-Linear Operators
Part 1-General Theory
Part 2-Spectral Theory, Self Adjoint Operators in

Part 3-Spectral Operators
Hilbert Space

FARINA and RINALDI-Positive Linear Systems: Theory and Applications
FOLLAND-Real Analysis: Modem Techniques and Their Applications
FROLICHER and KRIEGL-Linear Spaces and Differentiation Theory
GARDINER-Teichmiiller Theory and Quadratic Differentials

*Now available in a lower priced paperback edition in the Wiley Classics Library.
?Now available in paperback.

GILBERT and NICHOLSON-Modem Algebra with Applications, Second Edition

GRILLET-Algebra
GROVE-Groups and Characters
GUSTAFSSON, KREISS and OLIGER-Time Dependent Problems and Difference

HANNA and ROWLAND-Fourier Series, Transforms, and Boundary Value Problems,

*GRIFFITHS and HARRIS-Principles of Algebraic Geometry

Methods

Second Edition
*HENRICI-Applied and Computational Complex Analysis

Volume 1, Power Series-Integration-Conformal Mapping-Location

Volume 2, Special Functions-Integral Transforms-Asymptotics-

Volume 3, Discrete Fourier Analysis, Cauchy Integrals, Construction

of Zeros

Continued Fractions

of Conformal Maps, Univalent Functions
*HILTON and WU-A Course in Modem Algebra
* HOCHSTADT-Integral Equations
JOST-Two-Dimensional Geometric Variational Procedures
KHAMSI and KIRK-An Introduction to Metric Spaces and Fixed Point Theory

*KOBAYASHI and NOMIZU-Foundations of Differential Geometry, Volume I
*KOBAYASHI and NOMIZU-Foundations of Differential Geometry, Volume I1
KOSHY-Fibonacci and Lucas Numbers with Applications
LAX-Functional Analysis
LAX-Linear Algebra
LOGAN-An Introduction to Nonlinear Partial Differential Equations
MARKLEY-Principles of Differential Equations
MORRISON-Functional Analysis: An Introduction to Banach Space Theory
NAYFEH-Perturbation Methods
NAYFEH and MOOK-Nonlinear Oscillations
PANDEY-The Hilbert Transform of Schwartz Distributions and Applications
PETKOV-Geometry of Reflecting Rays and Inverse Spectral Problems

RAO-Measure Theory and Integration
RASSIAS and SIMSA-Finite Sums Decompositions in Mathematical Analysis
RENELT-Elliptic Systems and Quasiconformal Mappings
RIVLIN-Chebyshev Polynomials: From Approximation Theory to Algebra and Number

ROCKAFELLAR-Network Flows and Monotropic Optimization
ROITMAN-Introduction to Modern Set Theory

SENDOV-The Averaged Moduli of Smoothness: Applications in Numerical Methods

SENDOV and POPOV-The Averaged Moduli of Smoothness
SEWELL-The Numerical Solution of Ordinary and Partial Differential Equations,

SEWELL-Computational Methods of Linear Algebra, Second Edition

*PRENTER-Splines and Variational Methods

Theory, Second Edition

*RUDIN-Fourier Analysis on Groups

and Approximations

Second Edition

*SIEGEL-Topics in Complex Function Theory
Volume 1-Elliptic Functions and Uniformization Theory
Volume 2-Automorphic Functions and Abelian Integrals
Volume 3-Abelian Functions and Modular Functions of Several Variables

SMITH and ROMANOWSKA-Post-Modern Algebra
STADE-Fourier Analysis
STAKGOLD-Green’s Functions and Boundary Value Problems, Second Editon

*Now available in a lower priced paperback edition in the Wiley Classics Library.
tNow available in paperback.

STAHL-Introduction to Topology and Geometry
STANOYEVITCH-Introduction to Numerical Ordinary and Partial Differential

Equations Using MATLAB@
*STOKER-Differential Geometry
*STOKER-Nonlinear Vibrations in Mechanical and Electrical Systems
*STOKER-Water Waves: The Mathematical Theory with Applications
WATKINS-Fundamentals of Matrix Computations, Second Edition
WESSELING-An Introduction to Multigrid Methods

+WHITHAM-Linear and Nonlinear Waves
TZAUDERER-Partial Differential Equations of Applied Mathematics, Second Edition

*Now available in a lower priced paperback edition in the Wiley Classics Library
tNow available in paperback.

